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A note on the existence of self-dual skew codes over finite fields

D. Boucher ∗

May 7, 2015

Abstract

Conditions on the existence of self-dual θ-codes defined over a finite field IFq are studied
for θ automorphism of IFq. When q ≡ 1 (mod 4) it is proven that there always exists a
self-dual θ-code in any dimension and that self-dual θ-codes of a given dimension are
either all θ-cyclic or all θ-negacyclic. When q ≡ 3 (mod 4), there does not exist a self-
dual θ-cyclic code and a necessary and sufficient condition for the existence of self-dual
θ-negacyclic codes is given.

1 Introduction

Conditions for the existence of self-dual cyclic and negacyclic codes have been widely studied
([4], [6]) as well as for quasi-cyclic codes ([11], [12], [7]). In [3] a formula for the number of
self-dual θ-cyclic codes and self-dual θ-negacyclic codes is given over IFp2 where p is a prime
number and θ is the Frobenius automorphism. The aim of this text is to give conditions for
the existence of self-dual θ-cyclic codes and θ-negacyclic codes over any finite field IFq where
θ is an automorphism of IFq.

The text is organized as follows. In Section 2, some facts about self-dual skew codes are
recalled. In Section 3, the question of the existence of self-dual skew codes generated by skew
binomials (Proposition 1) is studied. One deduces from this part that for q ≡ 1 (mod 4)
there always exists a self-dual skew code in any dimension. In Section 4, a construction of
self-dual skew codes over IFq using least common right multiples of skew polynomials and
generalizing Proposition 28 of [2] is considered (Proposition 2). This proposition is used in
Section 5 when q ≡ 3 (mod 4) to prove that there does not exist a self-dual θ-cyclic code in
any dimension and to give a necessary and sufficient condition for the existence of self-dual
θ-negacyclic codes (Proposition 4). Lastly when q ≡ 1 (mod 4), one proves that the sufficient
conditions of existence of self-dual θ-cyclic and θ-negacyclic codes given by Proposition 1 are
also necessary (Proposition 5). The results of Proposition 4 and Proposition 5 are summed
up in Table 1.

2 Generalities on self-dual skew codes

For a finite field IFq and θ an automorphism of IFq the ring R is defined by R = IFq[X; θ] =
{anXn + . . .+ a1X + a0 | ai ∈ IFq and n ∈ IN} where addition is defined to be the usual ad-
dition of polynomials and where multiplication is defined by the basic rule X · a = θ(a)X
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(a ∈ IFq) and extended to all elements of R by associativity and distributivity. The noncom-
mutative ring R is called a skew polynomial ring or Ore ring (cf. [13]) and its elements
are skew polynomials. It is a left and right Euclidean ring whose left and right ideals are
principal. Left and right gcd and lcm exist in R and can be computed using the left and
right Euclidean algorithm. Recall that the center of R is the commutative polynomial ring
Z(R) = IFθq[X

|θ|] where IFθq is the fixed field of θ and |θ| is the order of θ. Below, module
θ-codes are defined using the skew polynomial ring R.

Definition 1 (Definition 1 of [2] ) A module θ-code (or module skew code) C is a left
R-submodule Rg/Rf ⊂ R/Rf in the basis 1, X, . . . ,Xn−1 where g ∈ R = IFq[X; θ] and f is a
left multiple of g in R of degree n. If there exists an a ∈ IFq \ {0} such that g divides Xn − a
on the right, then the code C is (θ,a)-constacyclic. If a = 1, the code is θ-cyclic and if
a = −1, it is θ-negacyclic. The skew polynomial g is called skew generator polynomial
of C.

If θ is the identity then a θ-cyclic (resp. θ-negacyclic) code is a cyclic code (resp. ne-
gacyclic) code. The (Euclidean) dual of a linear code C of length n over IFq is defined
with the Euclidean scalar product < x, y >=

∑n
i=1 xiyi in IFnq as C⊥ = {x ∈ IFnq |

∀y ∈ C,< x, y >= 0}. A linear code C over IFq is Euclidean self-dual or self-dual if
C = C⊥. To characterize self-dual module θ-codes, the skew reciprocal polynomial of a skew
polynomial (Definition 3 of [1]) and also the left monic skew reciprocal polynomial are used :

Definition 2 ([1], Definition 3) The skew reciprocal polynomial of h =
∑m

i=0 hi X
i ∈

R of degree m is h∗ =
∑m

i=0X
m−i · hi =

∑m
i=0 θ

i(hm−i) X
i. The left monic skew recipro-

cal polynomial of h is h\ := 1
θm(h0)

· h∗.

