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Oxygen reducing biocathodes were formed from sludge under constant polarization at−0.2 and +0.4 V/SCE.

Under chronoamperometry at pH 10.3 ± 0.3, current densities of 0.21 ± 0.03 and 0.12 ± 0.01 A m−2 were

displayed at−0.2 V/SCE by the biocathodes formed at−0.2 and 0.4 V/SCE, respectively. Voltammetry revealed

similar general characteristics for all biocathodes and higher diffusion-limited current densities (0.84 ±

0.26 A m−2) than chronoamperometry. Up to 3.7 A m−2 was reached under air bubbling. A theoretical model

was proposed to show the consistency of the chronoamperometric and voltammetric data.

The biocathodes formed at−0.2 V/ECS that gave the highest electrochemical performance showed a homoge-

neous selection of Deinococcus–Thermus and Gemmatimonadetes, while the biocathodes formed at 0.4 V/SCE

were enriched in different bacteria. The biocathode that led to the worst electrochemical characteristics, while

formed at−0.2 V/SCE, showed the largest bacterial diversity. The biocathode performancewas consequently re-

lated to the enrichment in specific microbial phyla. Moreover, the strong presence of bacteria parented to

Deinococci may also have some interest in biotechnology.

1. Introduction

Microbial fuel cells (MFCs)may represent a promising technology to

extract electrical energy directly from the chemical energy contained in

low cost and widely available organic matters. Amazing advances have

been done on fundamental understanding and practical development of

microbial anodes, but the low efficiency of oxygen reducing (OR) cath-

odes still limits MFC performance. Microbial cathodes have been identi-

fied as an interesting alternative to the abiotic air-cathodes that are

implemented in most MFCs [1]. Such biocathodes have been formed

from various natural environments including seawater [2,3], soils [4],

sludge and wastewater [5–7]. Aerated sludge and nitrifying biomass

have been asserted to be particularly appropriate inocula due to their

richness in autotrophic bacteria [8–11].

Despite the various possibilities to form OR microbial cathodes, this

research field is still in its infancy and a lot remains to be done to under-

stand the mechanisms and increase the performance. In particular, the

factors that may influence the selection of themicroorganisms that col-

onize the electrode surface, or even if amicrobial selection occurs or not,

remain to be established.

Differentworks are available in the literature that studied themicro-

bial population ofORbiocathodes. They analyzed themicrobial diversity

by mean of different techniques: DGGE [6], clone library [12–14],

phylochip [15] and in more recent studies 16S-DNA pyrosequencing

[16–18]. However, these studies were realized on biocathodes formed

during MFC operation, so that no potential control was applied. As the

potential of the cathode conditions the energy recoverable by the bacte-

ria, it may play a crucial role in bacterial selection. To establish the pos-

sible impact of the potential on the selection of microorganisms,

experiments should be performed using analytical 3-electrode set-ups

and potentiostatically controlled conditions [19].

Two studies have been published that used such an electroanalyt-

ical system with the aim to link the applied potential to the bacterial

selection on OR biocathodes. Vandecandelaere et al. have analyzed

biocathodes formed under polarization at −0.2 V/SCE in seawater,

using clone libraries [3]. They observed that the bacterial population

of the biocathode was similar to the population of the surrounding

seawater and concluded to the absence of any bacterial selection

on the biocathode. Nevertheless, it should be mentioned that only

the cultivable part of the population was addressed in this study.

Xia et al. have analyzed the population of OR biocathodes formed

under three different potentials, 0.2, 0.06, and −0.1 V/SCE, from a

mix of aerobic sludge and a previously enriched biocathode consor-

tia [11]. They observed higher proportions of Bacteroidetes and

Thiorhodospira sp. as the potential decreased, showing a clear impact

of the applied potential on the bacterial selection. Eventually, these

studies presented only one population analysis for each of experi-

mental condition, while microbial electrochemical systems are

known for their considerable versatility [20]. Further studies are
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consequently required to clearly establish the impact, or not, of the

polarization potential on the selection of bacteria on OR biocathodes.

The objective of the present work was to investigate whether a bacte-

rial selection occurred when an OR biocathode is formed from a complex

inoculum and how it could impact the performance of the biocathode.

