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Population viewpoint on Hawkes processes1

Alexandre Boumezoued2

July 12, 2015

Abstract

This paper focuses on a class of linear Hawkes processes with general immigrants.
These are counting processes with shot noise intensity, including self-excited and
externally excited patterns. For such processes, we introduce the concept of age
pyramid which evolves according to immigration and births. The virtue if this ap-
proach that combines an intensity process definition and a branching representation
is that the population age pyramid keeps track of all past events. This is used to
compute new distribution properties for a class of Hawkes processes with general
immigrants which generalize the popular exponential fertility function. The path-
wise construction of the Hawkes process and its underlying population is also given.

Keywords: Hawkes processes, branching, immigration, age pyramid, non-stationarity,
Laplace transform, thinning, Poisson point measure.

1 Introduction

This paper investigates the link between some population dynamics models and a
class of Hawkes processes. We are interested in processes whose behavior is mod-
ified by past events, which are self-excited and externally excited. The introduc-
tion of a self-excited process with shot noise intensity is due to Hawkes (1971) and
the famous Hawkes process has been used until now for a variety of applications,
including seismology, neuroscience, epidemiology, insurance and finance, to name
but a few. The shot noise intensity of the Hawkes process (Nt) is expressed as
λt = µ+

∑
Tn<t

φ(t−Tn), where the Tn are the times of jump of the Hawkes process
N itself, µ > 0 and φ is a non-negative function. In the Hawkes model, when an
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event occurs at time Tn, the intensity grows by an amount φ(t − Tn): this models
the self-exciting property. Also, for many modeling purposes, φ returns to zero as t
increases, so that the self-excitation vanishes after a long time. On the whole, each
event excites the system as it increases its intensity, but this increase vanishes with
time as it is natural to model the fact that very old events have a negligible im-
pact on the current behavior of the process. In the literature, several contributions
focused on processes with self-exciting behavior and also some externally exciting
component. To our knowledge, the Hawkes process with general immigrants has
been introduced in Brémaud and Massoulié (2002), and specific forms can also be
found in recent studies motivated by financial applications, such as Dassios and Zhao
(2011), Wheatley et al. (2014) and Rambaldi et al. (2014), where external shocks,
news arrivals and contagion are crucial to model. In this paper, we are interested in
a class of Hawkes processes with general immigrants (see Brémaud and Massoulié
(2002)), whose intensity is of the form

λt = µ(t) +
∑
Tn<t

Φt(t− Tn, Xn) +
∑
Sk<t

Ψt(t− Sk, Yk).

In this model, the Tn are the times of jump of N : if an event occurs for the system
at time Tn, the intensity grows by an amount Φt(t − Tn, Xn), where Xn is some
mark. This part models the self-exciting property. In parallel, external events occur
at times Sk and excites the system of interest with some amount Ψt(t−Sk, Yk): this
is the externally excited component.

Among the appealing properties of such models, one of them comes from the shot-
noise form of the intensity. This is called the cluster (or branching) representation
of the Hawkes process, and it is based on the following remark: if an event occured
at time Tn, then t − Tn is nothing but the "age" of this event at time t. Few
years later after the seminal work of Hawkes (1971), Hawkes and Oakes (1974)
proposed the cluster representation of the self-exciting process. They interpreted it
as an immigration-birth process with age: they proved that under some stationarity
conditions, it can be described as a branching Poisson process (also called Poisson
cluster). Also, in Dassios and Zhao (2011), a definition of a dynamic contagion
process is given through its cluster representation. Until now, most studies on the
Hawkes process recalled the immigration-birth representation as follows: immigrants
arrive at times given by a Poisson process with intensity µ. Then each immigrant
starts a new generation: it gives birth to new individuals with fertility function
φ, each one giving birth with same fertility function φ. This is often used as a
definition for the Hawkes process, providing a good intuition on its behavior. The
cluster representation of Hawkes and Oakes (1974) requires that the mean number of
children per individual which is nothing but ‖φ‖ =

∫∞
0
φ(a)da satisfies ‖φ‖ < 1. In

our paper, we exhibit the immigration-birth dynamics underlying Hawkes processes
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with general immigrants which does not require the stationary assumption. The
virtue if this approach that combines an intensity process definition and a branching
representation is that the population age pyramid keeps track of all past events. This
is used to compute new distribution properties for a class of linear Hawkes process
with general immigrants.

In the literature, the distribution properties of the Hawkes process have first
been studied under stationary conditions. Hawkes (1971) addressed second order
stationary properties, whereas Adamopoulos (1975) derived the probability generat-
ing functional under stationarity, by using the cluster representation of Hawkes and
Oakes (1974). In this work, Adamopoulos (1975) expressed the probability generat-
ing function as a solution to some functional equation. Furthermore, Brémaud and
Massoulié (2002) introduced the framework for studying moments of the stationary
Hawkes process by means of the Bartlett spectrum. Let us also mention two recent
studies of the distribution properties under stationarity. The moment generating
function has been expressed in Saichev and Sornette (2011) as a solution to some
transcendental equation. In addition, Jovanović et al. (2014) proposed a graphical
way to derive closed forms for cumulant densities, leading to the moments of the sta-
tionary Hawkes process. It is interesting to note that such recent contributions rely
the stationary branching representation of Hawkes and Oakes (1974). Recently, the
computation of statistical properties has gained attention under non-stationarity,
both for mathematical analysis and statistical estimation techniques. However, the
recent studies in this framework only focus on exponential fertility rates φ(t) = αeβt.
The tool they rely on is the infinitesimal generator of the intensity process (λt) which
is Markovian for such exponential fertility rate (see Oakes (1975)). This includes the
work of Errais et al. (2010), Aït-Sahalia et al. (2010), Dassios and Zhao (2011), and
Da Fonseca and Zaatour (2014). Our paper generalizes these studies in a natural
direction for a wider class of Hawkes processes.