Since θ is an automorphism, the map ∗ : R → R given by h 7→ h∗ is a bijection. In
particular for any g ∈ R there exists a unique h ∈ R such that g = h∗ and, if g is monic,
there exists a unique h ∈ R such that g = h\.

In order to describe some properties of the skew reciprocal polynomial, the morphism of
rings Θ: R→ R given by

∑n
i=0 aiX

i 7→
∑n

i=0 θ(ai)X
i ([1], Lemma 1) is useful:

Lemma 1 (see also Lemma 1 of [1]) Let f and g be skew polynomials in R and n =
deg(f). Then

1. (fg)∗ = Θn(g∗)f∗.

2. (f∗)∗ = Θn(f).

According to Proposition 5 of [2], a self-dual θ-code must be either θ-cyclic or θ-negacyclic.
Furthermore, according to Corollary 1 of [2], a module θ-code with skew generator polynomial
g ∈ IFq[X; θ] of degree k is self-dual if and only if there exists h ∈ R (called skew check
polynomial of the code) such that g = h\ and

h\h = X2k − ε with ε ∈ {−1, 1}. (1)

Self-dual cyclic codes exist over IFq if and only if the characteristic of q is 2 (Theorem 3.3
of [9] or Theorem 1 of [8]). Necessary and sufficient conditions for the existence of self-dual
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negacyclic codes are given in [6] when q ≡ 1 (mod 4) and in [4] when the dimension is a power
of the characteristic of IFq.

According to Theorem 18 of [14], a θ-cyclic code of length n is equivalent to a quasi-cyclic
code of index ` where ` = gcd(|θ|, n). Therefore, as equivalence preserves self-duality, if there
exists a self-dual θ-cyclic code of length n then there exists a self-dual quasi-cyclic code of
length n and index ` = gcd(|θ|, n). According to Lemma 2.1 of [7], for m coprime with
q, self-dual quasi-cyclic codes of index ` with length `m exist over a finite field IFq if and
only if q is of characteristic 2 and 2|` or q ≡ 1 (mod 4) and 2|` or q ≡ 3 (mod 4) and 4|`.
Therefore, if there exists a self-dual θ-cyclic code over IFq with n/gcd(|θ|, n) coprime with q,
then gcd(|θ|, n) must be even if q is a power of 2 or q ≡ 1 (mod 4) and it must be divisible by
4 if q ≡ 3 (mod 4). If the characteristic of IFq is equal to 2, then for all nonnegative integer
k there exists a self-dual θ-code of length 2k. Namely, the code (Xk + 1)θ2k is such a code as
the relation (1) is satisfied for h = Xk + 1 :

(Xk + 1)\(Xk + 1) = (Xk + 1)(Xk + 1) = X2k + 1.

In next section, necessary and sufficient conditions for the existence of self-dual codes gener-
ated by skew binomials are given when the characteristic of IFq is odd.

3 Self-dual skew codes generated by skew binomials

Over a finite field of odd characteristic, there is no self-dual cyclic code ([8]). The example
below shows that it is not the case for θ-cyclic codes when θ is not the identity.

Example 1 Consider IF32 = IF3(a) with a2 − a − 1 = 0, α = a2 and θ : x 7→ x3. The
skew polynomial X +α ∈ IF32 [X; θ] is the skew check polynomial of a self-dual θ-cyclic code :
(X + α)\ = 1

α3 (1 + α3X) = X + α and

(X + α)\(X + α) = (X + α)(X + α)
= X2 + (α+ α3)X + α2

= X2 − 1.

According to Section VI A of [11], this code is, up to equivalence, the unique self-dual code of
length 2 over IF32, its generator matrix is (1, α).

The following proposition gives a necessary and sufficient condition for the existence of
self-dual θ-cyclic codes and self-dual θ-negacyclic codes defined over finite fields of odd char-
acteristic and generated by skew binomials.

Proposition 1 Assume that IFq is a finite field with q = pe, p odd prime number, e ∈ IN∗.
Consider r ∈ IN, θ the automorphism of IFq defined by θ : x 7→ xp

r
and k a nonnegative

integer.

1. There exists a self-dual θ-cyclic code over IFq of dimension k generated by a skew bino-
mial if and only if p ≡ 3 (mod 4), e is even and r × k is odd.