Biocathodes were formed in a synthetic medium inoculated by long-

term aerated sludge, using two distant polarization potential,−0.2 and

+0.4 V/SCE. The first potential has already been identified as producing

high performance OR biocathodes [7,10,11] and so consequent current

densities were expected. The second one was chosen due to its closeness

to the standard potential for oxygen reduction at pH 10. At this potential,

no current productionwas expected from the electrode. These two values

of potential represent two very different situations, which could affect the

biocathode formation. Replicates were realized for each experimental

condition: four electrodes were formed at−0.2 V/SCE, two electrodes

were formed at +0.4 V/SCE. The biocathodes were electrochemically

characterized by chronoamperometry and cyclic voltammetry and the

communities present in each biofilmwere identified by 16S-DNA pyrose-

quencing. The replicates used here showed that the applied potential had

a clear impact on the bacterial communities of oxygen-reducing

biocathodes, although it did not allow fully controlling them. The electro-

chemical performance was linked to the enrichment in specific microbial

phyla that can happen at−0.2 V/SCE,while the biocathode that exhibited

the lowest performance, while formed at the same potential, showed de-

ficient microbial selection.

2. Materials and methods

2.1. Electrochemical setup and tests

Each electrochemical cell was a three-electrode set-up in a two-

compartment H-cell equipped with an anion exchange membrane

(Fumasep® FAA-PK, Germany) of 7.1 cm2 surface area (Scheme 1). The

working electrode was a 2 cm2 of carbon cloth (Paxitech®, France) con-

nected by a platinumwire, the counter-electrode was a 10 cm2 platinum

grid and the reference electrode was a saturated calomel electrode (SCE,

potential +0.241 V/SHE). Four holes were drilled in the cap that covered

each electrochemical compartment; theywereused to introduce the elec-

trodes and the tubes for air or nitrogen bubbling.When the electrochem-

ical cell was air-opened one of these apertures on the anodic and cathodic

compartments was not sealed during the experiments. Aerated sludge

was collected at a sewage treatment plant (Evry, France) just before the

nitrifying step. Its initial pH was 7.0. A nitrification medium was conse-

quently chosen, which contained a high concentration of ammonium

ions. The anolyte was composed as follow: 1.908 g L−1 NH4Cl, 0.7 g L−1

K2HPO4, 0.7 g L−1 Na2HPO4, 28.6 g L−1 KHCO3 and 0.5 mL L−1 of a min-

eral solution [21]. The final pH was adjusted at 7.8 with HCl 37%. The

catholyte was same medium inoculated with 10% (v/v) aerated sludges

(500 mL final volume). Each compartment was air-opened without

stirring.

The pHwas dailymeasured in each compartment but not controlled.

Two reactors without electrodes were used as control experiments.

When indicated, nitrogen or air bubbling was punctually performed

into the catholyte. All experiments were conducted in a stove

thermostated at 40 °C. This temperature was chosen to favor fast high

bacterial growth, even if it lowered the concentration of dissolved oxy-

gen in the medium (0.41 mM against 0.52 mM at 25 °C).

Microbial cathodes were formed under constant polarization

(chronoamperometry) using a multichannel potentiostat (Biologic,

France, EC-Lab software). Four electrodes (numbered 1 to 4) were po-

larized at−0.2 V/SCE, two electrodes (numbered 5 and 6) at +0.4 V/

SCE. At some times the chronoamperometry was interrupted and cyclic

voltammetry was recorded at 1mV s−1, starting at the polarization po-

tential and scanning to 0.3 V (upper limit for the electrodes polarized at

−0.2 V/SCE) or 0.5 V (for the electrodes polarized at +0.4 V/SCE) and

back down to−0.6 V/SCE. Three voltammogramswere successively re-

corded each time, only the secondwas reported here for the sake of sim-

plicity. The current densities discussed in the text were average values

calculated for each group of electrodes formed at the same potential.

2.2. Bacterial community analysis

The bacterial populations of the cathodic biofilms were analyzed

using 16S rDNA-pyrotags sequencing. DNA was extracted with reagent

kit MOBIO PowerSoil® DNA Isolation. The DNA extraction was quanti-

fied by fluorometry (QuBit™ fluorometer with Quant-it™ assay kit,

Invitrogen) and spectrophotometry (WPABiowave™ II)which also per-

mitted to check DNA quality thanks to the ratio of UV absorbance at

260/280 nm and 260/230 nm. DNA samples were finally sent to Re-

search and Testing Laboratory (RTL — Texas, USA) where 454 pyro-

sequencing (Roche) with 28F (5′- GAG TTT GAT YMT GGC TC -3′) and

519R (5′- GWA TTA CCG CGG CKG CTG -3′) primers was performed.

