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Alexandre Boumezoued

2
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Abstract

This paper focuses on a class of linear Hawkes processes with general immigrants.
These are counting processes with shot noise intensity, including self-excited and
externally excited patterns. For such processes, we introduce the concept of age
pyramid which evolves according to immigration and births. The virtue if this ap-
proach that combines an intensity process definition and a branching representation
is that the population age pyramid keeps track of all past events. This is used
to compute new distribution properties for a class of linear Hawkes processes with
general immigrants which generalize the popular exponential fertility function. The
pathwise construction of the Hawkes process and its underlying population is also
given.

Keywords: Hawkes processes, branching, immigration, age pyramid, non-stationarity,
laplace transform, thinning, Poisson point measure.

1 Introduction

This paper investigates the link between some population dynamics models and a
class of Hawkes processes. We are interested in processes whose behavior is modified
by past events, which are self-excited and externally excited. The introduction of a
self-excited process with shot noise intensity is due to Hawkes (1971) and the famous
Hawkes process has been used until now for a variety of applications, including
seismology, neuroscience, epidemiology, insurance and finance, to name but a few.
The shot noise intensity of the Hawkes process (Nt) is expressed as

�t = µ+

X

T
n

<t

�(t� Tn),
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where the Tn are the times of jump of the Hawkes process N itself, µ > 0 and � is
a non-negative function. In the Hawkes model, when an event occurs at time Tn,
the intensity grows by an amount �(t� Tn): this models the self-exciting property.
Also, for many modeling purposes, � returns to zero as t increases, so that the self-
excitation vanishes after a long time. On the whole, each event excites the system as
it increases its intensity, but this increase vanishes with time as it is natural to model
the fact that very old events have a negligible impact on the current behavior of the
process. In the literature, more recent contributions focused on processes with self-
exciting behavior and also some externally exciting component. To our knowledge,
the Hawkes process with general immigrants has been introduced in Brémaud and
Massoulié (2002), and specific forms can also be found in recent studies motivated
by financial applications, such as Dassios and Zhao (2011), Wheatley et al. (2014)
and Rambaldi et al. (2014), where external shocks, news arrivals and contagion are
crucial to model. In this paper, we are interested in a class of Hawkes processes
with general immigrants (see Brémaud and Massoulié (2002)), whose intensity is of
the form

�t = µ(t) +
X

T
n

<t

�t(t� Tn, Xn) +

X

S
k

<t

 t(t� Sk, Yk).

In this model, the Tn are the times of jump of N : if an event occurs for the system
at time Tn, the intensity grows by an amount �t(t � Tn, Xn), where Xn is some
mark. This part models the self-exciting property. In parallel, external events occur
at times Sk and excites the system of interest with some amount  t(t�Sk, Yk): this
is the externally excited component.

Among the appealing properties of such models, one of them comes from the shot-
noise form of the intensity. This is called the cluster (or branching) representation
of the Hawkes process, and it is based on the following remark: if an event occured
at time Tn, then t � Tn is nothing but the "age" of this event at time t. Few
years later after the seminal work of Hawkes (1971), Hawkes and Oakes (1974)
proposed the cluster representation of the self-exciting process. They interpreted it
as an immigration-birth process with age: they proved that under some stationarity
conditions, it can be described as a branching Poisson process (also called Poisson
cluster). Also, in Dassios and Zhao (2011), a definition of a dynamic contagion
process is given through its cluster representation. Until now, most studies on the
Hawkes process recalled the immigration-birth representation as follows: immigrants
arrive at times given by a Poisson process with intensity µ. Then each immigrant
starts a new generation: it gives birth to new individuals with fertility function
�, each one giving birth with same fertility function �. This is often used as a
definition for the Hawkes process, providing a good intuition on its behavior. The
cluster representation of Hawkes and Oakes (1974) requires that the mean number
of children per individual which is nothing but k�k =

R1
0 �(a)da satisfies k�k < 1.
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In our paper, we exhibit the underlying immigration-birth dynamics which does not
require the stationary assumption. Each individual in the population has an age
and a characteristic. The virtue if this approach that combines an intensity process
definition and a branching representation is that the population age pyramid keeps
track of all past events. This is used to compute new distribution properties for a
class of linear Hawkes process with general immigrants.

In the literature, the distribution properties of the Hawkes process have first
been studied under stationary conditions. Hawkes (1971) addressed second order
stationary properties, whereas Adamopoulos (1975) derived the probability gener-
ating functional under stationarity, by using the cluster representation of Hawkes
and Oakes (1974). In this work, Adamopoulos (1975) expressed the probability gen-
erating function as a solution to some functional equation. Furthermore, Brémaud
and Massoulié (2002) introduced the framework for studying moments of the sta-
tionary Hawkes process by means of the Bartlett spectrum. Let us also mention
two recent studies of the distribution properties under stationarity. The moment
generating function has been expressed in Saichev and Sornette (2011) as a solu-
tion to some transcendental equation. In addition, Jovanović et al. (2014) proposed
a graphical way to derive closed form expressions for cumulant densities, leading
to the moments of the stationary Hawkes process. It is interesting to note that
such recent contributions rely the stationary branching representation of Hawkes
and Oakes (1974). Recently, the computation of statistical properties has gained
attention under non-stationarity, both for mathematical analysis and statistical es-
timation techniques. However, the recent studies in this framework only focus on
exponential fertility rates �(t) = ↵e�t. The tool they rely on is the infinitesimal gen-
erator of the intensity process (�t) which is Markovian for such exponential fertility
rate (see Oakes (1975)). This includes the work of Errais et al. (2010), Aït-Sahalia
et al. (2010), Dassios and Zhao (2011), and Da Fonseca and Zaatour (2014). Our
paper generalizes these studies in a natural direction for a wider class of Hawkes
processes.

Scope of this paper The aim of this paper is (i) to introduce the concept of
age pyramid for general Hawkes processes and study its dynamics over time, (ii)
to use this concept to compute new distribution properties for a class of fertility
functions which generalize the popular exponential case, and (iii) to give a pathwise
representation of the general Hawkes processes and its underlying immigration-birth
dynamics. We represent the population as a multi-type dynamics with ages, includ-
ing immigration and births with mutations. Our population point of view that
introduces the concept of age pyramid is inspired by Bensusan et al. (2010–2015)
(see also Tran (2008)). As highlighted in Bensusan et al. (2010–2015), the key idea
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is that the population structure in terms of ages and characteristics, which keeps
track of past events, provides much more information than the intensity itself and
allows to study the whole system. In this way, we address the computation of dis-
tribution properties of the Hawkes process with general immigrants for a wide class
of time-dependent fertility functions. We also give the pathwise construction of the
age pyramid represented as a measure-valued process solution to a stochastic equa-
tion driven by a Poisson point measure, which is the theoretical counterpart of the
thinning numerical procedure. Our approach seems to reconcile the two definitions
of Hawkes processes, through an intensity process or a branching dynamics.
The paper is organized as follows. Section 2 focuses on the standard Hawkes pro-
cess with time-independent fertility function. On this particular case, we give the
population point of view and study the dynamics of the age pyramid over time. In
Section 3, we use this concept to compute new distribution properties as moments
and Laplace transform for a class of Hawkes processes which generalizes the popular
exponential case. Section 4 details the pathwise contruction of the standard Hawkes
process and its underlying population. Our general population representation and
results are given in Section 5, where we focus on Hawkes processes with general
immigrants. In particular, we derive its dynamics and Laplace transform for a wide
class of time-dependent fertility functions.

