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Introduction

As a fundamental problem in mathematical physics, self-adjointness of Schrödinger operators has attracted the attention of researchers over many years now, resulting in numerous sufficient conditions for this property in L 2 (R n ). For reviews of the corresponding results, see, for instance, the books [START_REF] Cycon | Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry[END_REF][START_REF] Reed | Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness[END_REF].

The study of the corresponding problem in the context of a non-compact Riemannian manifold was initiated by Gaffney [START_REF] Gaffney | A special Stokes's theorem for complete Riemannian manifolds[END_REF][START_REF] Gaffney | Hilbert space methods in the theory of harmonic integrals[END_REF] with the proof of the essential self-adjointness of the Laplacian on differential forms. About two decades later, Cordes (see Theorem 3 in [START_REF] Cordes | Self-adjointness of powers of elliptic operators on non-compact manifolds[END_REF]) proved the essential self-adjointness of positive integer powers of the operator ∆ M,µ := -

1 κ ∂ ∂x i κg ij ∂ ∂x j (1.1)
on an n-dimensional geodesically complete Riemannian manifold M equipped with a (smooth) metric g = (g ij ) (here, (g ij ) = ((g ij ) -1 )) and a positive smooth measure dµ (i.e. in any local coordinates x 1 , x 2 , . . . , x n there exists a strictly positive C ∞ -density κ(x) such that dµ = κ(x) dx 1 dx 2 . . . dx n ). Theorem 1 of our paper extends this result to the operator (D * D + V ) k for all k ∈ Z + , where D is a first order elliptic differential operator acting on sections of a Hermitian vector bundle over a geodesically complete Riemannian manifold, D * is the formal adjoint of D, and V is a self-adjoint Hermitian bundle endomorphism; see Section 2.3 for details.

In the context of a general Riemannian manifold (not necessarily geodesically complete), Cordes (see Theorem IV.1.1 in [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF] and Theorem 4 in [START_REF] Cordes | Self-adjointness of powers of elliptic operators on non-compact manifolds[END_REF]) proved the essential self-adjointness of P k for all k ∈ Z + , where

P u := ∆ M,µ u + qu, u ∈ C ∞ (M ), (1.2) 
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and q ∈ C ∞ (M ) is real-valued. Thanks to a Roelcke-type estimate (see Lemma 3.1 below), the technique of Cordes [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF] can be applied to the operator (D * D + V ) k acting on sections of Hermitian vector bundles over a general Riemannian manifold. To make our exposition shorter, in Theorem 1 we consider the geodesically complete case. Our Theorem 2 concerns (∇ * ∇ + V ) k , where ∇ is a metric connection on a Hermitian vector bundle over a non-compact geodesically complete Riemannian manifold. This result extends Theorem 1.1 of [START_REF] Cordes | On essential selfadjointness of powers and comparison algebras. Festschrift on the occasion of the 70th birthday of Shmuel Agmon[END_REF] where Cordes showed that if (M, g) is non-compact and geodesically complete and P is semi-bounded from below on C ∞ c (M ), then P k is essentially self-adjoint on C ∞ c (M ), for all k ∈ Z + . For the remainder of the introduction, the notation D * D + V is used in the same sense as described earlier in this section. In the setting of geodesically complete Riemannian manifolds, the essential self-adjointness of D * D + V with V ∈ L ∞ loc was established in [START_REF] Lesch | Essential self-adjointness of symmetric linear relations associated to first order systems[END_REF], providing a generalization of the results in [START_REF] Braverman | On self-adjointness of Schrödinger operator on differential forms[END_REF][START_REF] Oleinik | On the essential self-adjointness of the Schrödinger operator on complete Riemannian manifolds[END_REF][START_REF] Oleinik | On a connection between classical and quantum-mechanical completeness of the potential at infinity on a complete Riemannian manifold[END_REF][START_REF] Shubin | Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds[END_REF] concerning Schrödinger operators on functions (or differential forms). Subsequently, the operator D * D + V with a singular potential V was considered in [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF]. Recently, in the case V ∈ L ∞ loc , the authors of [START_REF] Braverman | Spectral theory of von Neumann algebra valued differential operators over non-compact manifolds[END_REF] extended the main result of [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF] to the operator D * D + V acting on sections of infinite-dimensional bundles whose fibers are modules of finite type over a von Neumann algebra.