Resulting data were analyzed with the open source software pack-

age QIIME “Quantitative Insights Into Microbial Ecology” [22]: 16S

DNA sequence quality was controlled using a sliding window 50 nt

long requiring an average quality above 25. The sequences were thus

trimmed to the end of the last window with required average quality

and discarded if their final length was less than 150 nt. In addition, re-

maining reads where the longest homopolymer was greater than 6 nt

or containing an ambiguous base were also discarded. Sequences were

then aligned with PyNAST [23] using the Silva 108 database core-

aligned set formatted for QIIME as a template [24]. Putative chimeric se-

quences were identifiedwith ChimeraSlayer and removed from dataset

[25]. Remaining sequences were clustered in operational taxonomic

Scheme 1. Experimental set-up.



units (OTUs) at 97% sequence similarity using uclust [26]. OTUs taxo-

nomic assignment was then performed with the RDP classifier [27], a

0.8 bootstrap cut-off using the most abundant sequence in each OTU

as representative sequence. Finally OTUs identified as Archaea or

Eukarya were discarded.

DPCoA analysis was performed using R package phyloseq [28] on

OTUswith coverage of at least 10, using relative abundances and a phy-

logenetic tree computed using FastTree [29].

For deeper phylogenetic analysis, representative sequences of OTUs

affiliated to Deinococci where introduced in the ARB software to check

the quality of alignments and of the taxonomic assignation [30]. Se-

quences of representative species of the current known diversity of

the phylum Deinococcus–Thermus together with sequences of uncul-

tured bacteria close to our sequences were then exported for deeper

phylogenetic analysis. Three α-Proteobacterial sequences were also

exported as an outgroup. Exported sequences were aligned with

PyNAST as stated above. Unambiguously aligned positionswere extract-

ed from the alignment using the BMGE program with block size of one

and allowing 40% gaps in columns [31]. The maximum likelihood tree

was then inferred with PhyML using the GTR model with optimized

equilibrium frequencies, a gamma correction to take into account the

heterogeneity of evolutionary rates across sites (four discrete classes

of sites, an estimated alpha parameter and an estimated proportion of

invariable sites) and SPR & NNI topology searches with five random

starting trees [32]. The robustness of each branch was estimated by

the non-parametric bootstrap procedure implemented in PHYML (100

replicates of the original data set and the same parameters). The phylo-

genetic tree was edited and exported using FigTree (http://tree.bio.ed.

ac.uk/software/figtree/).

3. Results and discussion

3.1. Electrochemical characterization of the biocathodes

3.1.1. Chronoamperometries

The four cathodes formed at−0.2 V/SCE showed identical current

variation with time illustrated in Fig. 1A.

A reduction current appeared after an initial lag time around 2 days

and reached a plateau after around 6 days. Various stresseswere imposed

to the electrodes: nitrogen bubbling, air bubbling, 1-day polarization in-

terruption (days 9.3 to 10.5) andwater additions to compensate evapora-

tion (at days 3.7 and 10.5). In each case, after the end of the stress the

electrodes recovered the current they provided under “standard” condi-

tions, i.e. constant polarization in quiescent solution without any gas

flow. This behavior showed a remarkable stability of the electrode perfor-

mance, which supplied under “standard” condition 0.21 ± 0.03 A m−2

(average of the four bioanodes). The nitrogen flux established on day

7.5 rapidly annihilated the reduction current and current started again

immediately after stopping the nitrogen sparge. It confirmed that the cur-

rent observed was indeed due to oxygen reduction (OR). Air bubbling

was applied from day 15.5 to the end of experiment on day 17.4. It in-

creased the reduction current density up to 0.87 A m−2 and then slowly

stabilized at lower values around 0.36 A m−2.

The biocathodes formed at 0.4 V/SCE (Fig. 2) initially produced a

very low oxidation current density from day 0 to day 9, probably due

to the presence of some soluble substances coming from the inoculum,

which were oxidized.

As expected when choosing a quite oxidative polarization potential,

no current was then observed from day 10 up to day 62.6. An

electroactive biofilm was nevertheless formed during this time, as a

switch of the polarization to−0.2 V/SCE on day 62.6 instantly provoked

an abrupt drop of current density. The average stable current density

obtained after three days of polarization at −0.2 V/SCE was 0.12 ±

0.01 A m−2, i.e. significantly smaller than that provided by the

biocathodes that were formed at−0.2 V/SCE from the beginning. The

biocathodes formed at +0.4 V/SCE did not reduce oxygen at this

potential but they were able to do it as soon as the potential was

switched to −0.2 V/SCE. Nevertheless, they were less efficient than

the biocathodes formed initially at−0.2 V/SCE. These results were con-

sistent with previous studies that also observed a clear effect of the ap-

plied potential on the biocathode performance [7,10,11].
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Fig. 1. Electrochemical characterization of a biocathode formed from sludge at−0.2 V/SCE

(cathode from reactor 3 in Table 1). A: chronoamperometry: The current increases be-

tween days 3.7 and 5.1 and between days 10.5 and 11.8 were due to water addition to

compensate evaporation and keep the medium volume constant; B: Cyclic voltammo-

grams of the biocathode under three different conditions: “standard” condition (dashed

line), with N2 bubbling (dotted line), with air bubbling (plain line).
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The pHs of both anodic and cathodic compartmentswere dailymea-

sured. In the cathodic compartments, a fast alkalinization occurred from

the starting value of 7.8 to around 9.5 in the first five days. A slower

growth was then observed up to 10.3 ± 0.3 at the end of experiments.