2 Population point of view

The definition of the (standard linear) Hawkes process through its intensity is given
below. Let (⌦,A,P) be a probability space satisfying the usual conditions. Recall
that the intensity process (�t) of a counting process (Nt) is the (FN

t )-predictable
process such that Nt �

R t

0 �sds is an (FN
t )- local martingale, where (FN

t ) denotes
the canonical filtration of (Nt).

Definition 1. Let � be a continuous and non-negative map. A Hawkes process (Nt)

with kernel � is a counting process with canonical filtration (FN
t ) which admits an

(FN
t )-predictable intensity

�t = µ+

X

T
n

<t

�(t� Tn) = µ+

Z

(0,t)

�(t� s)dNs, (1)

where µ > 0, and the (Tn) are the times of jump of (Nt).

The previous definition provides the representation of the intensity process,
which is interesting in order to study the behavior of the Hawkes process. But
in fact, the whole information on the dynamics is lost. Indeed, it is interesting to
go back to the branching representation of Hawkes and Oakes (1974) to have in
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mind the underlying population dynamics. First, immigrants arrive according to
some Poisson process with parameter µ. Then each immigrant generates a cluster
of descendants with the following rule: if an individual arrived or was born at some
time s, it gives birth to new individuals with rate �(t � s) at time t. Note that in
fact, t�s is nothing but the age at time t of the individual born at time s. The birth
mechanism can thus be reformulated as: any individual with age a in the popula-
tion gives birth with rate �(a). The whole dynamics describes an immigration-birth
process with age, in which the immigration rate is µ and the birth rate is �(a).

Since the immigration-birth mechanism is crucial to understand the Hawkes
dynamics, the aim now is to keep track of all ages in the population. One way
to address this issue is to count the number of individuals with age below ā > 0

at time t, denoted Zt([0, ā]). This can be computed as the number of individuals
arrived until time t without those arrived before t� ā, that is

Zt([0, ā]) = Nt �Nt�ā =

Z

(0,t]

1t�sādNs.

The previous equation shows that with fixed t, this defines a measure on the space
R+ of ages that is an image of the jump measure dNt. It can be written as

Zt(da) =

Z

(0,t]

�t�s(da)dNs =

N
tX

n=1

�t�T
n

(da). (2)

Note that Zt(da) charges only [0, t] since no individual born after time 0 can reach
an age greater than t. Formally, the measure Zt(da) puts a weight on the age of each
individual alive at time t, therefore we call it age pyramid in reference to demographic
analysis. In general, demographic studies focus on the number of individuals per age
class of e.g. one year, so the quantity of interest is e.g. Zt([a, a+ 1)). The virtue of
the measure representation is that one can compute a function f of the population
age structure by integrating it with respect to the age pyramid. To do this, we use
the notation

hZt, fi =
Z

R+

f(a)Zt(da) =

Z

(0,t]

f(t� s)dNs. (3)

For example, the Hawkes process can be computed as Nt = hZt,1i. Also, the
intensity process defined in Equation (1) can be rewritten using (3) as

�t = µ+ hZt�,�i.

The intensity is the sum of the migration intensity µ and the individual birth inten-
sities: this is indeed the intensity of an immigration-birth process with migration
rate µ and birth rate �(a), in which all individuals behave independently. Viewed
as a stochastic process, (Zt(da))t�0 is a measure-valued process. In fact, this age
pyramid process, that is the measure-valued process (Zt(da))t�0, is a Markov process
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(see Tran (2006)). Note however that its differentiation in time is not straightfor-
ward (see Bensusan et al. (2010–2015) and Lemma 1 below). The Markov property
of the age pyramid process shows that all the information needed is contained in the
population age structure. Let us mention the seminal point of view of Harris (1963),
for who "it does seem intuitively plausible that we obtain a Markov process, in an
extended sense, if we describe the state of the population at time t not simply by
the number of objects present but by a list of the ages of all objects." However, in
practice this information is "too large" to perform tractable computations. In the
next Section, we illustrate how to identify some minimal components to add to the
Hawkes process in order to make the dynamics Markovian. To do this, we first need
to address the time evolution of the age pyramid. The following Lemma details the
dynamics of hZt, fi in the case where f is differentiable. This is the key tool for our
results in Section 3.

Lemma 1. For each differentiable f : R+ ! R,

hZt, fi = f(0)hZt,1i+
Z t

0

hZs, f
0ids. (4)

Proof of Lemma 1. Let us write between s and t, f(t�s) = f(0)+
R t

s
f 0
(u�s)du

and use it into Equation (3) to get hZt, fi = f(0)hZt,1i+
R t

0

⇣R t

s
f 0
(u� s)du

⌘
dNs.

By Fubini’s theorem, the last term of the sum is equal to
R t

0

�R u

0 f 0
(u� s)dNs

�
du,

and by Equation (3), this is equal to
R t

0 hZu, f
0idu. This concludes the proof. ⇧

The decomposition (4) is classical in the field of measure-valued population dy-
namics (see Tran (2008) and Bensusan et al. (2010–2015)). The first term refers to
the pure jump part of arrivals of individuals with age 0, whereas the second term of
transport type illustrates the aging phenomenon: all ages are translated along the
time axis. In particular, this shows why the intensity process �t = µ + hZt�,�i is
Markovian in the case where the fertility function is exponential (see Oakes (1975)),
that is �(a) = ↵e�a. In this case, �0

= ��, and Equation (4) with f ⌘ � leads to
the differential form

dhZt,�i = ↵dNt + �hZt,�idt.

Note that dNt only depends on the past of (�t) by means of the current value �t,
which proves the Markov property. This remark is the starting point of our study,
which extends the exponential case in a natural setting.

3 The exponential case generalized

In this section, the aim is to use the concept of age pyramid process introduced in
Section 2 in order to compute several distribution properties for the non-stationary
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3.1 Assumption on the birth rate

Hawkes process. In particular, we provide ordinary differential equations for first and
second order moments and the Laplace transform. All computations are performed
under some assumption on the birth rate � which naturally extends the popular
exponential case.

3.1 Assumption on the birth rate

Assumption 1. The map a 2 R+ 7! �(a) is non-negative, of class Cn
(R+), and

there exists c = (c�1, ..., cn�1) 2 Rn+1 such that � statisfies

�(n)
= c�1 +

n�1X

k=0

ck�
(k), (5)

with initial conditions �(k)
(0) = mk, for 0  k  n� 1.