2. There exists a self-dual θ-negacyclic code over IFq of dimension k generated by a skew
binomial if and only if p ≡ 1 (mod 4) or p ≡ 3 (mod 4), e is even and r × k is even.
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Proof.

• Consider h = Xk + α ∈ R = IFq[X; θ] and ε = ±1. The skew binomial h is the skew
reciprocal polynomial of a self-dual (θ, ε)-constacyclic code if, and only if, h satisfies the
relation (1) i.e. (

Xk +
1

θk(α)

)
·
(
Xk + α

)
= X2k − ε.

Developping this skew polynomial relation, one gets the equivalent conditions

θk(α) + εα = α2 + 1 = 0.

• One then proves that there exists α ∈ IFq such that θk(α) + α = α2 + 1 = 0 if and only
if p ≡ 3 (mod 4), e is even, r and k are odd.

Let us assume that p ≡ 3 (mod 4), e ≡ 0 (mod 2) and r, k ≡ 1 (mod 2). Then −1
is a square in IFq and one can consider α ∈ IFq such that α2 = −1. As r and k are

odd, pkr ≡ 3 (mod 4) so pkr − 1 ≡ 2 (mod 4) and pkr−1
2 ≡ 1 (mod 2). Therefore

αp
kr−1 = (α2)

pkr−1
2 = (−1)

pkr−1
2 = −1 i.e. θk(α) + α = 0.

Conversely, consider α in IFq such that θk(α) + α = α2 + 1 = 0. Assume that p ≡ 1
(mod 4) then −1 is a square in IFp so α belongs to IFp and α is left fixed by θ. The
equality θk(α) + α = 0 implies that 2α = 0, which is impossible as p is odd. Therefore
p ≡ 3 (mod 4) and as −1 is a square in IFq, e must be even. As θk(α) +α = 0 = α2 + 1,

one gets −1 = αp
kr−1 = (α2)

pkr−1
2 = (−1)

pkr−1
2 so pkr−1

2 is odd, and pkr−1 ≡ 2 (mod 4).
As p ≡ 3 (mod 4), kr must be odd.

• Lastly one proves that there exists α ∈ IFq such that θk(α)−α = α2 + 1 = 0 if and only
if p ≡ 1 (mod 4) or (p ≡ 3 (mod 4), e and r × k are even).

First if p ≡ 1 (mod 4) then −1 is a square in IFp. Consider α in IFp such that α2 = −1,
then θk(α)− α = 0 because α ∈ IFp is left fixed by θ. If p ≡ 3 (mod 4), e ≡ 0 (mod 2)
and rk ≡ 0 (mod 2), then −1 has a square root in IFq and pkr − 1 ≡ 0 (mod 4).

Consider α ∈ IFq such that α2 = −1. Then αp
kr−1 = (α2)

pkr−1
2 = 1 because α2 = −1

and (pkr − 1)/2 is even.

Conversely, consider α ∈ IFq such that θk(α)−α = α2 +1 = 0. Therefore −1 is a square
in IFq and either p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and e ≡ 0 (mod 2). If p ≡ 3 (mod 4)

and rk ≡ 1 (mod 2) then pkr − 1 ≡ 2 (mod 4) so (pkr − 1)/2 would be odd and αp
kr−1

would be equal to −1. As IFq has an odd characteristic, this contradicts the hypothesis

αp
kr−1 = 1. Therefore p ≡ 1 (mod 4) or p ≡ 3 (mod 4), e ≡ 0 (mod 2) and rk ≡ 0

(mod 2).

Corollary 1 Assume that IFq is a finite field with q = pe, p odd prime number, e ∈ IN∗ and
q ≡ 1 (mod 4). Consider r ∈ IN, θ the automorphism of IFq defined by θ : x 7→ xp

r
and k a

nonnegative integer. Then there exists a self-dual θ-code of dimension k.
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Proof. According to Proposition 1, if p ≡ 1 (mod 4) there exists a self-dual θ-negacyclic
code of dimension k; if p ≡ 3 (mod 4) and e ≡ 0 (mod 2), then there exists a self-dual θ-cyclic
code of dimension k if r× k is odd and there exists a self-dual θ-negacyclic code of dimension
k if r × k is even.