A similar evolution was observed in the anodic compartments, though

the values remained lower by around 0.3 pH unit than on the cathodic

side. An identical pH changewas observedwith the two control reactors

carried out in exactly the same conditions butwithout electrodes,which

meant that pH change was not provoked by the electrochemical pro-

cesses but by the metabolic activity of the planktonic microorganisms.

Similar spontaneous pH drift, which was not linked to the electrochem-

ical reactions, has already been reported in microbial electrochemical

systems that implemented environmental inocula in non-buffered con-

ditions. For instance, pH change from 7.4 to 8.6 has been observed with

garden compost leachate [33] and a shift from 7.0 to 9.6 with raw paper

mill effluents [34]. Here, thefinal stabilization aroundpH 10was consis-

tent with the buffer effect of the HCO3
− ions in the synthetic medium.

Under these slightly alkaline conditions, the electrode reactions were:

O2 þ 2H2Oþ 4e
−

→ 4OH
−

ð1Þ

on the cathode and:

2H2O→O2 þ 4H
þ
þ 4e

−

ð2Þ

on the platinum anode (auxiliary electrode). Hydroxide ions are gener-

ated on the cathode and proton on the anode, which explains the pH

gradient between the two compartments. The pH evolution was also

consistent with the direction of ionic migration of carbonates and

hydrogenocarbonates through the anion exchange membrane [35].

Oxygen reduction (Eq (1)) is disadvantaged by alkaline pH and fa-

vored in acidic solution as already observed experimentally [8]. Using

activated sludge as inoculum in a phosphate buffer solution Strik et al.

have observed a decrease of the current density from−0.66 to−0.13

Am−2 as pH grew from 5 to 9. In comparison, current densities record-

ed here (0.21±0.03 or 0.12±0.01Am−2with the biocathodes formed

at−0.2 and 0.4 V/SCE, respectively) were pretty high at pH as high as

10.3± 0.3. The non-controlled pHmay lead to the progressive selection

of alkaliphile species able to efficiently reduce oxygen at high pH.

3.1.2. Cyclic voltammetries

Cyclic voltammograms (CV) were recorded corresponding to the

three different situations: in “standard” conditions, i.e. in quiescent so-

lution without gas feeding, under nitrogen bubbling and under air bub-

bling (Fig. 1B). The biocathodes formed at −0.2 and 0.4 V/SCE gave

similar CV, as can be seen in Table 1 which reports CV characteristics

for each electrode.

Under “standard” conditions oxygen reduction started around−0.0

V/SCE with an apparent half-wave potential of−0.16 V/SCE. It was a

low potential to observe OR compared to previous works realized

with aerated or nitrifying sludge [8,10]. The high pH value that the me-

dium progressively got here partially explains the shift towards low

potential. The Nernst equation for OR in alkaline medium (Eq. (2)) is:

E ¼ E
0
þ

RT

4F
ln

a4OH−

aO2

ð3Þ

where E0=0.401 V/SHE is the standard potential for oxygen reduction,

R the universal gas constant (8.314 Jmol−1K−1), T the temperature (K),

F the Faraday constant (96,485 C mol−1) and aOH− and aO2
the re-

spective activity of hydroxide ions and dissolved oxygen. At 40 °C,

aO2
is 0.41 × 10−3 M and Eq. (3) gives:

E ¼ E
0
þ 0:815−0:062pH: ð4Þ

Thepotential decreases of 62mVper pH unit. The formal potential of

OR at pH 10was−0.170 V/SCE (186mV lower than at pH 7.0). The for-

mal potential at pH 10 was not low enough to fully explain the shift to-

wards negative potentials that was observed here in comparison to

other works realized with similar inoculum at neutral [10] or slightly

acid pH [8]. A part of the negative potential shift must be imputed to

the intrinsic properties of the microbial communities. The main differ-

ence with respect to the previous studies was the absence of pH control

in the present experiments. Letting the pH derive may result in the

selection of species that are able to generate high current densities at al-

kaline pH (10.3 ± 0.3), however it contributed to lower the potential at

which OR was observed.