The birth rates that satisfy Assumption 1 include the exponential case but also
some fertility functions that are interesting for a variety of applications. Let us
introduce the vector

m = (1,m0, ...,mn�1)
T , (6)

and the matrix C = (Ci,j)�1i,jn�1 given by Ci,i+1 = 1 for 0  i  n � 2 and
Cn�1,j = cj for �1  j  n � 1, all other components being zero. Since it is fully
determined by the vector c, we denote

C(c) =

0

BBBBBB@

0 0

0 1

. . . . . .
0 1

c�1 c0 · · · cn�2 cn�1

1

CCCCCCA
. (7)

Equation (5) can be rewritten �0
= C� where � = (1,�, ...,�(n�1)

)

T , whose
solution is given by �(a) = eaCm. Then � can be recovered as the second component
of the matrix �(a). In particular, if the polynomial P (y) = yn �

Pn�1
k=0 cky

k is split
with distinct roots y1, ..., yp and corresponding multiplicity n1, ..., np, then � can be
written up to some constant as

Pp
i=1 Pi(a)e

y
i

a where Pi is a polynomial with degree
at most ni�1. This is a sufficiently large set of functions to approximate any fertility
function outside of the range of Assumption 1. As an example, the power law kernel
is of importance for many applications. In the context of earthquakes, the Omori law
describes the epidemic-type aftershock (ETAS) model: it corresponds to a specific
form �(a) ⇠ K

a1+✏

. Also in the field of financial microstructure, recent studies (see
e.g. Hardiman et al. (2013)) found that high-frequency financial activity is better
described by a Hawkes process with power law kernel rather than exponential. The
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3.2 Dynamics

power law kernel with cut off can be approximated as in Hardiman et al. (2013) up
to a constant by the smooth function

�(a) =
M�1X

i=0

e�a/(⌧0mi)

(⌧0mi
)

1+✏
� Se�a/(⌧0m�1),

where S is such that �(0) = 0. In general, one can use approximation theory to
construct a sequence of fertility functions which tends to the original one. As a
result, this constructs a sequence of Hawkes processes that approximate the original
Hawkes process.

3.2 Dynamics

Let us go back to the dynamics of the age pyramid over time. The key property
that will allow us to compute distribution properties is that the population enables
to identify the components to add to the Hawkes process and its intensity to make
the dynamics Markovian. This is stated in the following proposition.

Proposition 2. Under Assumption 1, the process Xt = (hZt, 1i, hZt,�i, ..., hZt,�
(n�1)i)T

satisfies the dynamics

Xt = Ntm+

Z t

0

CXsds, (8)

where we the vector m and the matrix C are given in (6) and (7) respectively. In
particular, X is a Markov process.

Proof of Proposition 2. Let us use Lemma 1 to get for 0  k  n � 1, with
f ⌘ �(k),

hZt,�
(k)i = mkNt +

Z t

0

hZs,�
(k+1)ids. (9)

By Assumption 1, we get in particular

hZt,�
(n�1)i = mn�1Nt +

n�1X

k=�1

ck

Z t

0

hZs,�
(k)ids, (10)

with convention �(�1) ⌘ 1. This implies the dynamics (8) which also shows that X

is a Markov process. ⇧

The dynamics (8) for the (n+1)-dimensional vector Xt gives a set of n equations,
the first component of X, which is the Hawkes process N , being free. In Section 4 we
will give an equation on the Hawkes process N by means of stochastic representation
based on Poisson point measures. This will provide a full system of equations for the
components of X as well as a pathwise representation. For now, we are interested
into deriving several distribution properties of the Hawkes process and its additional
components in X.
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3.3 Moments

3.3 Moments

First order moments The differential system of Equation (8) is linear and allows
us to propose a straightforward differential equation for the first order moments. We
also perform explicit computations for small dimensions n = 1 and n = 2.

Proposition 3. Under Assumption 1, the vector map u(t) := E [Xt] is solution to

u0
(t) = µm+ Au(t), (11)

where the (n+ 1)⇥ (n+ 1) matrix A is given by

A = C +mJ, (12)

where
J = (0, 1, 0, ..., 0), (13)

and the vector m and the matrix C are given in (6) and (7) respectively.

Proof of Proposition 3 Let us use the martingale property of the compensated
counting process, then use Fubini’s theorem and the fact that Lebesgue measure
charges no point to get E [Nt] =

R t

0 (µ+ E[hZs,�i]) ds. Now, let us take expectation
in (8) and use the previous formula to get Equation (11). ⇧

The differential equation (11) allows to get explicit formulas for the expected
number of events. We recall the first order moment for the popular exponential case
�(a) = e�ca (see e.g. Dassios and Zhao (2011)) and also give the explicit formulas
for the birth rate �(a) = ↵2ae��a. Note that this case can be useful for a variety
of applications to model a smooth delay at excitation. Remark also the different
behavior of the first order moments, in particular in the critical case

R1
0 �(a)da = 1,

which corresponds to c = 1 and ↵ = �. For the two examples given below, the
computations are left to the reader.

Corollary 1. For the Hawkes process with �(a) = e�ca, c > 0, (n = 1 in Assumption
1),

E[Nt] = µ

✓
t+

t2

2

◆
if c = 1,

E[Nt] =
µ

1� c

✓
e(1�c)t � 1

1� c
� ct

◆
, if c 6= 1.

Corollary 2. For the Hawkes process with �(a) = ↵2ae��a, ↵, � > 0, (n = 2 in
Assumption 1),

E[Nt] =
µ

8�

�
1� e�2�t

�
+

3µ

4

t+
�µ

4

t2, if ↵ = �,

E[Nt] =
µ�2

�2 � ↵2
t+

↵µ

2

✓
e(↵��)t � 1

(↵� �)2 �
e�(↵+�)t � 1

(↵ + �)2

◆
, if ↵ 6= �.
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3.3 Moments

Second order moments In this subsection, we derive the dynamics of the variance-
covariance matrix of the process Xt := (Nt, hZt,�i, ..., hZt,�

(n�1)i)T . As a conse-
quence, we represent second order moments as the solutions to a linear ordinary
differential equation. Our method is based on differential calculus with the finite
variation process (Xt) with dynamics (8) and could be extended to higher moments.

Proposition 4. Let us introduce the variance-covariance matrix Vt = Xt
¯Xt, where

¯Xt denotes the transpose of Xt. Then the matrix Vt satisfies the dynamics

dVt = dNt

�
Xt�m̄+m ¯Xt� +mm̄

�
+ dt

�
Vt

¯C + CVt

�
.

In particular, the matrix v(t) = E [Vt] satisfies the following ordinary differential
equation

v0(t) = v(t) ¯A+ Av(t) + µ(mm̄+ u(t)m̄+mū(t)) + Ju(t)mm̄. (14)

where u(t) is solution to (11) and the matrix A is defined in (12).

Proof of Proposition 4. Let us use the notation Xt = (X
[�1]
t , X

[0]
t , ..., X

[n�1]
t ).

Integration by parts leads to, for �1  l, k  n� 1,

d

⇣
X

[k]
t X

[l]
t

⌘
= X

[k]
t�dX

[l]
t +X

[l]
t�dX

[k]
t +mkmldNt.

The previous equation shows that dVt = Xt�d ¯Xt+(dXt)
¯Xt�+dNt.mm̄. By Propo-

sition 2 and since Lebesgue measure charges no point we get

dVt = dNt

�
Xt�m̄+m ¯Xt� +mm̄

�
+ dt

�
Vt

¯C + CVt

�
.

Recall that u(t) = E [Xt]. Now, take expectation in the previous equation to get

v0(t) = E
h
(µ+X

[0]
t )Xt

i
m̄+mE

h
(µ+X

[0]
t )

¯Xt

i
+

⇣
µ+ E[ X [0]

t ]

⌘
mm̄+v(t) ¯C+Cv(t).