In the context of an incomplete Riemannian manifold, the authors of [START_REF] Grigor'yan | Parabolicity and stochastic completeness of manifolds in terms of Green formula[END_REF][START_REF] Masamune | Essential self-adjointness of Laplacians on Riemannian manifolds with fractal boundary[END_REF][START_REF] Masamune | Analysis of the Laplacian of an incomplete manifold with almost polar boundary[END_REF] studied the so-called Gaffney Laplacian, a self-adjoint realization of the scalar Laplacian generally different from the closure of ∆

M,dµ | C ∞ c (M )
. For a study of Gaffney Laplacian on differential forms, see [START_REF] Masamune | Conservative principle for differential forms[END_REF]. Our Theorem 3 gives a condition on the behavior of V relative to the Cauchy boundary of M that will guarantee the essential self-adjointness of D * D + V ; for details see Section 2.4 below. Related results can be found in [START_REF] Brusentsev | Self-adjointness of elliptic differential operators in L2(G) and correcting potentials[END_REF][START_REF] Nenciu | On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in R n[END_REF][START_REF] Nenciu | On essential self-adjointness for magnetic Schrödinger and Pauli operators on the unit disc in R 2[END_REF] in the context of (magnetic) Schrödinger operators on domains in R n , and in [START_REF] De Verdière | Confining quantum particles with a purely magnetic field[END_REF] concerning the magnetic Laplacian on domains in R n and certain types of Riemannian manifolds.

Finally, let us mention that Chernoff [START_REF] Chernoff | Essential self-adjointness of powers of generators of hyperbolic equations[END_REF] used the hyperbolic equation approach to establish the essential self-adjointness of positive integer powers of Laplace-Beltrami operator on differential forms. This approach was also applied in [START_REF] Bandara | Density problems on vector bundles and manifolds[END_REF][START_REF] Chernoff | Schrödinger and Dirac operators with singular potentials and hyperbolic equations[END_REF][START_REF] Chumak | Self-adjointness of the Beltrami-Laplace operator on a complete paracompact manifold without boundary[END_REF][START_REF] Grummt | Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds[END_REF][START_REF] Güneysu | Path integrals and the essential self-adjointness of differential operators on noncompact manifolds[END_REF][START_REF] Shubin | Spectral theory of elliptic operators on noncompact manifolds[END_REF] to prove essential self-adjointness of second-order operators (acting on scalar functions or sections of Hermitian vector bundles) on Riemannian manifolds. Additionally, the authors of [START_REF] Grummt | Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds[END_REF][START_REF] Güneysu | Path integrals and the essential self-adjointness of differential operators on noncompact manifolds[END_REF] used path integral techniques.

The paper is organized as follows. The main results are stated in Section 2, a preliminary lemma is proven in Section 3, and the main results are proven in Sections 4-6.

Main Results

2.1. The setting. Let M be an n-dimensional smooth, connected Riemannian manifold without boundary. We denote the Riemannian metric on M by g T M . We assume that M is equipped with a positive smooth measure dµ, i.e. in any local coordinates x 1 , x 2 , . . . , x n there exists a strictly positive C ∞ -density κ(x) such that dµ = κ(x) dx 1 dx 2 . . . dx n . Let E be a Hermitian vector bundle over M and let L 2 (E) denote the Hilbert space of square integrable sections of E with respect to the inner product

(u, v) = M u(x), v(x) Ex dµ(x), (2.1) 
where •, • Ex is the fiberwise inner product. The corresponding norm in L 2 (E) is denoted by • . In Sobolev space notations W k,2 loc (E) used in this paper, the superscript k ∈ Z + indicates the order of the highest derivative. The corresponding dual space is denoted by W -k,2 loc (E). Let F be another Hermitian vector bundle on M . We consider a first order differential operator D :

C ∞ c (E) → C ∞ c (F )
, where C ∞ c stands for the space of smooth compactly supported sections. In the sequel, by σ(D) we denote the principal symbol of D.