The voltammograms recorded in standard condition (Fig. 1B)

displayed a plateau of limited current since around−0.25 V/SCE before

a second reduction signal appeared at potentials lower than−0.35 V/

SCE (reductive scan).When airwas brought into the cell, the voltammo-

grams displayed a considerably enhanced signal for oxygen reduction. A

continuously increasing current was observed since−0.1 V/SCE with-

out any plateau. The plateau observed under standard conditions was

consequently clearly due to oxygen mass transfer limitation.

In the absence of dissolved oxygen (nitrogen bubbling) no current

was observed corresponding to OR. The second signal reduction

remained below−0.3 V/SCE but with lower current densities than in

the presence of oxygen. An oxidation currentwas observed on the back-

wards (oxidative) scan. A redox compound was present in the biofilm,

which was reduced and oxidized in a zone of low potentials.

Characteristics of the CV displayed by the different biocathodes are

compiled in Table 1. For each electrode, three different values of current

density were considered: the current density at−0.2 V/SCE measured

on the reductive scan (J
−0.2V), the diffusion-limited current densities

displayed under “standard” conditions measured on the reductive

scan (Jlim) and the current density displayed under air bubbling at the

arbitrarily chosen potential of−0.4 V/SCE (Jair) determined from the re-

ductive scan. As awhole, biocathodes differedwhen considering perfor-

mances displayed at fixed potential (J
−0.2V, Jair) but exhibited similar

characteristics when considering values of Jlim, except the electrode

number 1, which stood out from the others by displaying significantly

lower values for each parameter (Jlim =−0.15 A m−2). Such experi-

mental deviation has been observed in other works on microbial elec-

trodes and justifies the systematic use of replicates in the domain of

microbial electrochemistry [19]. The other three electrodes formed at

Table 1

Characterization of biocathodes 1 to 3: Chronoamperometric and voltammetric experimental results and diversity indexes for each electrode. The current densities discussed in the text

were average values calculated from these raw data for each group of electrodes.

Electrode number Polarization potential (V/SCE) CA Cyclic voltammetry (CV) Number of OTUs Chao1 Shannon Simpson

JCA (A m−2) J
−0.2 V (A m−2) Jlim (A m−2) J

−0.4 V, air (A m−2)

1 −0.2 −0.20 −0.07 −0.15 −0.45 329 413 6.54 0.97

2 −0.19 −0.53 −0.65 −2.0 181 297 4.99 0.92

3 −0.24 −0.63 −1.1 −3.7 220 276 5.95 0.96

4 −0.22 −0.60 −0.77 −2.7 239 309 6.44 0.97

5 0.4 then−0.2 at day 63 −0.09 −0.46 −0.64 −2.1 162 190 6.13 0.97

6 −0.17 −0.28 −0.63 – 227 261 5.39 0.92



−0.2 V/SCE (numbers 2, 3 and 4) gave homogeneous performance

(Jlim = −0.84 ± 0.26 A m−2) and the cathodes formed at 0.4 V/ECS

led to parameters of the same order of magnitude (Jlim = −0.63 ±

0.01 Am−2). The clear difference thatwas observed on the current den-

sities displayed during chronoamperometry faded away when consid-

ering the voltammetric parameter Jlim. As a whole, and except the

particular case of electrode 1, Jlim values revealed that all biocathodes

displayed similar characteristics, comparable to those observed with

similar inocula in previous works. Maximum diffusion-limited current

densities of −1.1 A m−2 (Jlim) were obtained here and up to

−3.7 A m−2 (Jair) under air flux. The highest performance reported in

literature is of−4 A m−2 with air forced into the cell [5].

3.1.3. Preliminary basis for a theoretical model

The shape of the CVs recorded in standard condition (Fig. 1B, dashed

line) presents reproducible deviations from the conventional CV that

may be expected from a simple electrochemical system, which deserve

some comments. The current densities measured on the CV at−0.2 V/

SCE (J
−0.2V) were significantly higher than those recorded during

chronoamperometry, while potentials were identical. So a large differ-

ence would not be observed with conventional cathodes because the

low scan rate of 1 mV s−1 used for CV ensured stationary state or

close to stationary state conditions, at which voltammetry and

chronoamperometry would give similar current densities at identical

potential. Furthermore, a significant hysteresis was observed in the

zone of low potentials between the forward (reductive) and backward

(oxidative) scans. This hysteresis was not related to a capacitive

phenomenon. A capacitive phenomenon would induce a constant ca-

pacitive current on thewhole scanned potential range. Here, the hyster-

esis was clearly observed at potentials lower than−0.1 V/SCE, while it

did not occur above 0.0 V/SCE. Such a hysteresis that appeared only in

one part of the voltammogram cannot be attributed to a capacitive

effect.