Finally, note that X [0]
t Xt = Vt

¯J where we recall that J is defined by J = (0, 1, 0, ..., 0),
which makes the previous equation reduce to (14). ⇧

We give explicit formulas for the popular exponential fertility function �(a) =

e�ca and at a higher order for the case �(a) = �2ae��a, which corresponds to the
critical case since the mean number of children per individual satisfies

R1
0 �(a)da =

1. Computations are based on the differential equation (14) and are left to the
reader.

Corollary 3. For the Hawkes process with �(a) = e�ca (n = 1 in Assumption 1),

Var(Nt) = µt

✓
1 +

3

2

t+
2

3

t2 +
1

12

t3
◆

if c = 1,

Var(Nt) =
µ

(1� c)3


1� c/2

1� c
e2(1�c)t

+

✓
3c2 � 1

1� c
� 2ct

◆
e(1�c)t � c3t+

c(1/2� 3c)

1� c

�
, if c 6= 1.
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3.4 Laplace transform

Corollary 4. For the Hawkes process with �(a) = �2ae��a, (n = 2 in Assumption
1), the variance of the intensity is given by

Var (�t) = �µ

✓
� 7

128

+

3�

32

t+
�2

16

t2 +
1� �t

8

e�2�t � 9

128

e�4�t

◆
.

3.4 Laplace transform

The aim is to exhibit the exponential martingale associated with the process X

which consequently expresses its Laplace transform in a semi-explicit form. This
is given in the following proposition. It is interesting to note that point (i) refers
to some forward martingale, whereas point (ii) focuses on backward martingality.
Note that based on the Laplace transform, it is classical to recover moments of any
order.

Proposition 5. Let us denote (FX
t ) the canonical filtration of the process X and

let us work under Assumption 1.
(i) For any deterministic and differentiable At, the following process is an (FX

t )-
martingale:

exp

⇢
At.Xt �

Z t

0

As.(CXs)ds�
Z t

0

A0
s.Xsds�

Z t

0

(eAs

.m � 1)�sds

�
. (15)

(ii) For any (n+ 1) real vector v,

E [exp (v.XT )] = exp

✓
�µ
Z T

0

(1� eAs

.m
)ds

◆
, (16)

where the vector map A satisfies the following non linear differential equation

¯CAt + A0
t + (eAt

.m � 1)J = 0, (17)

with terminal condition AT = v. Here, v.XT denotes the scalar product between v

and XT , J is defined in (13), and ¯C is the transpose of the matrix C.
(iii) Moreover, there exists a unique solution to Equation (17).

Proof of Proposition 5 The exponential formula states that the following process
is a martingale, for any deterministic ↵s,

exp

⇢Z t

0

↵sdNs �
Z t

0

(e↵s � 1)�sds

�
. (18)

Now, by integration by parts and the use of Equation (8),

At.Xt =

Z t

0

As.dXs +

Z t

0

A0
s.Xsds

=

Z t

0

As.mdNs +

Z t

0

As.(CXs)ds+

Z t

0

A0
s.Xsds.

11



Then by Equation (18) with ↵s = As.m, the process in (15) is a martingale. To prove
the second point, the aim is to find a martingale of the form exp{At.Xt+D(t)} with
some deterministic D(t) and a terminal condition AT = v. To do this, let us choose
A such that the random part in the integrant in (15) vanish. Since �s = µ+hZs�,�i,
this amounts to get for each vector X = (X [�1], ...., X [n�1]

),
¯CAt.X + A0

t.X + (eAt

.m � 1)(µ+X [0]
) = 0. (19)

Let us now identify the term in X, leading to the equation for A: ¯CAt.X +A0
t.X +

(eAt

.m � 1)X [0]
= 0, that is ¯CAt + A0

t + (eAt

.m � 1)J = 0, where J is defined in
(13). If we set terminal condition AT = v, we get Equation (20). Finally, existence
and uniqueness for Equation (17) arises from Cauchy-Lipschitz theorem, since the
map Y 7! ¯CY + (eY.m� 1)J is of class C1 on Rn+1, and thus continuous and locally
Lipschitz. ⇧

The previous result can be expressed in terms of a single function, and is derived
below for the Hawkes process and its intensity. The proof is given in Appendix.

Corollary 5. Under Assumption 1, the joint Laplace transform of the Hawkes pro-
cess and its intensity is given for each real ✓1 and ✓2 by

E [exp (✓1NT + ✓2�T )] = exp

(
�µ
 
(�1)nG(n)

(0) +

n�1X

k=0

(�1)k+1ckG
(k)
(0)

!)
, (20)

where the function G satisfies the non-linear ordinary differential equation: for each
0  t  T ,

(�1)n�1G(n+1)
(t) +

n�1X

k=0

(�1)kckG(k+1)
(t) + exp

 
✓1 � c�1G(t) +

n�1X

k=0

bkG
(k+1)

(t)

!
� 1 = 0,

with terminal conditions G(k)
(T ) = 0 for 0  k  n� 1 and G(n)

(T ) = (�1)n�1✓2,

(21)

and for 0  k  n� 1, bk = (�1)k
�
mn�1�k �

Pn�1
l=k+1 mn�1�lcn�l+k

�
.

4 Pathwise representation of Hawkes population

The aim of this Section is to detail the pathwise construction of the Hawkes process
and its underlying population. This is done by means of stochastic differential
equations driven by Poisson point measures. The virtue of this approach is that it
seems to reconcile both the intensity process definition of the Hawkes process and its
branching representation. We first describe the construction of the Hawkes process
with reference to a Poisson measure, then exhibit the system of equations driving the
generalized exponential case, and finally address the pathwise population dynamics
for general birth rates.
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Construction of the Hawkes process One question which arises with Definition
1 refers to the construction of such process and the notion of pathwise uniqueness.
An answer can be given by the thinning representation,

which works as follows. Consider a Poisson point measure Q(ds, d✓) with inten-
sity measure q(ds, d✓) = dsd✓ on R+ ⇥ R+ (see e.g. Çınlar (2011) for a definition),
and denote (FQ

t ) the canonical filtration generated by Q. Note that the intensity
measure q is not finite and only �-finite, which makes it impossible to order the points
in time of the Poisson point measure Q. But this flexible representation allows to rep-
resent a wide class of counting processes. Let (�t) be a (FQ

t )-predictable process such
that a.s. for each t > 0,

R t

0 �sds < +1. Then the following process (Nt) is a count-
ing process with (FQ

t )-predictable intensity �t: Nt =

R
(0,t]

R
R+

1[0,�
s

](✓)Q(ds, d✓).

Indeed, N is clearly a counting process because each atom of Q is weighted 1 or 0.
Also, since a.s.

R t

0 �sds < +1, the martingale property for Poisson point measures
ensures that Nt �

R t

0

R
R+

1[0,�
s

](✓)d✓ds = Nt �
R t

0 �sds is a (FQ
t )- local martingale.