Scope of this paper The aim of this paper is (i) to introduce the concept of
age pyramid for Hawkes processes with general immigrants, (ii) to use this concept
to compute new distribution properties for a class of fertility functions which gen-
eralize the popular exponential case, and (iii) to give a pathwise representation of
the general Hawkes processes and its underlying immigration-birth dynamics. We
represent the population as a multi-type dynamics with ages, including immigration
and births with mutations. Our population point of view is inspired by Bensusan
et al. (2010–2015) (see also Tran (2008)) and seems to reconcile the two definitions
of Hawkes processes, through an intensity process or a branching dynamics.
The paper is organized as follows. Section 2 introduces the population point of view
for Hawkes processes with general immigrants and studies the dynamics of the age
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pyramid over time. In Section 3, we use this concept to compute the dynamics and
Laplace transform of a class of Hawkes processes with general immigrants whose
fertility functions generalize the popular exponential case. Section 4 presents the
pathwise construction of Hawkes processes with general immigrants and its underly-
ing population. Finally, Section 5 details some results on the special case of standard
Hawkes processes, including its Laplace transform and two first order moments.

2 Population point of view

This paper focuses on a class of counting processes named as Hawkes processes with
general immigrants (see Brémaud and Massoulié (2002)), which is defined below
through its intensity process. Existence and uniqueness issues will be discussed in
Section 4. Let (Ω,A,P) be a probability space satisfying the usual conditions. Recall
that the intensity process (λt) of a counting process (Nt) is the (FNt )-predictable
process such that Nt −

∫ t
0
λsds is an (FNt )- local martingale, where (FNt ) denotes

the canonical filtration of (Nt).

Definition 1. A Hawkes process with general immigrants is a counting process (Nt)
whose intensity is given by

λt = µ(t) +
∑
Tn<t

Φt(t− Tn, Xn) +
∑
Sk<t

Ψt(t− Sk, Yk), (1)

where the Tn are the times of jump of N , the Sk are those of a counting process
with deterministic intensity ρ(t) and the Xn (resp. Yk) are real positive iid with
distribution G (resp. H). The (Sk), (Yk) and (Xn) are assumed to be independent
of each other.

In this model, the Tn are the times of jump of N : if an event occurs for the system
at time Tn, the intensity grows by an amount Φt(t−Tn, Xn), where Xn is some mark.
This part models the self-exciting property. In parallel, external events occur at
times Sk and excites the system of interest with some amount Ψt(t−Sk, Yk): this is
the externally excited component. The Hawkes process with general immigrants has
been introduced and studied under stationary conditions by Brémaud and Massoulié
(2002). Due to their flexibility and natural interpretation, such models have gained
recent attention for financial applications e.g. by Dassios and Zhao (2011), Wheatley
et al. (2014) and Rambaldi et al. (2014). In particular, distribution properties
of such process have been investigated by Dassios and Zhao (2011) in the case
Φt(a, x) = Ψt(a, x) = xe−δa, in which framework the intensity process is Markovian.
Our aim is to study the dynamics and characterize the distribution of the non-
stationary Hawkes process with general immigrants for a larger class of fertility
functions, possibly time-dependent, which extends the previous work of Dassios and
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Zhao (2011) in this direction. To do this, we first represent it as a two-population
immigration-birth dynamics with ages and characteristics.

Thanks to Definition 1, we obtain a representation of the intensity process. But
in fact, the whole information on the dynamics is lost. Indeed, it is interesting to go
back to the branching representation of Hawkes and Oakes (1974) to have in mind
the underlying population dynamics. For the standard Hawkes process with inten-
sity λt = µ+

∑
Tn<t

φ(t−Tn), we have the following interpretation: first, immigrants
arrive according to a Poisson process with parameter µ, then each immigrant gener-
ates a cluster of descendants with the following rule: if an individual arrived or was
born at some time Tn, it gives birth to new individuals with rate φ(t− Tn) at time
t, where in fact, t−Tn is nothing but the age at time t of the individual. In the case
of the Hawkes process with general immigrants (see Definition 1), the description of
the dynamics is very similar, except that we have two populations: population (1)
represents external shocks that occur at times Sk, whereas population (2) represents
internal shocks that occurred at time Tn. If an individual is born at time Sk (resp.
Tn), we call the mark Yk (resp. Xn) its characteristic. Then the immigration-birth
dynamics can be described as follows:
(i) Let us first describe the population (1) of external shocks. It is made with
immigrants that arrive in population (1) with rate ρ(t); at arrival, they have age
0 and some characteristic x drawn with distribution H. Any individual, denoted
(a, x), with age a and characteristic x at time t that belongs to population (1) gives
birth with rate Ψt(a, x). The newborn belongs to population (2); it has age 0, and
some characteristic drawn with distribution G.
(ii) Let us now complete the description of population (2). In addition to births
from population (1), the population (2) evolves according to two other kind of events:
immigration and internal birth. Immigrants arrive in population (2) with rate µ(t)

with age 0 and a characteristic drawn with distribution G. Any individual (a, x) at
time t that belongs to population (2) gives birth with rate Φt(a, x). The newborn
also belongs to population (2); it has age 0, and some characteristic drawn with
distribution G. In the end, the Hawkes process with general immigrants can be
recovered as the size of population (2), therefore this construction can be seen as
another definition of such process. This dynamics is illustrated in Figure 1.

Since the immigration-birth mechanism is crucial to understand the behavior of
the Hawkes dynamics, our aim now is to keep track of all ages and characteristics in
each population (i), i =1 or 2. One way to address this issue is to count the number
of individuals with age below ā > 0 and a characteristic in some set [0, x̄] ⊂ X at
time t, denoted Z(i)

t ([0, ā], [0, x̄]). This can be computed for example for population
(2) in the following way: Z(2)

t ([0, ā], [0, x̄]) =
∑

Tn≤t 1[0,ā](t−Tn)1[0,x̄](Xn). This way,
each population (i), i = 1 or 2, is represented at time t as a measure which puts a
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Figure 1: Population dynamics of the Hawkes process with general immigrants

weight on the age and characteristic of each individual, denoted Z(i)
t (da, dx). The

two measures which we call age pyramid are introduced in the following definition.