The voltammetric behavior of the biocathodes can be quantitatively

explained on the basis of a biofilm scheme organized into two parts: the

electrode surface vicinity and the remaining biofilm volume. The layer

close to the electrode surface ensures efficient catalysis of OR via

adsorbed extracellular proteins for example or any other mechanisms

that can be contemplated. The volume of the biofilm that is not in the

vicinity of the electrode surface contains redox compounds that under-

go electron transfer with the electrode:

Oxþ ne
−

⇔
kred

kox
Red ð5Þ

and the reaction of the Red form with oxygen regenerates the oxidized

form:

O2 þ 2H2Oþ 4=nRed→
k
OH

−

þ 4=nOx ð6Þ

where n is the number of electron exchanged by the redox compound.

“Ox/Red” is here a generic notation that can represent a single redox

compound or a whole set of various compounds entrapped inside the

biofilm.Wedonotmake any assumption about the nature of these com-

pounds, which can be extracellular molecules or even microbial cells

able to ensure electron transfer with the electrode, whatever may be

the possible pathway. Only two basic hypotheses were done: firstly,

the electron transport in the biofilm was assumed to be slow between

the electrode surface and the redox compound located far from the elec-

trode surface; secondly, re-oxidation of the redox compound by oxygen

(Eq. (6)) was fast.

When the CV started, at the beginning of the reductive scan, the

biocathode was initially in fully oxidized state. The redox compounds

were in oxidized form and oxygen can consequently deeply penetrate

into the biofilm without reacting. A large flow of oxygen reached the

electrode surface, where it was efficiently reduced thanks to the catalyt-

ic mechanisms (Scheme 2A).

The reductive scan gave consequently high currents. During the last

part of the reductive scan, the whole set of redox compounds was re-

duced at the lowest potentials, generating the reductive currents that

superimposed to the diffusion-limited current.

At the lower limit, when the potential scan was reversed to the posi-

tive direction (beginningof the oxidative scan) thebiofilmwas in reduced

state. Oxygen encountered reduced species (Red) and reacted with them

as soon as it started to penetrate into the biofilm. A large part of oxygen

was consequently consumed before reaching the electrode surface and

its flow at the electrode surface was low (Scheme 2B). Low currents

were consequently generated. According to the model, the large differ-

ence of the Jlim values recorded on the reductive and oxidative scans

was explained by the difference of the oxygen concentration gradients

at the electrode surface.

During chronoamperometries, the biocathodes were mainly in

reduced state (Scheme 2B), while they were in oxidized state

(Scheme 2A) during the reductive scan of CV. The reductive scan of

the CVs consequently produced higher currents at −0.2 V/SCE than

chronoamperometry at the same potential. The experimental difference

observed at the same potential between chronoamperometry and CV is

consistent with this qualitative model.

During chronoamperometry, when polarization at−0.2 V/SCE was

resumed after one day of interruption (days 9.3 to 10.5 in Fig. 1A) the

current density immediately got a high reduction value and then slowly

went back to the lower stationary value. During the polarization inter-

ruption, the redox compounds were oxidized by oxygen. When the po-

tential was restored at −0.2 V/SCE, the redox compounds were

reduced, which generated the reduction current that added to the cur-

rent of oxygen reduction. The part of the current due to reduction of

the redox compounds of the biofilm then vanished slowly because

this reduction was slow at−0.2 V/SCE. It took approximately 1 day to

go back to the stationary value. This was the time necessary for the

biocathode to shift from the oxidized state (Scheme 2A) to the reduced

state (Scheme 2B) under polarization at−0.2 V/SCE.

Under nitrogen bubbling, any current due to the presence of oxygen

disappeared and only the oxidation and reduction of the redox com-

poundmoleculeswas observed at lowpotential values. The small oxida-

tion current that lasted in the zone of high potentials confirmed the

slow electron transfer between electrode and the redox compounds

contained in the biofilm volume. Under air bubbling, the flow of oxygen

was considerably increased. The whole set of redox compounds was

consequently always oxidized by the high flow of oxygen (Eq. (6)).

The current densities were high and were similar for both potential

scans, because the redox compounds were maintained in their oxidized

state by the high oxygen flow (Scheme 2A).