Now, let us describe the construction of the Hawkes process. Since the intensity in
(1) is given as a particular form of the process itself, the idea is to define the Hawkes
process as the solution to the stochastic equation

Nt =

Z

(0,t]

Z

R+

1[0,µ+
R
(0,s) �(s�u)dN

u

](✓)Q(ds, d✓). (22)

General results about existence and uniqueness for the Hawkes process (even non-
linear) can be found in Brémaud and Massoulié (1996) and Massoulié (1998) (see
also Delattre et al. (2014) and the books of Daley and Vere-Jones (2008) and Çınlar
(2011)). The thinning method to represent a counting process as the solution of
a stochastic equation is in fact classical. This general mathematical representation
goes back to Kerstan (1964) and Grigelionis (1971). One often refers to the thinning
algorithms that have been proposed by Lewis and Shedler (1978) and Ogata (1981),
which are very useful to perform numerical simulations for quite complex intensity
processes. A first advantage of the thinning formulation arises when one wants to
show the existence of the Hawkes process. This is done by Picard iteration method
(see Massoulié (1998)): one constructs a sequence (Nk

)k�0 of counting processes
starting at N0 ⌘ 0, and for k � 0,

Nk+1
t =

Z

(0,t]

Z

R+

1[0,µ+
R
(0,s) �(s�u)dNk

u

](✓)Q(ds, d✓). (23)

One can show that the sequence (Nk
) is Cauchy and thus converges to the desired

process. Moreover, another advantage is to give strong uniqueness. With this issue,
it appears that the thinning representation has the virtue to use "one noise once for
all" and thus give pathwise construction and results. This is interesting to note that
this approach is used by Delattre et al. (2014) to show existence and uniqueness of an

13



infinite graph of interacting Hawkes processes. Due to the pathwise representation
and the iterative construction, one can also identify each generation in the dynamics.
Indeed, one sees in the construction of the Cauchy sequence in (23) that N1 counts
the number of immigrants, whereas N2 � N1 counts the children of immigrants,
N3 � N2 the grandchildren of immigrants, and so on. Generally, Nk+1

t � Nk
t is

the number of individuals in generation k born before time t. This shows another
advantage of the pathwise construction: what is called the "thinning parameter"
✓ gives additional information on the dynamics, making it possible in particular
to study each generation separately. Before giving the representation of the age
pyramid, we first go back to the extension of the exponential case.

Exponential case generalized We first address the particular case where the
birth rate � satisfies Assumption 1. The dynamics of the (n + 1)�dimensional
vector Xt := (Nt, hZt,�i, ..., hZt,�

(n�1)i)T is given in (8) by dXt = dNtm + CXtdt.
This gives in fact n equations, the first coordinate Nt being free. The pathwise
representation (22) allows to derive the full system of equations by

dXt =

Z

R+

m1h
0,µ+X

[0]
t�

i
(✓)Q(dt, d✓) + CXtdt,

where we recall the notation Xt = (X
[�1]
t , X

[0]
t , ..., X

[n�1]
t ).

Immigration-birth process with general fertility functions In the case where
the birth rate is general, one has to represent the whole age pyramid, that is to give
the thinning representation of the underlying immigration-birth process. In the field
of population dynamics, this approach is used to construct extended birth-death pro-
cesses with age in particular in Bensusan et al. (2010–2015) (see also Fournier and
Méléard (2004) and Tran (2008)). From Equations (3) and (22), we get the pathwise
representation

Zt(da) =

Z

(0,t]

Z

R+

1[0,µ+hZ
s�,�i](✓)�(t�s)(da)Q(ds, d✓). (24)

This illustrates the fact that the population at time t is nothing but all individuals
that arrived before time t (immigration or birth); if an individual arrived at time
s, its age at time t is t � s. Note that in this form, the differentiation is not
straightforward (see Bensusan et al. (2010–2015)). But from Lemma 1, one can write
the following (infinite) system of equations: for each differentiable f : R+ ! R,

dhZt, fi = f(0)

Z

R+

1[0,µ+hZ
t�,�i](✓)Q(dt, d✓) + hZt, f

0idt. (25)

This approach seems to reconcile the intensity process definition of the Hawkes
process with its branching representation. Indeed, the population age pyramid is

14



given through Equation (25) as a stochastic measure-valued process with its own
intensity. Before going through the last Section on the Hawkes process with general
immigrants, we briefly discuss the existing cluster representation in the following
remark.

Remark 1. We recall the definition of the Hawkes process in terms of a Poisson
cluster introduced in Hawkes and Oakes (1974) and surveyed in the book of Daley
and Vere-Jones (2003). Let Nc(ds) be a Poisson point measure on R+ with intensity
measure µds: this defines the cluster centers, also called ancestors. Let us introduce
a family of point processes { ¯N(dt | s), s 2 R+}. For each s, ¯N(dt | s) defines
the location of the offsprings within the cluster of an ancestor located at s. The
cluster process ˆN counts the number of all offsprings of all immigrants by ˆN(dt) =R
R+

¯N(dt | s)Nc(ds). That is, the number of all offsprings up to time t is given by

ˆN([0, t]) =

Z

R+

¯N([0, t] | s)Nc(ds).

Thus in the cluster representation, the Hawkes process can be written as the sum of
the immigrants and their offsprings by

Nc([0, t]) + ˆN([0, t]).

Note that the cluster representation has shown to facilitate the study of the
Hawkes process under stationarity by using results in the field of branching pro-
cesses. Our population representation seems to be the non-stationary counterpart,
as it allows us to derive new distribution properties in this framework. Our popula-
tion representation provides not only the size of the total progeny up to time t, but
also a variety of quantities of interest depending on the population age structure.
This has been used in Section 3 in order to identify the components needed to make
the dynamics Markovian. This will be also used in the following Section to study a
class of Hawkes process with general immigrants.

5 Towards more general Hawkes processes

In this Section, we focus on a class of counting processes Nt named as Hawkes
processes with general immigrants (see Brémaud and Massoulié (2002)), which is
defined below.

Definition 2. A Hawkes process with general immigrants is a counting process Nt

whose intensity is given by

�t = µ(t) +
X

T
n

<t

�t(t� Tn, Xn) +

X

S
k

<t

 t(t� Sk, Yk), (26)
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5.1 Description of the two-population dynamics

where the Tn are the times of jump of N , the Sk are the jumps of a counting process
with deterministic intensity ⇢(t) and the Xn (resp. Yk) are real positive iid with
distribution G (resp. H). The (Sk), (Yk) and (Xn) are assumed to be independent
of each other.

In this model, the Tn are the times of jump of Nt: if an event occurs for the
system at time Tn, the intensity grows by an amount �t(t � Tn, Xn), where Xn

is some mark. This part models the self-exciting property. In parallel, external
events occur at times Sk and excites the system of interest with some amount
 t(t � Sk, Yk): this is the externally excited component. The standard Hawkes
process that have been studied in the previous Sections can be recovered by setting
�t(a, x) = �(a) and  t(a, x) = 0. The Hawkes process with general immigrants
has been introduced and studied under stationary conditions by Brémaud and Mas-
soulié (2002). Due to their flexibility and natural interpretation, such models have
gained recent attention for financial applications e.g. by Dassios and Zhao (2011),
Wheatley et al. (2014) and Rambaldi et al. (2014). In particular, distribution prop-
erties of such process have been investigated by Dassios and Zhao (2011) in the case
�t(a, x) =  t(a, x) = xe��a, in which framework the intensity process is Markovian.
The aim of this Section is to study the dynamics and characterize the distribution
of the non-stationary Hawkes process with general immigrants for a larger class
of fertility functions, possibly time-dependent, which extends the previous work of
Dassios and Zhao (2011) in this direction. To do this, we represent a two-population
immigration-birth dynamics with ages and characteristics.

5.1 Description of the two-population dynamics

The aim is to construct populations of several individuals (or particles), each one
having an age a evolving over time, and a characteristic x 2 R+. We construct
two populations: the first one represents external shocks, whereas the second one
represents events for the Hawkes process.
Each population (i), i = 1 or 2, is represented at time t as a measure which puts a
weight on the age and characteristic of each individual, denoted Z

(i)
t (da, dx). The

two populations are introduced based on Definition 2 as

Z
(1)
t (da, dx) =

X

S
k

t

�(t�S
k

,Y
k

)(da, dx) and Z
(2)
t (da, dx) =

X

T
n

t

�(t�T
n

,X
n

)(da, dx).