Example 2 Consider IF32 = IF3(a) with a2 − a − 1 = 0 and θ : x 7→ x3. For k ∈ IN∗, there
exists α such that Xk + α is the skew check polynomial of a self-dual θ-cyclic code if and
only if k is odd. In this case α satisfies α2 + 1 = 0 and θk(α) + α = 0 i.e. α2 + 1 = 0 and
α(α2 + 1) = 0 (because θk = θ if k is odd). So α must be equal to ±a2 (see Example 1).

Remark 1 When r = 0 (i.e. θ is the identity), Proposition 1 gives necessary and sufficient
conditions of existence of self-dual cyclic and negacyclic codes generated by binomials over
finite fields of odd characteristic. If p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and e ≡ 0 (mod 2),
there always exists a self-dual negacyclic code of any dimension (see also Corollary 3.3 of
[4] when the dimension is ps for s > 0). This seems to contradict Example 3.8 of [6] which
states that a ”self-dual negacyclic code of length 70 over IF5 does not exist” and that there ”is
no self-dual negacyclic code of length 30 over IF9”. Namely, over IF5, X35 + 2 generates a
self-dual negacyclic code of dimension 35 whereas over IF9, X15 + a (with a2 = −1) generates
a self-dual negacyclic code of dimension 15.

4 Self-dual skew codes generated by least common left multi-
ples of skew polynomials

The following Lemma is inspired from Theorem 16 and Theorem 18 of [14] which state that
a θ-cyclic code is either a cyclic code or a quasi-cyclic code.

Lemma 2 Consider IFq a finite field, θ ∈ Aut(IFq), R = IFq[X; θ], n a nonnegative integer, `
the greatest common divisor of n and of the order of θ, a ∈ (IFq)

θ \ {0} and h a right divisor
of Xn − a in R. Then X`h = hX` (which means that the coefficients of h belong to the fixed

field of θ`, (IFq)
θ`).

Proof. Consider m the order of θ, u, v ∈ IN such that ` = mu − nv. Consider 1
avX

muh ∈
Rh/R(Xn − a), one has 1

avX
muh = hXmu × 1

av = hX`Xnv × 1
av = hX` in R/R(Xn − a),

therefore hX` ∈ Rh/R(Xn−a) and there exists Q ∈ R monic of degree ` such that hX` = Qh.
The constant coefficient Q0 of Q satisfies Q0h0 = 0, as h0 6= 0, one gets Q0 = 0. Furthermore,
from the coefficients of degree 1, . . . , ` − 1 of hX` − Qh, one gets that the terms of Q with
degrees ≤ `− 1 all cancel, therefore hX` = X`h.

The following proposition is a generalization of Proposition 28 of [2] (where θ was of order
2).

Proposition 2 Consider IFq a finite field, θ ∈ Aut(IFq), R = IFq[X; θ], k a nonnegative

integer and ` the greatest common divisor of 2k and of the order of θ, R̃ = (IFq)
θ` [X; θ̃] where

θ̃ is the restriction of θ to (IFq)
θ`. Consider s ∈ IN and t ∈ IN not multiple of p, such that

2k = `× ps × t. Let ε ∈ {−1, 1} and Y t − ε = f1(Y )f2(Y ) · · · fm(Y ) ∈ (IFq)
θ[Y ], where fi(Y )

are monic polynomials that are pairwise coprime with the property that f \i = fi. The equation
h\h = X2k− ε ∈ R is equivalent to h\h = X2k− ε ∈ R̃. Its solutions are the skew polynomials
h defined by h = lcrm(h1, . . . , hm) ∈ R̃ where for i = 1, . . . ,m, h\ihi = fp

s

i (X`) ∈ R̃.
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Proof. According to Lemma 2, the equation h\h = X2k− ε in R = IFq[X; θ] is equivalent

to h\h = X2k−ε in R̃ = (IFq)
θ` [X; θ̃] where (IFq)

θ` is the fixed field of θ` and θ̃ is the restriction

of θ to (IFq)
θ` . As θ̃` fixes (IFq)

θ` , the order of θ̃ divides ` and therefore it divides 2k.
Therefore in the following, without loss of generality, one can consider the equation h\h =

X2k − ε in R = IFq[X; θ] with θ ∈ Aut(IFq) of order ` dividing 2k. The proof of Proposition
28 of [2] can be adapted to this context and not all details are given.