Assumption (A0) Assume that D is elliptic. Additionally, assume that there exists a constant

λ 0 > 0 such that |σ(D)(x, ξ)| ≤ λ 0 |ξ|, for all x ∈ M, ξ ∈ T * x M, (2.2) 
where |ξ| is the length of ξ induced by the metric g T M and |σ(D)(x, ξ)| is the operator norm of σ(D)(x, ξ) :

E x → F x . Remark 2.2. Assumption (A0) is satisfied if D = ∇, where ∇ : C ∞ (E) → C ∞ (T * M ⊗ E)
is a covariant derivative corresponding to a metric connection on a Hermitian vector bundle E over M .

2.3. Schrödinger-type Operator.

Let D * : C ∞ c (F ) → C ∞ c (E)
be the formal adjoint of D with respect to the inner product (2.1). We consider the operator

H = D * D + V, (2.3) 
where V ∈ L ∞ loc (End E) is a linear self-adjoint bundle endomorphism. In other words, for all x ∈ M , the operator V (x) :

E x → E x is self-adjoint and |V (x)| ∈ L ∞ loc (M ), where |V (x)| is the norm of the operator V (x) : E x → E x .

Statements of Results.

Theorem 1. Let M , g T M , and dµ be as in Section 2.1. Assume that (M, g T M ) is geodesically complete. Let E and F be Hermitian vector bundles over M , and let D :

C ∞ c (E) → C ∞ c ( 
F ) be a first order differential operator satisfying the assumption (A0). Assume that

V ∈ C ∞ (End E) and V (x) ≥ C, for all x ∈ M,
where C is a constant, and the inequality is understood in operator sense. Then H k is essentially self-adjoint on C ∞ c (E), for all k ∈ Z + .

Remark 2.5. In the case V = 0, the following result related to Theorem 1 can be deduced from Chernoff (see Theorem 2.2 in [START_REF] Chernoff | Essential self-adjointness of powers of generators of hyperbolic equations[END_REF]):

Assume that (M, g) is a geodesically complete Riemannian manifold with metric g. Let D be as in Theorem 1, and define

c(x) := sup{|σ(D)(x, ξ)| : |ξ| T * x M = 1}. Fix x 0 ∈ M and define c(r) := sup x∈B(x 0 ,r) c(x),
where r > 0 and B(x 0 , r) := {x ∈ M : d g (x 0 , x) < r}. Assume that

∞ 0 1 c(r) dr = ∞. (2.4)
Then the operator

(D * D) k is essentially self-adjoint on C ∞ c (E) for all k ∈ Z + .
At the end of this section we give an example of an operator for which Theorem 1 guarantees the essential self-adjointness of (D * D) k , whereas Chernoff's result cannot be applied.

The next theorem is concerned with operators whose potential V is not necessarily semibounded from below.

Theorem 2. Let M , g T M , and dµ be as in Section 2.1. Assume that (M, g T M ) is noncompact and geodesically complete. Let E be a Hermitian vector bundle over M and let ∇ be a Hermitian connection on E. Assume that V ∈ C ∞ (End E) and

V (x) ≥ q(x), for all x ∈ M, (2.5) 
where q ∈ C ∞ (M ) and the inequality is understood in the sense of operators E x → E x . Additionally, assume that

((∆ M,µ + q)u, u) ≥ C u 2 , for all u ∈ C ∞ c (M ), (2.6) 
where C ∈ R and ∆ M,µ is as in (1.1) with g replaced by g T M . Then the operator

(∇ * ∇ + V ) k is essentially self-adjoint on C ∞ c (E), for all k ∈ Z + .
Remark 2.6. Let us stress that non-compactness is required in the proof to ensure the existence of a positive smooth solution of an equation involving ∆ M,µ + q. In the case of a compact manifold, such a solution exists under an additional assumption; see Theorem III.6.3 in [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF].