(27)
Since ages but also characteristics of individuals are involved, we prefer to call Z(i)

t

population structure rather than age pyramid, which is more specific. As for the
standard Hawkes population representation, one can compute functions of the whole
population structure, which can even depend on time. Consider a function ft(a, x)
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5.1 Description of the two-population dynamics

depending on time, and also on age and characteristics of individuals. This can be
computed on the overall population by

hZ(i)
t , fti =

Z

R+⇥R+

ft(a, x)Z
(i)
t (da, dx), (28)

for i = 1 or i = 2. For example, the Hawkes process is N
(2)
t = hZ(2)

t ,1i. Also, the
intensity �t of the Hawkes process N

(2)
t given in Equation (26) can be rewritten as

�t = µ(t) + hZ(2)
t� ,�ti+ hZ(1)

t� , ti.

This shows that the underlying population dynamics works as follows.
(i) Let us first describe the population (1) of external shocks. It is made with
immigrants that arrive in population (1) with rate ⇢(t); at arrival, they have age 0

and some characteristic x drawn with distribution H. Any individual (a, x) at time
t that belongs to population (1) gives birth with rate  t(a, x). The newborn belongs
to population (2); it has age 0, and some characteristic drawn with distribution G.
(ii) Let us now complete the description of population (2). In addition to births
from population (1), the population (2) evolves according to two other kind of events:
immigration and internal birth. Immigrants arrive in population (2) with rate µ(t)

with age 0 and a characteristic drawn with distribution G. Any individual (a, x) at
time t that belongs to population (2) gives birth with rate �t(a, x). The newborn
also belongs to population (2); it has age 0, and some characteristic drawn with
distribution G. This dynamics is illustrated in Figure 1.

As for our analysis of the standard Hawkes process, a crucial step is to study the
dynamics of the population structure over time. That is, what is the dynamics of
the process hZ(i)

t , fti for i = 1 or 2 ? This is stated in the following lemma.

Lemma 6. For each function f : (t, x, a) 7! ft(a, x) differentiable in t and a, the
dynamics of the process hZ(i)

t , fti for i = 1 or 2 is given by

dhZ(i)
t , fti =

Z

R+

ft(0, x)N
(i)
(dt, dx) + hZ(i)

t , ( @a + @t)ftidt,

where the point measures N (1) and N (2) are given by

N (1)
(dt, dx) =

X

k�1

�(S
k

,Y
k

)(dt, dx) and N (2)
(dt, dx) =

X

n�1

�(T
n

,X
n

)(dt, dx). (29)

Proof of Lemma 6 The proof is a straightforward adaptation of that of Lemma
1, using (27) and (28) together with the fact that

ft(t� s) = fs(0) +

Z t

s

( @a + @t)fu(u� s)du.⇧

Analogously to Lemma 1, this result exhibits the pure jump part in the left-hand
side, whereas the drift part illustrates the aging term and the time-dependency. The
fact that the drift depends on both hZ(i)

t , @afti and hZ(i)
t , @tfti is the starting point

of our results derived in what follows.
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5.2 Main result

2

2
2

2

2

2

1

1
1

Figure 1: Dynamics of the immigration-birth process: immigrants arrive in pop-
ulation (1) (external shocks). Then each individual 1 gives birth to individuals
2 (events due to external shocks). In parallel, immigrants arrive in population 2

(events due to the baseline intensity). Finally, each individual 2 reproduce (self-
excitation). The Hawkes process with general immigrants can be recovered as the
number of individuals 2.

5.2 Main result

In the following, we introduce the assumptions allowing to recover a finite dimen-
sional Markovian dynamics.

Assumption 2. (i) The birth rates � and  are non-negative and satisfy �t(a, x) =

v(t)�(a, x) and  t(a, x) = w(t) (a, x), where

�(n)
(a, x) = c�1 +

n�1X

k=0

ck�
(k)
(a, x) and v(p)(t) = d�1(t) +

p�1X

l=0

dl(t)v
(l)
(t),

with n, p � 1 and initial conditions �(k)
(0, x) = �

(k)
0 (x), and

 (m)
(a, x) = r�1 +

m�1X

k=0

rk 
(k)
(a, x) and w(q)

(t) = k�1(t) +

q�1X

l=0

kl(t)w
(l)
(t),

with m, q � 1 and initial conditions  (k)
(0, x) =  

(k)
0 (x). Note that we used the

notation f (k)
(a, x) = @a

kf(a, x).
(ii) The maps (dl)�1lp�1 and (kl)�1lq�1 are continuous.

Remark 2. Assumption 2 defines a wide class of self and externally exciting fertil-
ity functions of the form �t(a, x) = v(t)�(a, x). Let us first focus on the time-
independent part and introduce F (a, x) such that F = (1,�, ...,�(n�1)

)

T . Then
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5.2 Main result

F 0
= CF , where C is defined in (7). In particular, if the polynomial P (y) =

yn �
Pn�1

k=0 cky
k is split with distinct roots y1, ..., yp and corresponding multiplicity

n1, ..., np, then � can be written up to some constant as
Pp

i=1 Pi(x, a)e
y
i

a where Pi

is a polynomial in a with degree at most ni� 1 whose coefficients may depend on x.
This includes the framework of Dassios and Zhao (2011) where �t(a, x) =  t(a, x) =

xe��a. As we also allow for time-dependency, such birth rates � and  that satisfy
2 seem also useful to define non-stationary Hawkes processes, and in particular to
include seasonality. As an example, one can simply think of a kernel of the form
cos

2
(↵t)�(a, x) where v(t) = cos

2
(↵t) satisfies v00 = 4↵2

(1� v).

The aim of this part is to exhibit some exponential martingale which leads us to
compute the Laplace transform of the whole dynamics. This provides in particular
the joint Laplace transform of the Hawkes process with general immigrants and its
intensity. This is the main result of our paper. We first state the following Lemma.

Lemma 7. Let us define for �1  k  n � 1 and �1  l  p � 1, Xk,l
t :=

hZ(2)
t , @a

k @t
l
�ti and for �1  k  m�1 and �1  l  q�1, Y k,l

:= hZ(1)
t , @a

k @t
l
 ti.

Let us also define the two matrices

M
(2)
t =

⇣
X

(k,l)
t

⌘

�1kn�1,�1lp�1
and M

(1)
t =

⇣
Y

(k,l)
t

⌘

�1km�1,�1lq�1
.

(i) Let us recall that ¯D denotes the transpose of a given matrix D. The processes
M (1) and M (2) follow the dynamics

dM
(i)
t =

Z

R+

W (i)
(t, x)N (i)

(dt, dx) +
⇣
C(i)M

(i)
t +M

(i)
t

¯D
(i)
t

⌘
, (30)

where

• W
(1)
k,l (t, x) = w(l)

(t) 
(k)
0 (x) for �1  k  m� 1 and �1  l  q � 1,

• W
(2)
k,l (t, x) = v(l)(t)�

(k)
0 (x) for �1  k  n� 1 and �1  l  p� 1,

• C(1)
= C(r), C(2)

= C(c), D(1)
t = C(k(t)) and D

(2)
t = C(d(t)) where C(.) is

defined by Equation (7).

(ii) As a consequence of the dynamics (30),
⇣
M

(1)
t ,M

(2)
t

⌘

t�0
is a Markov process.