Definition 2. We call age pyramids at time t the two following measures:

Z
(1)
t (da, dx) =

∑
Sk≤t

δ(t−Sk,Yk)(da, dx) and Z(2)
t (da, dx) =

∑
Tn≤t

δ(t−Tn,Xn)(da, dx). (2)

The virtue of the measure representation is that one can compute time-dependent
functions of the population age pyramid. Consider a function ft(a, x) depending on
time, and also on ages and characteristics of individuals. This can be computed on
the overall population with the following notation:

〈Z(i)
t , ft〉 =

∫
R+×R+

ft(a, x)Z
(i)
t (da, dx), (3)

for i = 1 or 2. For example, the Hawkes process is N (2)
t = 〈Z(2)

t ,1〉, whereas the
number of external shocks is N (1)

t = 〈Z(1)
t ,1〉. Also, the intensity λt of the Hawkes

process N (2)
t given in Equation (1) can be rewritten as

λt = µ(t) + 〈Z(2)
t− ,Φt〉+ 〈Z(1)

t− ,Ψt〉. (4)

Viewed as a stochastic process,
(
Z

(1)
t (da, dx), Z

(2)
t (da, dx)

)
t≥0

is a (two-dimensional)

measure-valued process. In fact, this age pyramid process is a Markov process (see
Tran (2006)). Note however that its differentiation in time is not straightforward
(see Bensusan et al. (2010–2015) and Lemma 1 below). The Markov property of
the age pyramid process shows that all the information needed is contained in the
population age structure. Let us mention the seminal point of view of Harris (1963),
for who "it does seem intuitively plausible that we obtain a Markov process, in an
extended sense, if we describe the state of the population at time t not simply by
the number of objects present but by a list of the ages of all objects." However, in
practice this information is "too large" to perform tractable computations. In the
next section, we illustrate how to identify some minimal components to add to the
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Hawkes process in order to make the dynamics Markovian. To do this, we first need
to address the dynamics of the age pyramid. This is stated in the following lemma.

Lemma 1. For each function f : (t, x, a) 7→ ft(a, x) differentiable in t and a, the
dynamics of the process 〈Z(i)

t , ft〉 for i = 1 or 2 is given by

d〈Z(i)
t , ft〉 =

∫
R+

ft(0, x)N (i)(dt, dx) + 〈Z(i)
t , ( ∂a + ∂t)ft〉dt, (5)

where the point measures N (1) and N (2) are given by

N (1)(dt, dx) =
∑

k≥1 δ(Sk,Yk)(dt, dx) and N (2)(dt, dx) =
∑

n≥1 δ(Tn,Xn)(dt, dx).

Proof of Lemma 1 Let us first remark that by Equation (3),

〈Z(i)
t , ft〉 =

∫
(0,t]×R+

ft(t− s, x)N (i)(ds, dx). (6)

Then write between s and t, ft(t− s, x) = fs(0, x) +
∫ t
s
( ∂a + ∂u)fu(u− s, x)du and

use it into Equation (6) to get
〈Z(i)

t , ft〉 =
∫

(0,t]×R+
fs(0, x)N (i)(ds, dx)+

∫
(0,t]×R+

(∫ t
s
( ∂a + ∂u)fu(u− s, x)du

)
N (i)(ds, dx).

By Fubini’s theorem, the last term of the sum is equal to∫ t
0

(∫
(0,u]×R+

( ∂a + ∂u)fu(u− s, x)N (i)(ds, dx)
)

du, and by Equation (6), this is equal

to
∫ t

0
〈Zu, ( ∂a + ∂u)fu〉du. This concludes the proof. �

The decomposition (5) is classical in the field of measure-valued population dy-
namics (see Tran (2008) and Bensusan et al. (2010–2015)). The first term refers to
the pure jump part of arrivals of individuals with age 0, whereas the second term of
transport type illustrates the aging phenomenon (all ages are translated along the
time axis), as well as the time component. The fact that the drift part depends on
both 〈Z(i)

t , ∂aft〉 and 〈Z
(i)
t , ∂tft〉 is the starting point of our results derived in the

next section. Let us remark that as a particular case, taking Φt(a, x) = φ(a) and
Ψt(a, x) = 0, this shows why the intensity process λt = µ + 〈Z(2)

t− , φ〉 is Markovian
in the case where the fertility function is exponential (see Oakes (1975)), that is
φ(a) = αeβa. In this case, φ′ = βφ, and Equation (5) leads to the differential form
d〈Z(2)

t , φ〉 = αdN
(2)
t + β〈Z(2)

t , φ〉dt, where we recall that N (2)
t = 〈Z(2)

t ,1〉 is nothing
but the Hawkes process itself. Note that dN

(2)
t only depends on the past of (λt) by

means of the current value λt, which proves the Markov property.

3 The exponential case generalized

3.1 Assumptions on the fertility rates

In the following, we introduce the assumptions allowing to recover a finite dimen-
sional Markovian dynamics.
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3.1 Assumptions on the fertility rates

Assumption 1. (i) The birth rates Φ and Ψ are non-negative and satisfy Φt(a, x) =

v(t)φ(a, x) and Ψt(a, x) = w(t)ψ(a, x), where

φ(n)(a, x) = c−1 +
n−1∑
k=0

ckφ
(k)(a, x) and v(p)(t) = d−1(t) +

p−1∑
l=0

dl(t)v
(l)(t),

with n, p ≥ 1 and initial conditions φ(k)(0, x) = φ
(k)
0 (x), and

ψ(m)(a, x) = r−1 +
m−1∑
k=0

rkψ
(k)(a, x) and w(q)(t) = k−1(t) +

q−1∑
l=0

kl(t)w
(l)(t),

with m, q ≥ 1 and initial conditions ψ(k)(0, x) = ψ
(k)
0 (x). Note that we used the

notation f (k)(a, x) = ∂kaf(a, x).
(ii) The maps (dl)−1≤l≤p−1 and (kl)−1≤l≤q−1 are continuous.

Assumption 1 defines a wide class of self and externally exciting fertility functions
of the form Φt(a, x) = v(t)φ(a, x). Let us first focus on the time-independent part
and introduce F (a, x) such that F = (1, φ, ..., φ(n−1))T . Then F ′ = C(c)F , where
the function C(.) which transforms a vector c into a matrix C(c) is defined as

C(c) =


0 0

0 1
. . . . . .