1. (⇐) From h = lcrm(h1, . . . , hm) one obtains that h = hiqi with qi ∈ R. Lemma 1

shows that there exists q̃i ∈ R such that h\ = q̃ih
\
i. Therefore h\h = q̃i(h

\
ihi)qi =

q̃ifi
ps(X`)qi = q̃iqifi

ps(X`) (because fp
s

i (X`) ∈ (IFq)
θ[X`] is central), showing that

lclm((f1)
ps(X`), . . . , (fm)p

s
(X`)) = fp

s

1 (X`) · · · fp
s

m (X`) = Xn − ε is a right divisor of
h\h in R. Furthermore, the degree of h is equal to the sum of the degrees of the skew
polynomials hi (because they are pairwise coprime), therefore the degree of h\h is equal
to
∑m

i=1 deg((fi)
ps(X`)) = 2k which enables to conclude that h\h = X2k − ε.

2. (⇒): According to ([5], Theorem 4.1), h\ = lclm(h\1, . . . , h
\
m) where h\i = gcrd(fp

s

i (X`), h\)
are pairwise coprime in R. In particular, according to [13],

deg(lclm(h\i, h
\
j)) = deg(h\i)+deg(h\j) for i 6= j and deg(h\) = deg(lclm(h\i)) =

∑
deg(h\i).

Let us now show that hi divides fi
ps(X`) and h on the left :

• Let δi be the degree of fi
ps(X`) and di be the degree of hi. Applying Lemma 1

to fi
ps(X`) = qih

∗
i one obtains (fi

ps(X`))∗ = Θδi−di(h∗i
∗)q∗i = Θδi−di(Θdi(hi))q

∗
i =

Θδi(hi)q
∗
i = hiq

∗
i (because δi is a multiple of the order ` of θ). One concludes that

hi divides on the left (fi
ps(X`))∗ and hi divides on the left (fi

ps)\(X`) = fi
ps(X`).

• Since h\i divides h\ on the right, h∗ = pih
∗
i for some pi in R. Using Lemma 1, one

obtains Θk(h) = h∗∗ = Θk−di(h∗i
∗)p∗i . Therefore

Θk(h) = Θk−di(Θdi(hi))p
∗
i = Θk(hi)p

∗
i . Since Θ is a morphism of rings, hi divides

h on the left.

Since h\i divides h\ on the right and hi divides h on the left, there exist gi, g̃i such that

h\h = g̃ih
\
ihigi. Since two factors of a decomposition of the central polynomial h\h =

g̃ih
\
ihigi into two factors commute, h\ihi divides h\h = Xn−ε on the right. According to

Theorem 4.1 of [5], h\ihi = lclm(gcrd(h\ihi, (fj)
ps(X`)), j = 1, . . .m). As both h\i and hi

divide the central polynomial fi
ps(X`), the product h\ihi divides (fi

ps)2(X`). For j 6= i,

gcrd(h\ihi, (fj)
ps(X`)) = 1 and h\ihi = gcrd(h\ihi, fi

ps(X`)), in particular, h\ihi divides
fi
ps(X`).

For i ∈ {1, . . . ,m} the polynomials fi
ps(X`) are pairwise coprime, showing that their

divisors h\ihi are also pairwise coprime. Therefore

deg(lclm(h\ihi)) =
m∑
i=1

deg(h\ihi) = 2 deg(h\) =
m∑
i=1

deg(fi
ps(X`)).

From
∑m

i=1 deg(h\ihi) =
∑m

i=1 deg(fi
ps(X`)) and the fact that h\ihi divides fi

ps(X`), we

obtain h\ihi = fi
ps(X`).
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As hi divides h on the left, lcrm(hi, i = 1, . . . ,m) also divides h on the left. Since

gcrd(h\i, h
\
j) = 1 implies gcld(hi, hj) = 1, one gets deg(lcrm(hi, i = 1, . . . ,m)) =∑

deg(hi) = deg(h). Therefore h = lcrm(hi, i = 1, . . . ,m).

Corollary 2 Consider IFq a finite field with odd characteristic p, θ ∈ Aut(IFq), R = IFq[X; θ].
Consider ` the greatest common divisor of 2 × k and of the order of θ, k ∈ IN∗, s ∈ IN and
t ∈ IN not multiple of p such that 2× k = `× ps × t.

1. If the order of θ is odd then there does not exist a self-dual θ-cyclic code of dimension
k over IFq.

2. If the order of θ is odd and if Y t+1 ∈ (IFq)
θ[Y ] has a self-reciprocal irreducible factor of

degree > 1, then there does not exist a self-dual θ-negacyclic code of dimension k over
IFq.

Proof.