Proof of Lemma 7 We focus on the dynamics of the Xk,l, the problem being
the same for the Y k,l. From Lemma 6, for 0  k  n� 2 and 0  l  p� 2,

dXk,l
t = v(l)(t)

Z

R+

�
(k)
0 (x)N (2)

(dt, dx) + (Xk+1,l
t +Xk,l+1

t )dt. (31)
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5.2 Main result

From Assumption 2, Xn,l
t =

Pn�1
k=�1 ckX

k,l
t and Xk,n

t =

Pp�1
l=�1 dl(t)X

k,l
t . This

shows that for 0  l  p� 2,

dXn�1,l
t = v(l)(t)

Z

R+

�
(n�1)
0 (x)N (2)

(dt, dx) +

 
n�1X

k=�1

ckX
k,l
t +Xn�1,l+1

t

!
dt, (32)

and for 0  k  n� 2,

dXk,p�1
t = v(p�1)

(t)

Z

R+

�
(k)
0 (x)N (2)

(dt, dx) +

 
Xk+1,p�1

t +

p�1X

l=�1

dl(t)X
k,l
t

!
dt. (33)

and also that

dXn�1,p�1
t = v(p�1)

(t)

Z

R+

�
(n�1)
0 (x)N (2)

(dt, dx)+

 
n�1X

k=�1

ckX
k,p�1
t +

p�1X

l=�1

dl(t)X
n�1,l
t

!
dt,

(34)
In addition, Lemma 6 gives for 0  l  p� 1,

dX�1,l
t = v(l)(t)dN

(2)
t +X�1,l+1

t dt. (35)

and for 0  k  n� 2,

dXk,�1
t =

Z

R+

�
(k)
0 (x)N (2)

(dt, dx) +Xk+1,�1
t dt. (36)

Finally, by Assumption 2 again, we get the following two equations:

dX�1,p�1
t = v(p�1)

(t)dN
(2)
t +

 
p�1X

l=�1

dl(t)X
�1,l
t

!
dt, (37)

and

dXn�1,�1
t =

Z

R+

�
(n�1)
0 (x)N (2)

(dt, dx) +

 
n�1X

k=�1

ckX
k,�1
t

!
dt. (38)

From Equations (31) to (38), one then deduces the dynamics (30). ⇧
To ensure tractability of the Laplace transform derived in the following Theorem,

we also state the following assumptions.

Assumption 3. For each � > 0,
Z

R+

exp

✓
� max

0kn�1
�
(k)
0 (x)

◆
G(x)dx < +1.

Our main result is stated below. Note that the trace of the matrix ūM given
by Tr(ūM) =

P
k,l uk,lMk,l computes a linear combination of the components of a

given matrix M , and recall that ū denotes the transposition of the matrix u.
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Theorem 8. Let us denote FM the canonical filtration generated by (M (1),M (2)
).

Under Assumption 2,
(i) For any deterministic and differentiable matrix-valued (A

(1)
t ) and (A

(2)
t ) with

derivatives (

˚A
(1)
t ) and (

˚A
(2)
t ), the following process is an FM -martingale:

exp

⇢ 2X

i=1

Tr
⇣
A

(i)
t M

(i)
t

⌘
�
Z t

0

Tr
⇣
A(i)

s C(i)M (i)
s + A(i)

s M (i)
s

¯D(i)
s +
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(39)

(ii) For each matrices u and v with dimensions (n+1)(p+1) and (m+1)(q+1)

respectively, the joint Laplace transform can be expressed as

E
h
exp

⇣
Tr(ūM (1)

t + v̄M
(2)
t )

⌘i
= exp
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✓
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(40)

where

for i 2 {1, 2}, ˚A
(i)
t + A

(i)
t C(i)

+

¯D
(i)
t A

(i)
t =

⇢Z

R+

✓
1� e

Tr
⇣
A

(2)
t

W (2)(t,x)
⌘◆

G(x)dx

�
K,

(41)

with terminal conditions

A
(1)
T = ū and A

(2)
T = v̄, (42)

where the matrix K is given by K =

¯JJ and J is given in (13). Moreover, solutions
to (41)-(42) exist provided that Assumption 3 is satisfied.

Proof of Theorem 8 We begin by exhibiting the exponential martingale (39).
Let us denote hN (i), Hit =

R t

0

R
R+

H(s, x)N (i)
(ds, dx). For deterministic ↵(t, x) and

�(t, x), then by the classical exponential formula the following process is a martingale

exp

⇢
hN (1),↵it + hN
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Z
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(43)

The aim now is to compute the joint Laplace transform of the processes M (1)
t and

M
(2)
t . This remains to compute E

h
eTr(ū.M(1)

t

+v̄.M
(2)
t

)
i
, since Tr(ū.M) =

P
k,l uk,lMk,l.
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Let us consider the two (deterministic) processes A
(1)
t and A

(2)
t with sizes (m +

1)(q + 1) and (n + 1)(p + 1) respectively. By integration by parts, d
⇣
A

(i)
t M

(i)
t

⌘
=

A
(i)
t dM

(i)
t +

˚A
(i)
t M

(i)
t dt. From (30), we get the dynamics

dTr
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⌘
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Tr
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+ Tr
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C(i)M

(i)
t +M

(i)
t

¯D
(i)
t +

˚A
(i)
t M

(i)
t

⌘
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Let us now use Equation (43) with ↵(t, x) = Tr
⇣
A

(1)
t W (1)

(t, x)
⌘

and �(t, x) =

Tr
⇣
A

(2)
t W (2)

(t, x)
⌘

to get the martingale (39).
To get the Laplace transform, it remains to make the random part of the integrant

in (39) vanish. To do this, let us first identify the term in M (1) to get the linear
equation (41) for i = 1. In addition, the term in M (2) leads to (41) for i = 2. If we
set terminal conditions (42), we get the Laplace transform (40) by the martingale
property of (39).

To conclude on the existence and uniqueness, we use Cauchy-Lipschitz theorem.
To show that solution of class C1 to (41) exist and is unique, it is sufficient to prove
that the map (Y, t) 7!

R
R+

eTr
(

YW (2)(t,x)
)G(x)dx is of class C1. Since the integrant is

C1 by Assumption 2 (i) and (ii) , it is sufficient to prove that its gradient given by
⇣
eTr

(

YW (2)(t,x)
)

¯Y , eTr
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YW (2)(t,x)
)@tW

(2)
(t, x)

⌘
(44)

is locally bounded by some quantity that is independent of Y and t, and is inte-
grable with respect to G. Let us use some localization argument, and define the set
B(0, r) = {A real (n + 1)⇥ (p + 1) matrix such that kAk1  r}, where r > 0 and
kAk1 = max�1in�1

Pp�1
j=�1 |Ai,j|. Now, for (Y, t) 2 B(0, r)⇥ [0, T ] we get
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where the last inequality uses that Y 2 B(0, r). As for the first component of (44),�� ¯Yl,k

��  r and for the second component we have���@tW (2)
k,l (t, x)

��� 
����(k)

0 (x)
��� supt2[0,T ]

��v(l+1)
(t)
��, this concludes the proof by the use of

Assumptions 2 and 3. ⇧
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5.3 On the pathwise representation

As for the standard Hawkes process, it is possible to give a pathwise representation
of the Hawkes process with general immigrants and its underlying population. To
do this, let us first extend the thinning construction in Section 4 to point processes
with marks. Poisson point measures can be used, not only to represent counting
processes, but also general random point measures on R+ ⇥ E, say �(ds, dy) =

P
n�1 �(Tn

,Y
n

)(ds, dy), where (E, E) is some measurable space. As for the Hawkes
process, Tn is seen as the time at which an individual arrives in the population
(immigration or birth). In addition, E represents the space of characteristics and
the mark Yn refers to the characteristic inherited by the individual that arrived at
time Tn. Let us construct a random point measure �(ds, dy) with general intensity
measure �(ds, dy) assuming that it admits a density: �(ds, dy) = �(s, y) ds µ(dy). In
this model, events occur with intensity s 7!