0 1

c−1 c0 · · · cn−2 cn−1

 . (7)

In particular, if the polynomial P (y) = yn −
∑n−1

k=0 cky
k is split with distinct roots

y1, ..., yp and corresponding multiplicities n1, ..., np, then φ can be written up to
some constant as

∑p
i=1 Pi(x, a)eyia where Pi is a polynomial in a with degree at

most ni − 1 whose coefficients may depend on x. This includes for example the
framework of Dassios and Zhao (2011) where Φt(a, x) = Ψt(a, x) = xe−δa. This
is also a sufficiently large set of functions to approximate any fertility function
outside of the range of Assumption 1. As an example, the power law kernel is of
importance for many applications. In the context of earthquakes, the Omori law
describes the epidemic-type aftershock (ETAS) model: it corresponds to a specific
form φ(a) ∼ K

a1+ε
. Also in the field of financial microstructure, recent studies (see

e.g. Hardiman et al. (2013)) found that high-frequency financial activity is better
described by a Hawkes process with power law kernel rather than exponential. The
power law kernel with cut off can be approximated as in Hardiman et al. (2013)
up to a constant by the smooth function φ(a) =

∑M−1
i=0

e−a/(τ0m
i)

(τ0mi)1+ε
− Se−a/(τ0m

−1),

where S is such that φ(0) = 0. In general, one can use approximation theory to
construct a sequence of fertility functions which tends to the original one. As a
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3.2 Age pyramid dynamics

result, this constructs a sequence of Hawkes processes that approximate the original
Hawkes process. As we also allow for time-dependency, such birth rates Φ and
Ψ that satisfy 1 are also useful to define non-stationary Hawkes processes, and in
particular to include seasonality. As an example, one can simply think of a kernel
of the form cos2(αt)φ(a, x) where v(t) = cos2(αt) satisfies v′′ = 4α2(1 − v). Note
that in Assumption 1, coefficients in the equation for the time-dependent part are
allowed to vary with time, therefore a wide variety of time dependence structures
can be included in the model.

3.2 Age pyramid dynamics

Let us go back to the dynamics of the age pyramid over time. The key property
that will allow us to compute distribution properties is that the population enables
to identify the components to add to the Hawkes process and its intensity to make
the dynamics Markovian. This is stated in the following proposition.

Proposition 2. Let us define for −1 ≤ k ≤ n − 1 and −1 ≤ l ≤ p − 1, Xk,l
t :=

〈Z(2)
t , ∂ka∂

l
tΦt〉 and for −1 ≤ k ≤ m− 1 and −1 ≤ l ≤ q − 1, Y k,l

t := 〈Z(1)
t , ∂ka∂

l
tΨt〉.

Let us also define the two matrices

M
(2)
t =

(
Xk,l
t

)
−1≤k≤n−1,−1≤l≤p−1

and M (1)
t =

(
Y k,l
t

)
−1≤k≤m−1,−1≤l≤q−1

.

(i) Let us recall that D̄ denotes the transpose of a given matrix D. The processes
M (1) and M (2) follow the dynamics

dM
(i)
t =

∫
R+

W (i)(t, x)N (i)(dt, dx) +
(
C(i)M

(i)
t +M

(i)
t D̄

(i)
t

)
, where (8)

• W
(1)
k,l (t, x) = w(l)(t)ψ

(k)
0 (x) for −1 ≤ k ≤ m− 1 and −1 ≤ l ≤ q − 1,

• W
(2)
k,l (t, x) = v(l)(t)φ

(k)
0 (x) for −1 ≤ k ≤ n− 1 and −1 ≤ l ≤ p− 1,

• C(1) = C(r), C(2) = C(c), D(1)
t = C(k(t)) and D(2)

t = C(d(t)) where C(.) is
defined by Equation (7).

(ii) As a consequence of the dynamics (8),
(
M

(1)
t ,M

(2)
t

)
t≥0

is a Markov process.

Proof of Proposition 2 We focus on the dynamics of the Xk,l, the problem
being the same for the Y k,l. From Lemma 1, for 0 ≤ k ≤ n− 2 and 0 ≤ l ≤ p− 2,

dXk,l
t = v(l)(t)

∫
R+

φ
(k)
0 (x)N (2)(dt, dx) + (Xk+1,l

t +Xk,l+1
t )dt. (9)
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3.3 Laplace transform

From Assumption 1, Xn,l
t =

∑n−1
k=−1 ckX

k,l
t and Xk,n

t =
∑p−1

l=−1 dl(t)X
k,l
t . This shows

that for 0 ≤ l ≤ p− 2 and 0 ≤ k ≤ n− 2,

dXn−1,l
t = v(l)(t)

∫
R+

φ
(n−1)
0 (x)N (2)(dt, dx) +

(
n−1∑
k=−1

ckX
k,l
t +Xn−1,l+1

t

)
dt, (10)

dXk,p−1
t = v(p−1)(t)

∫
R+

φ
(k)
0 (x)N (2)(dt, dx) +

(
Xk+1,p−1
t +

p−1∑
l=−1

dl(t)X
k,l
t

)
dt,(11)

and dXn−1,p−1
t = v(p−1)(t)

∫
R+

φ
(n−1)
0 (x)N (2)(dt, dx)+

(
n−1∑
k=−1

ckX
k,p−1
t +

p−1∑
l=−1

dl(t)X
n−1,l
t

)
dt.

(12)
In addition, Lemma 1 gives for 0 ≤ l ≤ p− 2 and 0 ≤ k ≤ n− 2,

dX−1,l
t = v(l)(t)dN

(2)
t +X−1,l+1

t dt, (13)

dXk,−1
t =

∫
R+

φ
(k)
0 (x)N (2)(dt, dx) +Xk+1,−1

t dt. (14)

Finally, by Assumption 1 again, we get the following two equations:

dX−1,p−1
t = v(p−1)(t)dN

(2)
t +

(
p−1∑
l=−1

dl(t)X
−1,l
t

)
dt, (15)

and dXn−1,−1
t =

∫
R+

φ
(n−1)
0 (x)N (2)(dt, dx) +

(
n−1∑
k=−1

ckX
k,−1
t

)
dt. (16)

From Equations (9) to (16), one then deduces the dynamics (8). The consequence
(ii) follows immediately. �

3.3 Laplace transform

We here exhibit an exponential martingale which leads us to compute the Laplace
transform of the whole dynamics. This is the main result of our paper. To ensure
tractability of the Laplace transform, we also state the following assumptions.