In our last result we will need the notion of Cauchy boundary. Let d g T M be the distance function corresponding to the metric g T M . Let ( M , d g T M ) be the metric completion of (M, d g T M ). We define the Cauchy boundary ∂ C M as follows:

∂ C M := M \M . Note that (M, d g T M ) is metrically complete if and only if ∂ C M is empty. For x ∈ M we define r(x) := inf z∈∂ C M d g T M (x, z).
(2.7)

We will also need the following assumption:

Assumption (A1) Assume that M is a smooth manifold and that the metric g T M extends to

∂ C M .
Remark 2.7. Let N be a (smooth) n-dimensional Riemannian manifold without boundary. Denote the metric on N by g T N and assume that (N, g T N ) is geodesically complete. Let Σ be a k-dimensional closed sub-manifold of N with k < n. Then M := N \Σ has the properties M = N and ∂ C M = Σ. Thus, assumption (A1) is satisfied.

Theorem 3. Let M , g T M , and dµ be as in Section 2.1. Assume that (A1) is satisfied. Let E and F be Hermitian vector bundles over M , and let D :

C ∞ c (E) → C ∞ c ( 
F ) be a first order differential operator satisfying the assumption (A0). Assume that V ∈ L ∞ loc (End E) and there exists a constant C such that

V (x) ≥ λ 0 r(x) 2 -C, for all x ∈ M, (2.8) 
where λ 0 is as in (2.2), the distance r(x) is as in (2.7), and the inequality is understood in the sense of linear operators

E x → E x . Then H is essentially self-adjoint on C ∞ c (E).
In order to describe the example mentioned in Remark 2.5, we need the following Remark 2.8. As explained in [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF], we can use a first-order elliptic operator D :

C ∞ c (E) → C ∞ c (F ) to define a metric on M . For ξ, η ∈ T * x M , define ξ, η = 1 m Re Tr ((σ(D)(x, ξ)) * σ(D)(x, η)) , m = dim E x , (2.9) 
where Tr denotes the usual trace of a linear operator. Since D is an elliptic first-order differential operator and σ(D)(x, ξ) is linear in ξ, it is easily checked that (2.9) defines an inner product on T * x M . Its dual defines a Riemannian metric on M . Denoting this metric by g T M and using elementary linear algebra, it follows that (2.2) is satisfied with λ 0 = √ m.

Example 2.9. Let M = R 2 with the standard metric and measure, and

V = 0. Denoting respectively by C ∞ c (R 2 ; R) and C ∞ c (R 2 ; R 2
) the spaces of smooth compactly supported functions f : R 2 → R and f : R 2 → R 2 , we define the operator D :

C ∞ c (R 2 ; R) → C ∞ c (R 2 ; R 2 ) by D = a(x, y) ∂ ∂x b(x, y) ∂ ∂y , where a(x, y) = (1 -cos(2πe x ))x 2 + 1; b(x, y) = (1 -sin(2πe y ))y 2 + 1.
Since a, b are smooth real-valued nowhere vanishing functions in R 2 , it follows that the operator D is elliptic. We are interested in the operator

H := D * D = - ∂ ∂x a 2 ∂ ∂x - ∂ ∂y b 2 ∂ ∂y .
The matrix of the inner product on T * M defined by D via (2.9) is diag(a 2 /2, b 2 /2). The matrix of the corresponding Riemannian metric g T M on M is diag(2a -2 , 2b -2 ), so the metric itself is ds 2 = 2a -2 dx 2 + 2b -2 dy 2 and it is geodesically complete (see Example 3.1 of [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF]). Moreover, thanks to Remark 2.8, assumption (A0) is satisfied. Thus, by Theorem 1 the operator (D * D) k is essentially self-adjoint for all k ∈ Z + . Furthermore, in Example 3.1 of [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF] it was shown that for the considered operator D the condition (2.4) is not satisfied. Thus, the result stated in Remark 2.5 does not apply.