1. Assume that there is a self-dual θ-cyclic code of dimension k, then the equation h\h =
X2k − 1 has a solution in R. Furthermore Y − 1 divides Y t − 1 and is self-reciprocal,
therefore, according to Proposition 2, the intermediate equation H\H = (X l − 1)p

s
has

a solution. But the order of θ is odd so ` is odd, therefore the right hand side of this
intermediate equation has an odd degree which is impossible as the degree of the left
hand side is even.

2. Consider f(Y ) = f \(Y ) ∈ (IFq)
θ[Y ] irreducible dividing Y t + 1, then the irreducible

skew factors of f(X`) have the same degree as deg(f(Y )) and therefore a factorization
of f(X`)p

s
into irreducible skew polynomials has `× ps factors of degree deg(f(Y )). As

the order of θ is odd, ` is odd and `× ps is odd, therefore each factorization of f(X`)p
s

into the product of irreducible factors has an odd number of irreducible factors with the
same degree. Consider H ∈ R satisfying the intermediate equation H\H = f(X`)p

s
.

The skew polynomials H and H\ must have the same number of irreducible factors,
with the same degree and dividing f(X`)p

s
. This contradicts the fact that f(X`)p

s
has

an odd number of irreducible factors with the same degree. Therefore, according to
Proposition 2, the equation h\h = X2k + 1 has no solution in R.

Remark 2 According to Theorem 2.2 of [6], there does not exist a self-dual negacyclic code
of length 2k over IFq, with IFq of odd characteristic, if the polynomial X2k + 1 ∈ IFq[X] has
an irreducible factor f such that f = f \.

From Proposition 1 one deduces that there cannot exist both a self-dual θ-cyclic code
generated by a binomial and a self-dual θ-negacyclic code generated by a binomial and having
the same dimension. The following proposition shows that more generally there cannot exist
both a self-dual θ-cyclic and a self-dual θ-negacyclic code with the same dimension.

Proposition 3 Consider IFq a finite field with odd characteristic p and θ an automorphism
of IFq. There cannot exist both a self-dual θ-cyclic code and a self-dual θ-negacyclic code with
the same dimension over IFq.
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Proof. Consider k ∈ IN, ε ∈ {−1, 1}. According to Lemma 2, the equation h\h = X2k − ε
in R = IFq[X; θ] is equivalent to h\h = X2k − ε in R̃ = (IFq)

θ` [X; θ̃] where (IFq)
θ` is the fixed

field of θ` and θ̃ is the restriction of θ to (IFq)
θ` . As θ̃` fixes (IFq)

θ` , the order of θ̃ divides
` and therefore it divides 2k. Therefore in the following, without loss of generality, one can
consider that the order ` of θ ∈ Aut(IFq) divides 2× k. Consider s ∈ IN and t ∈ IN such that
2× k = `× ps × t where t is not a multiple of p.

1. One first considers the particular case when t = 1 i.e. 2 × k = ` × ps. Assume that
there exists a self-dual θ-cyclic code of dimension k. Consider h ∈ R monic such that
h\h = X2k− 1 and α the constant coefficient of h. The skew polynomial X`− ε belongs
to (IFq)

θ[X`] therefore it is central of degree 1 in X` and the skew factors of any of its
factorizations are all of degree 1. The skew polynomial X2k − ε = (X`− ε)ps shares the
same property. As h divides X2k − 1 and as X2k − 1 factors as a product of linear skew
polynomials, a factorization of h is h = (X−α1) · · · (X−αk) where αi ∈ IFq and X−αi
divides on the right X2k−1 (because X2k−1 is central). According to Equation (11) of
[10], one has N2k(αi) = 1 where for m ∈ IN∗ and u ∈ IFq, Nm(u) := uθ(u) · · · θm−1(u) is

the norm of u. As α = (−1)k
∏k
i=1 αi, one gets N2k(α) = 1. Furthermore the constant

term of h\h is equal to α/θk(α) therefore, θk(α) = −α and 1 = N2k(α) = (−1)kNk(α)2.
Similarly if there exists a self-dual θ-negacyclic code of dimension k, then there exists
β in IFq such that N2k(β) = (−1)k, θk(β) = β and Nk(β)2 = (−1)k. If k is even then

Nk(α)2 = 1, therefore Nk(α) = ±1 so α
pk−1
p−1 = ±1 and αp

k−1 = (±1)p−1. As p is

odd, one gets αp
k−1 = 1, which contradicts θk(α) = −α. If k is odd then Nk(β)2 =

−1 = Nk(α)2, so Nk(α) = ±Nk(β) and N2k(α) = Nk(β)2 = −1, which contradicts
N2k(α) = 1. Therefore if t = 1, there cannot exist both a self-dual θ-cyclic code and a
self-dual θ-negacyclic code with dimension k over IFq.