3.2. Bacterial community analysis

A total number of 17,642 pyrotags from the variable region V1-3 of

bacterial 16Swere extracted fromall cathodic biofilm samples. After trim-

ming, sorting, and quality control, 68% of these sequences (12001), with

an average read length of 342 nt, remained andwere used in downstream

analysis. Rarefaction curves (cf. supplementary materials) for each elec-

trode leveled off, which indicated that the sequencing was deep enough

to obtain a good coverage of the microbial diversity. The sequences

were clustered into 630 operational taxonomic units (OTUs) at 3% dis-

tance threshold. They were used in the calculations of diversity indexes

for each biocathode (Table 1).

The numbers of OTUs identified ranged from 162 for electrode 5 to

329 for electrode 1. The chao-1 estimated total numbers of OTUs range

from 190 for electrode 5 to 413 for electrode 1 [36]. However, as pointed

by Haegeman et al., the true richness remains difficult to ascertain when

considering only the raw number of OTUs [37]. A better representation of

the real biodiversity is reflected by the Shannon (denotedH) andSimpson



indexes presented in Table 1. Two of the six cathodes had a relatively low

Simpson index (0.92 for electrodes 2 and 6) while the other presented

higher indexes (0.96–0.97). This was congruent with the measure of

Shannon indexes: H2 b H6 b H3 b H5 b H4 b H1. Electrode 1 displayed

the highest indexes, which meant that the bacterial population found

on this electrode was highly diverse. Its lower performance would thus

partly be explained by the failure of the electroactive bacteria in imposing

on other species. In comparison, Shannon indexes measured by Xia et al.

ranged from 0.67 to 1.9 [11], so Shannon indexes calculated here

(between 4.99 and 6.54) were way higher. This was expected as pyrose-

quencing allowsmuch deeper sequencing than clone libraries. The diver-

sities obtained here are indeed comparable with diversities found using

similar sequencing techniques on other oxygen reducing biocathodes

[16–18].

The OTUs were classified using the RDP classifier and the total fre-

quency for each given phylogenetic group was calculated [27]. Struc-

tures of the bacterial communities at the class level and major genera

identified on the different electrodes are summed in supplementary

materials (Fig. S2 and sup mat Table 1).

Results at the phylum level are illustrated by the DPCoA analysis

(Fig. 3). Themethod separated the taxa in threemain groups: the bottom

group of Deinococcus–Thermus and Gemmatimonadetes, the upper-left

group of Proteobacteria and the upper-right group of Firmicutes and Rf3

candidate division. The biofilm samples E1-6 from electrodes 1–6 were

separated along the three corresponding directions depending on the

bacterial compositions of their communities. Thus E2, E3 and E4 were

mainly enriched in bacteria belonging to Deinococcus–Thermus and

Gemmatimonadetes, E5 appeared enriched in Firmicutes and in bacteria

belonging to Rf3 candidate division and E6 were mainly enriched in

Proteobacteria. On the contrary, the position of E1 in the center of the

graph reflected the high diversity of its populations. These results con-

firmed the analysis of diversity indexes indicating that there was a stron-

ger selection of bacterial populations on active cathodes 2–6 in

comparison with cathode 1 which displayed a low current density. In ad-

dition the potential used at the beginning of the experiment influenced

the taxa selected. Indeed the selection is homogeneous in the biofilms

of active electrodes 2–4 polarized at −0.2 V/SCE (enriched in

Deinococcus–Thermus and Gemmatimonadetes) while we observed

Scheme 2. Biocathode in oxidized (A) and reduced (B) states. In both cases oxygen reduction is efficiently catalyzed on the surface of, or close to, the electrode surface. The biofilm volume

that is not in close vicinity to the electrode contains redox compounds (extracellular molecules or cells themselves) that undergo slow electron transfer with the electrode. Oxygen pen-

etrates deeply into the oxidized biocathode, resulting in a high oxygen flow on the electrode surface (flow is proportional to the concentration gradient near the electrode surface). In

contrast, oxygen reacts with the reduced species contained in the reduced biocathode and only a low flow reaches the electrode surface.

Fig. 3. DPCoA analysis at phylum level of the six electrodes populations.



that different bacteria were selected in the biofilms of electrode first

polarized at +0.4 V/SCE (Firmicutes and Proteobacteria respectively for

E5 and E6). This was probably explained by a drift of the communities

in the biofilms of electrodes 5 and 6 during their polarization at high po-

tential, when there was no current. The communities selected in the end

would thendependon thebacteriawhichwere thefirst to take advantage

of the electrons when the potential was switched to−0.2 V/SCE. On the

whole, these results support the suggestion already encountered in the

literature that the ability to catalyze oxygen reduction in electroactive

biofilms is shared by a great number of bacterium genera and species

[38].