Roelcke-type Inequality

Let M , dµ, D, and σ(D) be as in Section 2.1. Set D := -iσ(D), where i = √ -1. Then for any Lipschitz function ψ : M → R and u ∈ W 1,2 loc (E) we have

D(ψu) = D(dψ)u + ψDu, (3.1) 
where we have suppressed x for simplicity. We also note that D * (ξ) = -( D(ξ)) * , for all ξ ∈ T * x M . For a compact set K ⊂ M , and u, v ∈ W 1,2 loc (E), we define

(u, v) K := K u(x), v(x) dµ(x), (Du, Dv) K := K Du(x), Dv(x) dµ(x). (3.2) 
In order to prove Theorem 1 we need the following important lemma, which is an extension of Lemma 2.1 in [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF] to operator (2.3). In the context of the scalar Laplacian on a Riemannian manifold, this kind of result is originally due to Roelcke [START_REF] Roelcke | Über den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen[END_REF].

Lemma 3.1. Let M , g T M , and dµ be as in Section 2.1. Let E and F be Hermitian vector bundles over M , and let D :

C ∞ c (E) → C ∞ c ( 
F ) be a first order differential operator satisfying the assumption (A0). Let ρ : M → [0, ∞) be a function satisfying the following properties:

(i) ρ(x) is Lipschitz continuous with respect to the distance induced by the metric g T M ;

(ii) ρ(x 0 ) = 0, for some fixed

x 0 ∈ M ; (iii) the set B T := {x ∈ M : ρ(x) ≤ T } is compact, for some T > 0.
Then the following inequality holds for all u ∈ W 2,2 loc (E) and v ∈ W 2,2 loc (E):

T 0 |(Du, Dv) Bt -(D * Du, v) Bt | dt ≤ λ 0 B T |dρ(x)||Du(x)||v(x)| dµ(x), (3.3) 
where B t is as in (iii) (with t instead of T ), the constant λ 0 is as in (2.2), and |dρ(x)| is the length of dρ(x) ∈ T * x M induced by g T M .

Proof. For ε > 0 and t ∈ (0, T ), we define a continuous piecewise linear function F ε,t as follows:

F ε,t (s) =    1 for s < t -ε (t -s)/ε for t -ε ≤ s < t 0 for s ≥ t
The function f ε,t (x) := F ε,t (ρ(x)), is Lipschitz continuous with respect to the distance induced by the metric g T M , and

d(f ε,t (ρ(x))) = (F ′ ε,t (ρ(x)))dρ(x). Moreover we have f ε,t v ∈ W 1,2 loc (E) for all v ∈ W 1,2 loc (E), since D(f ε,t v) = D(df ε,t )v + f ε,t Dv.
It follows from the compactness of B T that B t is compact for all t ∈ (0, T ). Using integration by parts (see Lemma 8.8 in [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF]), for all u ∈ W 2,2 loc (E) and v ∈ W 2,2 loc (E) we have

(D * Du, vf ε,t ) Bt = (Du, D(vf ε,t )) Bt = (Du, f ε,t Dv) Bt + (Du, D(df ε,t )v) Bt ,
which, together with (2.2), gives

|(Du, f ε,t Dv) Bt -(D * Du, vf ε,t ) Bt | = |(Du, D(df ε,t )v) Bt | ≤ Bt |Du(x)|| D(df ε,t (x))v(x)| dµ(x) ≤ λ 0 Bt |Du(x)||df ε,t (x)||v(x)| dµ(x) = λ 0 Bt |Du(x)||F ′ ε,t (ρ(x))||dρ(x)||v(x)| dµ(x) ≤ λ 0 B T |Du(x)||F ′ ε,t (ρ(x))||dρ(x)||v(x)| dµ(x), (3.4) 
where |df ε,t (x)| and |dρ(x)| are the norms of df ε,t (x) ∈ T * x M and dρ(x) ∈ T * x M induced by g T M . Fixing ε > 0, integrating the leftmost and the rightmost side of (3.4) from t = 0 to t = T , and noting that F ′ ε,t (ρ(x)) is the only term on the rightmost side depending on t, we obtain