2. Consider now the case when t > 1. If t is even, then Y − 1 and Y + 1 divides Y t − 1
in (IFq)

θ[Y ]. If there is a self-dual θ-cyclic code of dimension k then according to

Proposition 2, the intermediate skew equation h\1h1 = X`ps − 1 and h\2h2 = X`ps + 1
must have monic solutions h1, h2 ∈ R, which is impossible according to the first part of
the proof. Therefore no self-dual θ-cyclic code of dimension k exists. If t is odd then
Y −1 divides Y t−1 and Y +1 divides Y t+1 in (IFq)

θ[Y ]. According to Proposition 2, if

there is a self-dual θ-cyclic code of dimension k, then the skew equation h\1h1 = X`ps−1
must have a monic solution h1 ∈ R. If there is a self-dual θ-negacyclic code of dimension
k, then the skew equation h\2h2 = X`ps + 1 must also have a monic solution h2 ∈ R.
This is impossible according to the first part of the proof.

5 Existence of self-dual skew codes over finite fields with odd
characteristic

According to Proposition 1, if q ≡ 3 (mod 4), then there is no self-dual θ-code generated by
skew binomials over IFq. The following proposition gives a necessary and sufficient condition
of existence of self-dual θ-codes when q ≡ 3 (mod 4). The proof uses Corollary 2.

8



Proposition 4 Assume that IFq is a finite field of characteristic p with q ≡ 3 (mod 4).
Consider θ an automorphism of IFq and µ ≥ 2 the biggest integer such that 2µ divides p + 1
(i.e. 2µ divides exactly p+ 1).

1. There does not exist a self-dual θ-cyclic code of dimension k over IFq.

2. There exists a self-dual θ-negacyclic code of dimension k over IFq if, and only if, k ≡ 0
(mod 2µ−1).

Proof.
Assume that q = pe ≡ 3 (mod 4) i.e. p ≡ 3 (mod 4) and e ≡ 1 (mod 2). Consider r ∈ IN

such that θ is defined by x 7→ xp
r
.

1. The order of θ is e/gcd(e, r), therefore as e is odd, the order of θ is also odd. According
to point 1. of Corollary 2, there cannot exist a self-dual θ-cyclic code of dimension k
over IFq.

2. Consider α the biggest integer such that 2α divides k and assume that α + 1 ≥ µ.
Therefore 2k is divisible by 2µ and the skew polynomial X2k+1 is equal to (Xk/2µ−1

)2
µ
+

1. One proves that the polynomial Y 2µ + 1 factors in IFp[Y ] as the product of two
polynomials h(Y ) and h\(Y ). Namely, consider w a primitive 2µ+1-th root of unity in
IFp. As 2µ divides p+1, 2µ+1 divides p2−1 and w belongs to IFp2− IFp. The polynomial

Y 2µ + 1 = (Y 2µ+1 − 1)/(Y 2µ − 1) factors in IFp2 [Y ] as the product of Y − wi where i
describes the odd numbers of {0, . . . , 2µ+1− 1}. This polynomial can also be written as

the product of the polynomials hi(Y )h\i(Y ) where hi(Y ) = Y 2− (wi+wip)Y +wi(p+1) is
in IFp[Y ]. One concludes that Y 2µ+1 factors in IFp[Y ] as the product of two polynomials
h(Y ) and h\(Y ). From this factorization, one deduces that X2k + 1 = H\(X)H(X) ∈
IFp[X] where H(X) = h(Xk/2µ−1

). So there exists a [2k, k]p self-dual negacyclic code
and as IFp is fixed by θ, the relation X2k + 1 = H\(X)H(X) still holds in IFq[X; θ].

Conversely, assume that α < µ− 1. Consider ` the greatest common divisor of 2k and
of the order of θ, and t, s such that 2k = ` × t × ps where p does not divide t. Let us
prove that Y t + 1 ∈ (IFq)

θ[Y ] has an irreducible factor f(Y ) such that f \(Y ) = f(Y ).
Consider e′ = gcd(e, r) and q′ = pe

′
, then (IFq)

θ = IFq′ . As e is odd, and as the order of θ
is equal to e/ gcd(e, r), the order of θ is odd and ` is also odd. As p ≡ −1 (mod 2µ) and
q′ = pe

′
with e′ odd, q′ ≡ −1 (mod 2µ), furthermore α ≤ µ− 2, q′ ≡ −1 (mod 4× 2α).