Assumption 2. For each λ > 0,
∫
R+

exp
(
λmax0≤k≤n−1 φ

(k)
0 (x)

)
G(x)dx < +∞.

Our main result is stated below. Note that the trace of the matrix ūM given
by Tr(ūM) =

∑
k,l uk,lMk,l computes a linear combination of the components of a

given matrix M , and recall that ū denotes the transposition of the matrix u.

Theorem 3. Denote FM the filtration of (M (1),M (2)). Under Assumption 1,
(i) For any deterministic and differentiable matrix-valued (A

(1)
t ) and (A

(2)
t ) with

10



3.3 Laplace transform

derivatives (Å
(1)
t ) and (Å

(2)
t ), the following process is an FM -martingale:

exp

{ 2∑
i=1

Tr
(
A

(i)
t M

(i)
t

)
−
∫ t

0

Tr
(
A(i)
s C

(i)M (i)
s + A(i)

s M
(i)
s D̄(i)

s + Å(i)
s M

(i)
s

)
ds

−
∫ t

0

∫
R+

(
e
Tr
(
A

(1)
s W (1)(s,x)

)
− 1

)
ρ(s)H(x)dxds

−
∫ t

0

∫
R+

(
e
Tr
(
A

(2)
s W (2)(s,x)

)
− 1

)(
µ(s) +M (1)

s [0, 0] +M (2)
s [0, 0]

)
G(x)dxds

}
.

(17)

(ii) For each matrices u and v with dimensions (n + 1)(p + 1) and (m + 1)(q + 1)

respectively, the joint Laplace transform can be expressed as

E
[
exp

(
Tr(ūM (1)

t + v̄M
(2)
t )
)]

= exp

{∫ t

0

∫
R+

(
e
Tr
(
A

(1)
s W (1)(s,x)

)
− 1

)
ρ(s)H(x)dxds

+

∫ t

0

∫
R+

(
e
Tr
(
A

(2)
s W (2)(s,x)

)
− 1

)
µ(s)G(x)dxds

}
, where for i ∈ {1, 2},

Å
(i)
t + A

(i)
t C

(i) + D̄
(i)
t A

(i)
t =

{∫
R+

(
1− eTr

(
A

(2)
t W (2)(t,x)

))
G(x)dx

}
K, (18)

with terminal conditions A(1)
T = ū and A(2)

T = v̄, (19)

where the matrix K is given by K = J̄J and J is given by J = (0, 1, 0, ..., 0).

(20)
Moreover, solutions to (18)-(19) exist provided that Assumption 2 is satisfied.

Proof of Theorem 3 We begin by exhibiting the exponential martingale (17).
Let us denote 〈N (i), H〉t =

∫ t
0

∫
R+
H(s, x)N (i)(ds, dx). For deterministic α(t, x) and

β(t, x), then by the classical exponential formula the following process is a martingale

exp

{
〈N (1), α〉t + 〈N (2), β〉t −

∫ t

0

∫
R+

(
eα(s,x) − 1

)
ρ(s)H(x)dxds

−
∫ t

0

∫
R+

(
eβ(s,x) − 1

) (
µ(s) + 〈Z(1)

s− ,Ψs〉+ 〈Z(2)
s− ,Φs〉

)
G(x)dxds

}
.

(21)

The aim now is to compute the joint Laplace transform of the processes M (1)
t and

M
(2)
t . This amounts to compute E

[
eTr(ū.M(1)

t +v̄.M
(2)
t )
]
, since Tr(ū.M) =

∑
k,l uk,lMk,l.

Let us consider the two (deterministic) processes A(1)
t and A(2)

t with sizes
(m+ 1)(q + 1) and (n+ 1)(p+ 1) respectively. By integration by parts,
d(A

(i)
t M

(i)
t ) = A

(i)
t dM

(i)
t + Å

(i)
t M

(i)
t dt. From (8), we get the dynamics

dTr
(
A

(i)
t M

(i)
t

)
=

∫
R+

Tr
(
A

(i)
t W

(i)(t, x)
)
N (i)(dt, dx)+Tr

(
C(i)M

(i)
t +M

(i)
t D̄

(i)
t + Å

(i)
t M

(i)
t

)
dt.

Let us now use Equation (21) with α(t, x) = Tr(A(1)
t W (1)(t, x)) and β(t, x) =

Tr(A(2)
t W (2)(t, x)) to get the martingale (17). To get the Laplace transform, it

11



remains to make the random part of the integrant in (17) vanish. To do this, let us
first identify the term in M (1) to get the linear equation (18) for i = 1. In addition,
the term in M (2) leads to (18) for i = 2. If we set terminal conditions (19), we
get the Laplace transform in (ii) by the martingale property of (17). To conclude
on the existence and uniqueness, we use Cauchy-Lipschitz theorem. To show that
solution of class C1 to (18) exist and is unique, it is sufficient to prove that the
map (Y, t) 7→

∫
R+
eTr(YW (2)(t,x))G(x)dx is of class C1. Since the integrant is C1 by

Assumption 1 (i) and (ii), it is sufficient to prove that its gradient given by(
eTr(YW (2)(t,x))Ȳ , eTr(YW (2)(t,x))∂tW

(2)(t, x)
)

(22)

is locally bounded by some quantity that is independent of Y and t, and is inte-
grable with respect to G. Let us use some localization argument, and define the set
B(0, r) = {A real (n + 1)× (p + 1) matrix such that ‖A‖∞ ≤ r}, where r > 0 and
‖A‖∞ = max−1≤i≤n−1

∑p−1
j=−1 |Ai,j|. Now, for (Y, t) ∈ B(0, r)× [0, T ] we get

exp
(
Tr
(
YW (2)(t, x)