R
x2E �(s, x)µ(dx), and if a birth occurs

at time Tn, then the characteristics Yn of the newborn are drawn with distribution
�(T

n

,y)µ(dy)R
x2E

�(T
n

,x)µ(dx) .
Let Q(ds, dy, d✓) be a Poisson point measure on R+⇥E⇥R+ with intensity measure
dsµ(dy)d✓. Let us still denote (FQ

t ) the canonical filtration generated by Q, and
introduce P (FQ

t ) the predictable �-field associated with FQ
t . We further assume

that �(t, y) is P (FQ
t )⇥ E-measurable and also that

R t

0

R
E
�(s, y)dsµ(dy) < +1 a.s..

Now, define
�(ds, dy) =

Z

R+

1[0,�(s,y)](✓)Q(ds, dy, d✓). (45)

This clearly defines a point measure and the martingale property for Q ensures that
the random point measure �(ds, dy) has intensity measure �(s, y)dsµ(dy). Such
construction can be found in Massoulié (1998); we refer to this paper for more
details.

We are now ready to construct the two point measures N (1) and N (2) given in
Equation (29). Let us introduce two independent Poisson point measures Q(1)

(dt, dx, d✓)

and Q(2)
(dt, dx, d✓) on the probability space (⌦,F ,P) (enlarged if necessary) with

same intensity measure dsdxd✓ on R+ ⇥ R+ ⇥ R+. The first point measure is im-
mediate to construct since its intensity does not depend on it. Indeed, one can
define

N (1)
(dt, dx) =

Z

R+

1[0,⇢(t)H(x)](✓)Q
(1)
(dt, dx, d✓).

We emphasize that this is not an equation on N (1) since its intensity does not depend
on N (1) itself. As for the second point process related to the Hawkes process, the
intensity is given as a particular for of the process itself. Indeed, the intensity
measure of the point measure N (2)

(dt, dx) is given by �tG(x) where �t can be written
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using (26) as

�t = µ(t) +

Z

(0,t)

�t(t� s, x)N (2)
(ds, dx) +

Z

(0,t)

 t(t� s, x)N (1)
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Then the point measure N (2) can be defined as the solution to the following equation:
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(✓)Q(2)
(dt, dx, d✓).

Let us now give the pathwise representation of the corresponding populations.
From Equation (27), it follows that

Z
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Z
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and
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s

i
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G(x)

i
(✓)�(t�s,x)(da, dx)Q

(2)
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(47)
Such representations are used in the field of stochastic population dynamics for

populations with ages and/or characteristics (see in particular Fournier and Méléard
(2004), Tran (2008) and Bensusan et al. (2010–2015)). As for the standard Hawkes
process, the pathwise representation has many advantages. In particular, it allows
to derive the full system of equations and to identify each generation (see Section
4). More importantly, this formulation makes the link between the Hawkes process
literature and the field of stochastic population dynamics. To further investigate
this link seems to be a promising direction for future research.

Conclusion

We introduced the concept of age pyramid for a class of Hawkes processes with
general immigrants. The virtue of this approach is to keep track of all past events.
This allows tractable computations for the Hawkes process with general immigrants
whose fertility functions are time dependent generalizations of the popular expo-
nential case, providing natural extensions of the existing results in this direction.
In addition, we illustrated the pathwise construction of the Hawkes dynamics and
its underlying population process. On the whole, our approach seems to reconcile
two definitions of Hawkes processes, through an intensity process or a branching
dynamics. This framework appears to be a promising direction for further research.
As an example, the large population asymptotics in the field of measure-valued pop-
ulation dynamics could give further insights on the macroscopic behavior of Hawkes
processes.
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Appendix

Proof of Corollary 5. Let us identify the terms in Equation (17). Let us denote
At = (A�1(t), ..., An�1(t)). The identification of the first component gives

c�1An�1(t) + A
0

�1(t) = 0. (48)

The second component leads to

A
0

0(t) + c0An�1(t) + eAt

.m � 1 = 0. (49)

As for 1  k  n� 1, we get

Ak�1(t) + ckAn�1(t) + A
0

k(t) = 0. (50)

Recursive computation of (50) provides for 0  k  n� 1,

Ak(t) = (�1)n�1�kA
(n�1�k)
n�1 (t) +

n�1�kX
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(�1)lck+lA
(l�1)
n�1 (t). (51)

One deduces from (51) that

A0
0(t) = (�1)n�1A

(n)
n�1(t) +

n�1X

k=1

(�1)kckA(k)
n�1(t). (52)

Let us intoduce the function G(t) =
R t

T
An�1(s)ds and choose A�1(t) = ✓1� c�1G(t)

that satisifes (48). Now, put (51) and (52) into (49) to get the following non-linear
ordinary differential equation for G,
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(t) +
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(t) + exp
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(l)
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#◆
� 1 = 0.

(53)

Let us simplify the sum in the exponential. By changing variable k into n�1�k,
it is equal to

Pn�1
k=1 mn�1�k(�1)kG(k+1)

(t) +
Pn�1

k=1

Pk
l=1(�1)lmn�1�kcn�1�k+lG

(l)
(t).
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Then exchanging the sums leads to
Pn�1

k=1 mn�1�k(�1)kG(k+1)
(t) +

Pn�1
l=1 (�1)l

�Pn�1
k=l mn�1�kcn�1�k+l

�
G(l)

(t).

Finally, by setting l  l + 1 and exchanging notations k and l, (53) becomes
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(54)

where for 0  k  n� 1, bk = (�1)k
�
mn�1�k �

Pn�1
l=k+1 mn�1�lcn�l+k

�
.

Now, let us use (20) with (49) to get

E [exp (v.XT )] = exp

✓
�µ
Z T

0

(A
0

0(t) + c0An�1(t))dt

◆
,

= exp

 
�µ
Z T

0

 
(�1)n�1G(n+1)

(t) +

n�1X

k=0

(�1)kckG(k+1)
(t)

!
dt

!
,

= exp

 
�µ
 
(�1)n�1

(G(n)
(T )�G(n)

(0)) +

n�1X

k=0

(�1)kck(G(k)
(T )�G(k)

(0))

!!
,

where the second equality comes from (52). Let us set A0(T ) = ✓2 and for 1  k 
n� 1, Ak(T ) = 0. One can show by (51) that the previous conditions are equivalent
to the terminal values G(n)

(T ) = (�1)n�1✓2 and for 1  k  n � 1, G(k)
(T ) = 0.

Note that by definition of G we also get G(T ) = 0. We thus get

E [exp (✓1NT + ✓2.hZT ,�i)] = exp

(
�µ
 
✓2 + (�1)nG(n)

(0) +

n�1X

k=0

(�1)k+1ckG
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!)
.

This concludes the proof. ⇧
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