Let us consider w a primitive 4 × 2α-th root of unity in IFq′2 . Such an w does exist

as q′2 − 1 ≡ 0 (mod 4 × 2α), furthermore wq
′

= w−1 because 4× 2α divides q′ + 1.
As 2α+1 divides exactly 2k and as 2k = ` × t × ps, 2α+1 divides exactly t, therefore
4 × 2α divides exactly 2t, w2t = 1 and wt = −1. The minimal polynomial f ∈ IFq′ [Y ]
of w divides Y 2t − 1 but not Y t − 1, so it divides Y t + 1. Furthermore f(wq

′
) = 0

and wq
′

= w−1 therefore f(w−1) = 0 and f = f \. Therefore Y t + 1 has an irreducible
factor f ∈ IFq′ [Y ] = (IFq)

θ[Y ] such that f = f \. Furthermore, the order of θ is odd, so
according to Corollary 2, there cannot exist a self-dual θ-negacyclic code of dimension
k.

Remark 3 Assume that p ≡ 3 (mod 4), e is odd. Consider µ ≥ 2 the biggest integer such
that 2µ divides p+ 1. Consider k = ps with s ∈ IN, then k 6≡ 0 (mod 2µ−1) and according to
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Proposition 4, there is no negacyclic code of dimension k. This result was previously obtained
in Corollary 3.3. of [4].

To conclude, it remains to decide, when q ≡ 1 (mod 4), if the existing self-dual θ-codes are
θ-cyclic or θ-negacyclic. According to Theorem 1 of [3], over IFq = IFp2 with θ : x 7→ xp and
p prime number, there exists a self-dual θ-cyclic code of length 2k if and only if k is an odd
number and p ≡ 3 (mod 4) whereas there exists a self-dual θ-negacyclic code of dimension
k if and only if p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and k is even. The following proposition
generalizes this result and states that the sufficient conditions of existence of self-dual skew
codes given in Proposition 1 for q ≡ 1 (mod 4) are also necessary. Its proofs uses Proposition
3 which states that there cannot exist simultaneously a self-dual θ-cyclic code and a self-dual
θ-negacyclic code with the same dimension :

Proposition 5 Consider a finite field IFq with q = pe, p odd prime number, e ∈ IN∗ and
q ≡ 1 (mod 4) (i.e. p ≡ 3 (mod 4) and e even or p ≡ 1 (mod 4)). Consider r ∈ IN, θ the
automorphism of IFq defined by θ : x 7→ xp

r
and k a nonnegative integer.

1. There exists a self-dual θ-cyclic code of dimension k over IFq if and only if p ≡ 3
(mod 4), e is even and r × k is odd.

2. There exists a self-dual θ-negacyclic code of dimension k over IFq if and only if p ≡ 1
(mod 4) or p ≡ 3 (mod 4), e is even and r × k is even.

Proof.

1. According to Proposition 1 point 1., if p ≡ 3 (mod 4), e is even and r × k is odd,
there exists a self-dual θ-cyclic code of dimension k (generated by a skew binomial).
Conversely, assume that there exists a self-dual θ-cyclic code of dimension k, then
according to Proposition 3, there is no θ-negacyclic code with dimension k therefore
according to Proposition 1 point 2., p ≡ 3 (mod 4), e ≡ 0 (mod 2) and r × k ≡ 1
(mod 2).

2. According to Proposition 1 point 2., if p ≡ 3 (mod 4), e ≡ 0 (mod 2) and r × k ≡ 0
(mod 2) or p ≡ 1 (mod 4), there exists a self-dual θ-negacyclic code of dimension k
(generated by a skew binomial). Conversely, assume that there exists a self-dual θ-
negacyclic code of dimension k, then according to Proposition 3, there is no θ-cyclic
code with dimension k therefore according to Proposition 1 point 1., p ≡ 3 (mod 4),
e ≡ 0 (mod 2) and r × k ≡ 0 (mod 2) or p ≡ 1 (mod 4).

To conclude, Proposition 4 (q ≡ 3 (mod 4)) and Proposition 5 (q ≡ 1 (mod 4)) are
summed up in Table 1 below.
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