))
≤ exp

(
n−1∑
i=−1

p−1∑
k=−1

|Yi,k|
∣∣∣W (2)

k,i (t, x)
∣∣∣)

≤ exp

(
(n+ 1) max

−1≤i≤n−1

p−1∑
k=−1

|Yi,k|
∣∣∣W (2)

k,i (t, x)
∣∣∣)

≤ exp

(
r(n+ 1) max

−1≤l≤p−1
sup
t∈[0,T ]

∣∣v(l)(t)
∣∣ max
−1≤k≤n−1

∣∣∣ φ(k)
0 (x)

∣∣∣) ,
where the last inequality uses that Y ∈ B(0, r). As for the first component of (22),∣∣Ȳl,k∣∣ ≤ r (since Y ∈ B(0, r)), and for the second component we have∣∣∣∂tW (2)

k,l (t, x)
∣∣∣ ≤ ∣∣∣φ(k)

0 (x)
∣∣∣ supt∈[0,T ]

∣∣v(l+1)(t)
∣∣, this concludes the proof by the use of

Assumption 2. �

4 Pathwise representation of Hawkes population

Definition 1 uses a classical formulation to define a counting process with its own
intensity. However, it does not keep track of the branching population and also
does not give a concrete pathwise representation. Also, the definition in terms
of an immigration-birth process (see Section 2) is intuitive and gives more infor-
mation through the age pyramid. The aim of this section is to discuss the path-
wise representation of the age pyramid process with its own intensity by means
of Poisson point measures. This approach allows both to keep track of the age
pyramid (branching population) and to represent it as a process with its own in-
tensity in a pathwise way. This way, it seems to reconcile the two standard defini-
tions of the Hawkes process, through a counting process or a branching dynamics.

12



Let us describe the thinning construction of a general random point measures on
R+ × E, say Γ(ds, dy) =

∑
n≥1 δ(Tn,Yn)(ds, dy), where (E, E) is some measurable

space. Assume that its intensity measure γ(ds, dy) admits a density: γ(ds, dy) =

γ(s, y) ds µ(dy). In this model, events occur with intensity s 7→
∫
x∈E γ(s, x)µ(dx),

and if a birth occurs at time Tn, then the characteristics Yn of the newborn are
drawn with distribution γ(Tn,y)µ(dy)∫

x∈E γ(Tn,x)µ(dx)
. Let Q(ds, dy, dθ) be a Poisson point mea-

sure on R+ × E × R+ with intensity measure dsµ(dy)dθ (see e.g. Çınlar (2011) for
a definition). Denote (FQt ) the canonical filtration generated by Q, and introduce
P (FQt ) the predictable σ-field associated with FQt . We further assume that γ(t, y)

is P (FQt ) × E-measurable and also that
∫ t

0

∫
E
γ(s, y)dsµ(dy) < +∞ a.s.. Now, de-

fine Γ(ds, dy) =
∫
R+

1[0,γ(s,y)](θ)Q(ds, dy, dθ). This clearly defines a point measure
and the martingale property of Q ensures that the random point measure Γ(ds, dy)

has intensity measure γ(s, y)dsµ(dy). Such construction can be found in Massoulié
(1998); we refer to this paper for more details.

We are now ready to construct the age pyramid processes of Definition 2. Let us
introduce two independent Poisson point measuresQ(1)(dt, dx, dθ) andQ(2)(dt, dx, dθ)

on the probability space (Ω,F ,P) (enlarged if necessary) with same intensity mea-
sure dsdxdθ on R+×R+×R+. The construction of the first population is immediate
since its intensity does not depend on it. Let us define

Z
(1)
t (da, dx) =

∫
(0,t]

∫
R+×R+

1[0,ρ(s)H(x)](θ)δ(t−s,x)(da, dx)Q(1)(ds, dx, dθ). (23)

As for the second population (which size is the Hawkes process), the intensity is
given as a particular for of the process itself, see Equation (4). Therefore, the idea
is to define the population underlying the Hawkes process as the solution to the
following stochastic equation, often called thinning problem:

Z
(2)
t (da, dx) =

∫
(0,t]

∫
R+×R+

1[
0,
(
µ(s)+〈Z(2)

s− ,Φs〉+〈Z
(1)
s− ,Ψs〉

)
G(x)

](θ)δ(t−s,x)(da, dx)Q(2)(ds, dx, dθ).

(24)
Such representations are used in the field of stochastic population dynamics for
populations with ages and/or characteristics (see in particular Fournier and Méléard
(2004), Tran (2008) and Bensusan et al. (2010–2015)). This formulation makes the
link between Hawkes process and the field of stochastic population dynamics. To
further investigate this link seems to be a promising direction for future research.

Remark 1. General results about existence and uniqueness for the Hawkes process
(even non-linear) as the solution of a thinning problem can be found in Brémaud
and Massoulié (1996) and Massoulié (1998) (see also Delattre et al. (2014) and the
books of Daley and Vere-Jones (2008) and Çınlar (2011)). The thinning method
to represent a counting process as the solution of a stochastic equation is in fact
classical. This general mathematical representation goes back to Kerstan (1964)
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and Grigelionis (1971). One often refers to the thinning algorithms that have been
proposed by Lewis and Shedler (1978) and Ogata (1981), which are very useful to
perform numerical simulations for quite complex intensity processes.

5 The special case of standard Hawkes process

5.1 Assumption and dynamics

This section focuses on the special case of standard Hawkes process (Nt) with in-
tensity process λt = µ+

∫
(0,t)

φ(t− s)dNs. Let us denote Zt(da) =
∑

Tn<t
δt−Tn(da)

the associated age pyramid (see Definition 2). We express below Assumption 1 in
this context, as well as the associated dynamics (see Proposition 2).

Assumption 3. The map a ∈ R+ 7→ φ(a) is non-negative, of class Cn(R+), and
there exists c = (c−1, ..., cn−1) ∈ Rn+1 such that φ statisfies φ(n) = c−1 +

∑n−1
k=0 ckφ

(k),

with initial conditions φ(k)(0) = mk, for 0 ≤ k ≤ n− 1.