At the genera level, themost significant components of the communi-

ty (relative abundance N 10% in at least one experiment) were Truepera

(Deinococci), Alcaligenes (β-Proteobacteria), Thauera (β-Proteobacteria),

Candidatus microthrix (Acidimicrobiia), Pseudomonas (γ-Proteobacteria)

or member of unclassified genera belonging to orders Xanthomonadales

(γ-Proteobacteria), Gemmatimonadales (Gemmatimonadetes) and

Bacillales (Bacilli). These genera are common bacteria from activated

sludge, among them, Pseudomonas aeruginosa [39], Alcaligenes faecalis

[40] and different species of Bacillus [40,41] are well-known electroactive

bacteria. Pseudomonas aeruginosa, in particular, is known to be able to

catalyze oxygen reduction when adhering to a cathode [39]. The higher

presence of Pseudomonas (10.9%) on electrode 3 may thus explain

why this electrode displayed better performances than electrode 2

and 4 (cf. supp mat Table 1). Deinococci, Rhodocyclales (Thauera),

Xanthomonadales and Gemmatimonadales have also been identified in

previous studies on biocathodes [16,18]. However the dominance of

Deinococci observed on electrodes 2 to 4 was unexpected.

Indeed Deinococci lineages identified in environmental samples gen-

erally constitute a small fraction of the microbial communities [42]. This

class of bacteria is mainly known for its extremely radiation resistant

members and for some species used in biotechnology for their efficient

DNA reparation system [43–45], but has not been proved to be

electroactive yet. The classifier identifiedmore precisely the Deinococci

found here as belonging to genus Truepera, however their representa-

tive sequences appeared to be only ~90% identical to the sequence of

Truepera radiovictrix in RefSeq (NR_074381 in http://www.ncbi.nlm.

nih.gov/refseq/). The genus attribution was thus incorrect, the classifier

probably suffering from the lack of diversity in reference sequences for

the group. A maximum-likelihood phylogenetic tree that included sev-

eral sequences of type species from the phylum Deinococcus–Thermus,

togetherwith sequences fromuncultured bacteria closely related to our

OTUs was then reconstructed and is presented in supplementary mate-

rial (Fig. S3). It demonstrates that the lineages found into our biofilms

form a distinct line of descent, sister to Truepera (Fig. S3). The uncul-

tured bacteria whose sequences are closely related to our representa-

tive sequences were found in environments similar to our inoculum

original environment (leachate, composting soil, tannery sludge), but

were always minor components of their respective bacterial communi-

ties. Truepera radiovictrix is notably of special interest, not only because

of its isolated phylogenetic location in the order Deinococcales, but also

because of its ability to growundermultiple extreme conditions in alka-

line, moderately saline, and high temperature habitats. As they are able

to growunder such extreme conditions (alkaline,moderately saline and

high temperature) Truepera radiovictrix affiliated lineages may thus be

of special interest for OR biocathodes. Indeed, strains of Truepera

radiovictrix were able to grow at pH 11.2 [46]: it was thus fully consis-

tent with the alkaline pH, which the solution evolved to.

4. Conclusions

The current densities obtained here (0.21 ± 0.03 and 0.12 ±

0.01 Am−2with the biocathodes formed at−0.2 and 0.4 V/SCE, respec-

tively) were high considering the alkaline pH of 10.3± 0.3. The absence

of phosphate buffer and pH control allowed the microbial populations

to adapt to alkalinepHand develop efficientOR electrochemical proper-

ties at this pH.

All biocathodes exhibited a high bacterial diversity but a clear differ-

ence in selective conditions was experienced. The electrodes polarized

at +0.4 V/SCE displayed populations dissimilar from one another

(dominated by Firmicutes or Proteobacteria), while electrodes polar-

ized at−0.2 V/SCE displayed closer populations, as clearly shown by

the DPCoA analysis. The three most efficient biocathodes had bacterial

communities with high similarities between them, enriched in

Deinococcus–Thermus and Gemmatimonadetes, and the less large di-

versity. The deviant biocathode also obtained at −0.2 V/SCE, which

gave the worst OR performance, did not exhibit similar microbial en-

richment but had the more diverse bacterial community.

OR efficiency was consequently related to a given composition of

the microbial community. The applied potential used to form the

biocathodes is an essential parameter to act on microbial selection.

Nevertheless, this is not the absolute guarantee to control the micro-

bial enrichment; some deficiency in microbial selection can explain

the deviant results that are commonly observed when forming OR

biocathodes. Finally, this work also described an unexpected way

for selecting Deinococci, which may have a large interest in

biotechnology.
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