Proposition 4. Under Assumption 3, the process Xt = (〈Zt, 1〉, 〈Zt, φ〉, ..., 〈Zt, φ(n−1)〉)T

satisfies the dynamics

Xt = Ntm+

∫ t

0

CXsds, (25)

where
m = (1,m0, ...,mn−1)T , (26)

and the matrix C = C(c) is given in (7). In particular, X is a Markov process.

5.2 Laplace transform

We express below the Laplace transform of the standard Hawkes process, both in
the direct form of Theorem 3 and also in terms of a single function.

Proposition 5. Let us work under Assumption 3.
(i) For any (n+ 1) real vector v,

E [exp (v.XT )] = exp

(
−µ
∫ T

0

(1− eAs.m)ds

)
, (27)

where the vector map A satisfies the following non linear differential equation

C̄At + A′t + (eAt.m − 1)J = 0, (28)

with terminal condition AT = v. Here, v.XT denotes the scalar product between v

and XT , C̄ is the transpose of the matrix C, and J is defined in (20).
(ii) The Laplace transform of the Hawkes process is given for each real θ by

E [exp (θNT )] = exp

{
−µ

(
(−1)nG(n)(0) +

n−1∑
k=0

(−1)k+1ckG
(k)(0)

)}
, (29)

14



5.2 Laplace transform

where G satisfies the non-linear differential equation: for each 0 ≤ t ≤ T ,

(−1)n−1G(n+1)(t) +
n−1∑
k=0

(−1)kckG
(k+1)(t) + exp

(
θ − c−1G(t) +

n−1∑
k=0

bkG
(k+1)(t)

)
− 1 = 0,

with terminal conditions G(k)(T ) = 0 for 0 ≤ k ≤ n, and for 0 ≤ k ≤ n − 1,
bk = (−1)k

(
mn−1−k −

∑n−1
l=k+1 mn−1−lcn−l+k

)
.

Numerical example Before giving the proof of Proposition 5, we illustrate it
numerically for the computation of the generating functional E[uNT ] (the survival
probability at time T of a system which survives with probability u at each shock) as
well as quantities as P(NT = k) = 1

k!
∂kuE

[
uNT

]
|u=0 (the probability to get exactly k

shocks until time T ). Setting u = eθ, an explicit discretization scheme has been used
to solve the non-linear differential equation satisfied by G and the differentiation step
for the derivatives of the generating functional has been chosen carefully. The results
for the two critical cases φ(a) = e−a (case 1) and φ(a) = ae−a (case 2) are described
in Tables 1 and 2 with three significative numbers. Note that even if the mean
number of children per individual is one in each case, the results are different due to
the shape of each birth rate φ. This promotes the use of many kernels, beyond the
exponential case. To conclude this numerical experiment, we emphasize that the
computation of P(Nt = k) for higher values of k will require more stable numerical
differentiation methods, and are therefore beyond the scope of the present paper.

u 0.1 0.3 0.5 0.7 0.9
Case 1, φ(a) = e−a 0.490 0.532 0.588 0.672 0.828
Case 2, φ(a) = ae−a 0.494 0.546 0.615 0.714 0.874

Table 1: Computed values of E[uNT ] with µ = 0.15 and T = 5.

k 0 1 2 3 4
Case 1, φ(a) = e−a 0.472 0.165 0.0894 0.0577 0.0407
Case 2, φ(a) = ae−a 0.472 0.203 0.113 0.0700 0.0451

Table 2: Computed values of P(NT = k) with µ = 0.15 and T = 5.

Proof of Proposition 5 Let us prove the second point (ii), the proof of point (i)
being a direct adaptation of that of Theorem 3. Let us denoteAt = (A−1(t), ..., An−1(t))

and identify the terms in Equation (28), leading to

c−1An−1(t) + A
′

−1(t) = 0, (30)

A
′

0(t) + c0An−1(t) + eAt.m − 1 = 0. (31)
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5.3 Moments

As for 1 ≤ k ≤ n − 1, we get Ak−1(t) + ckAn−1(t) + A
′

k(t) = 0, whose recursive
computation provides for 0 ≤ k ≤ n− 1,

Ak(t) = (−1)n−1−kA
(n−1−k)
n−1 (t) +

n−1−k∑
l=1

(−1)lck+lA
(l−1)
n−1 (t).(32)

One then deduces that A′0(t) = (−1)n−1A
(n)
n−1(t) +

n−1∑
k=1

(−1)kckA
(k)
n−1(t). (33)

Let us intoduce the function G(t) =
∫ t
T
An−1(s)ds and choose A−1(t) = θ − c−1G(t)

that satisfies (30). Now, put (32) and (33) into (31) to get the following non-linear
ordinary differential equation for G,

(−1)n−1G(n+1)(t) +
n−1∑
k=0

(−1)kckG
(k+1)(t) + exp

(
θ − c−1G(t) +mn−1G

′(t)

+
n−2∑
k=0

mk

[
(−1)n−1−kG(n−k)(t) +

n−1−k∑
l=1

(−1)lck+lG
(l)(t)

])
− 1 = 0.

(34)

Let us simplify the sum in the exponential. By changing variable k into n−1−k,
it is equal to

∑n−1
k=1 mn−1−k(−1)kG(k+1)(t) +

∑n−1
k=1

∑k
l=1(−1)lmn−1−kcn−1−k+lG

(l)(t).

Then exchanging the sums leads to∑n−1
k=1 mn−1−k(−1)kG(k+1)(t)+

∑n−1
l=1 (−1)l

(∑n−1
k=l mn−1−kcn−1−k+l

)
G(l)(t). Finally, by

setting l← l + 1 and exchanging notations k and l, (34) becomes

(−1)n−1G(n+1)(t) +
n−1∑
k=0

(−1)kckG
(k+1)(t) + exp

(
θ − c−1G(t) +

n−1∑
k=0

bkG
(k+1)(t)

)
− 1 = 0,

where for 0 ≤ k ≤ n− 1, bk = (−1)k
(
mn−1−k −

∑n−1
l=k+1 mn−1−lcn−l+k

)
.

Now, let us use (27) with (31) to get

E [exp (v.XT )] = exp

(
−µ
∫ T

0

(A
′

0(t) + c0An−1(t))dt

)
,

= exp

(
−µ

(
(−1)n−1(G(n)(T )−G(n)(0)) +

n−1∑
k=0

(−1)kck(G
(k)(T )−G(k)(0))

))
,

where the last equality comes from (33). Let us set for 0 ≤ k ≤ n − 1, Ak(T ) = 0.
One can show by (32) that the previous conditions are equivalent to the terminal
values G(k)(T ) = 0 for 1 ≤ k ≤ n − 1. Note that by definition of G we also get
G(T ) = 0. This concludes the proof. �

5.3 Moments

On the particular case of the standard Hawkes process, we illustrate how to compute
first and second order moments explicitely.
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5.3 Moments

First order moments The differential system of Equation (25) is linear and al-
lows us to propose a straightforward differential equation for the first order moments.
We also perform explicit computations for small dimensions n = 1 and n = 2.

Proposition 6. Under Assumption 3, the vector map u(t) := E [Xt] is solution to

u′(t) = µm+ Au(t), (35)

where the (n+ 1)× (n+ 1) matrix A is given by

A = C +mJ, (36)

where C, m and J are given in (7), (26) and (20) respectively.

Proof of Proposition 6 Let us use the martingale property of the compensated
counting process to get E [Nt] =

∫ t
0

(µ+ E[〈Zs, φ〉]) ds. Now, let us take expectation
in (25) and use the previous formula to get Equation (35). �

Equation (35) allows to get explicit formulas for the expected number of events.
We derive such results for the popular exponential case φ(a) = e−ca (see also Dassios
and Zhao (2011)) and also for the birth rate φ(a) = α2ae−βa. This case can be
useful for a variety of applications to model a smooth delay at excitation. Remark
the different behavior of the first moment, in particular in the critical case. For the
two examples given below, the computations are left to the reader.

Corollary 1. For the Hawkes process with φ(a) = e−ca,

E[Nt] = µ

(
t+

t2

2

)
if c = 1, and E[Nt] =

µ

1− c

(
e(1−c)t − 1

1− c
− ct

)
, if c 6= 1.

Corollary 2. For the Hawkes process with φ(a) = α2ae−βa,

E[Nt] =
µ

8β

(
1− e−2βt

)
+

3µ

4
t+

βµ

4
t2, if α = β,

E[Nt] =
µβ2

β2 − α2
t+

αµ

2

(
e(α−β)t − 1

(α− β)2
− e−(α+β)t − 1

(α + β)2

)
, if α 6= β.

Second order moments We now derive the dynamics of the matrix Vt := XtX̄t

withXt = (Nt, 〈Zt, φ〉, ..., 〈Zt, φ(n−1)〉)T . As a consequence, we represent the variance-
covariance matrix of the process (Xt) as the solution to a linear ordinary differential
equation. Our method is based on differential calculus with the finite variation
process (Xt) with dynamics (25) and could be extended to higher moments.
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5.3 Moments

Proposition 7. Let us introduce the matrix Vt := XtX̄t, where X̄t denotes the
transpose of Xt. Then the matrix Vt satisfies the dynamics

dVt = dNt

(
Xt−m̄+mX̄t− +mm̄

)
+ dt

(
VtC̄ + CVt

)
.

In particular, the variance-covariance matrix v(t) := E [Vt] satisfies:

v′(t) = v(t)Ā+ Av(t) + µ(mm̄+ u(t)m̄+mū(t)) + Ju(t)mm̄. (37)

where u(t) is solution to (35) and the matrix A is defined in (36).

Proof of Proposition 7. Denote Xt = (X
[−1]
t , X

[0]
t , ..., X

[n−1]
t ). Integration by

parts leads to, for −1 ≤ l, k ≤ n−1, d(X
[k]
t X

[l]
t ) = X

[k]
t−dX

[l]
t +X

[l]
t−dX

[k]
t +mkmldNt.

The previous equation shows that dVt = Xt−dX̄t + (dXt)X̄t−+ dNt.mm̄. By Propo-
sition 4 we get dVt = dNt

(
Xt−m̄+mX̄t− +mm̄

)
+ dt

(
VtC̄ + CVt

)
. Now, take

expectation in the previous equation to get

v′(t) = E[(µ+X
[0]
t )Xt]m̄+mE[ (µ+X

[0]
t )X̄t] + (µ+ E[X

[0]
t ])mm̄+ v(t)C̄ + Cv(t).

Finally since X [0]
t Xt = VtJ̄ , see (20), the previous equation reduces to (37). �

We give explicit formulas for φ(a) = e−ca and at a higher order for the critical
case φ(a) = β2ae−βa. Computations are based on (37) and are left to the reader.

Corollary 3. For the Hawkes process with φ(a) = e−ca,

Var(Nt) = µt

(
1 +

3

2
t+

2

3
t2 +

1

12
t3
)

if c = 1,

Var(Nt) =
µ

(1− c)3

[
1− c/2
1− c

e2(1−c)t +

(
3c2 − 1

1− c
− 2ct

)
e(1−c)t − c3t+

c(1/2− 3c)

1− c

]
, if c 6= 1.

Corollary 4. For the Hawkes process with φ(a) = β2ae−βa,

Var (λt) = βµ

(
− 7

128
+

3β

32
t+

β2

16
t2 +

1− βt
8

e−2βt − 9

128
e−4βt

)
.

Conclusion

We introduced the concept of age pyramid for Hawkes processes with general immi-
grants. The virtue of this approach is to keep track of all past events. This allows
tractable computations for the Hawkes process with general immigrants whose fer-
tility functions are time dependent generalizations of the popular exponential case,
providing natural extensions of the existing results in this direction. In addition,
we illustrated the pathwise construction of the Hawkes dynamics and its underlying
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population process. On the whole, our approach seems to reconcile two definitions
of Hawkes processes, through an intensity process or a branching dynamics. This
framework appears to be a promising direction for further research. As an example,
the large population asymptotics in the field of measure-valued population dynamics
could give further insights on the macroscopic behavior of Hawkes processes.
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