T 0 |(Du, f ε,t Dv) Bt -(D * Du, vf ε,t ) Bt | dt ≤ λ 0 B T |Du(x)||dρ(x)||v(x)|I ε (x) dµ(x), (3.5) 
where

I ε (x) := T 0 |F ′ ε,t (ρ(x))| dt.
We now let ε → 0+ in (3.5). On the left-hand side of (3.5), as ε → 0+, we have f ε,t (x) → χ Bt (x) almost everywhere, where χ Bt (x) is the characteristic function of the set B t . Additionally, |f ε,t (x)| ≤ 1 for all x ∈ B t and all t ∈ (0, T ); thus, by dominated convergence theorem, as ε → 0+ the left-hand side of (3.5) converges to the left-hand side of (3.3). On the righthand side of (3.5) an easy calculation shows that I ε (x) → 1, as ε → 0+. Additionally, we have |I ε (x)| ≤ 1, a.e. on B T ; hence, by the dominated convergence theorem, as ε → 0+ the right-hand side of (3.5) converges to the right-hand side of (3.3). This establishes the inequality (3.3).

Proof of Theorem 1

We first give the definitions of minimal and maximal operators associated with the expression H in (2.3). From now on, throughout this section, we assume that the hypotheses of Theorem 1 are satisfied. Let x 0 ∈ M , and define ρ(x) := d g T M (x 0 , x), where d g T M is the distance function corresponding to the metric g T M . By the definition of ρ(x) and the geodesic completeness of (M, g T M ), it follows that ρ(x) satisfies all hypotheses of Lemma 3.1. Using Lemma 3.1 and Proposition 4.2 below, we are able to apply the method of Cordes [START_REF] Cordes | Self-adjointness of powers of elliptic operators on non-compact manifolds[END_REF][START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF] to our context. As we Here, in the case k -j < 0, the definition (4.4) is interpreted as ((H max ) -1 ) j-k . We already noted that H min is essentially self-adjoint and positive. Furthermore, it is well known that the self-adjoint closure of H min coincides with H max . Therefore H max is a positive self-adjoint operator, and (H max ) -1 : L 2 (E) → L 2 (E) is bounded. This, together with f k = u ∈ L 2 (E) explains the following property: f j ∈ L 2 (E), for all j ≥ k. Additionally, observe that f j = 0 for all j ≤ 0 because f 0 = 0. Furthermore, we note that f j ∈ C ∞ (E), for all j ∈ Z. The last assertion is obvious for j ≤ k, and for j > k it can be seen by showing that H j f j = 0 in distributional sense and using f j ∈ L 2 (E) together with local elliptic regularity. To see this, let v ∈ C ∞ c (E) be arbitrary, and note that (

f j , H j v) = (H k-j u, H j v) = (u, H k v) = (H k u, v) = 0.
Finally, observe that

H l f j = f j-l , for all j ∈ Z and l ∈ Z + ∪ {0}. (4.5)
With f j as in (4.4), define the functions α j and β j on the interval 0 ≤ T < ∞ by the formulas

α j (T ) := λ 2 0 T 0 (f j , f j ) Bt dt, β j (T ) := T 0 (Df j , Df j ) Bt dt, (4.6) 
where λ 0 is as in (4.1) and (•,

•) Bt is as in (3.2).
In the sequel, to simplify the notations, the functions α j (T ) and β j (T ), the inner products (•, •) Bt , and the corresponding norms • Bt appearing in (4.6) will be denoted by α j , β j , (•, •) t , and • t , respectively.

Note that α j and β j are absolutely continuous on [0, ∞). Furthermore, α j and β j have a left first derivative and a right first derivative at each point. Additionally, α j and β j are differentiable, except at (at most) countably many points. In the sequel, to simplify notations, we shall denote the right first derivatives of α j and β j by α ′ j and β ′ j . Note that α j , β j , α ′ j and β ′ j are non-decreasing and non-negative functions. Note also that α j and β j are convex functions. Furthermore, since f j = 0 for all j ≤ 0, it follows that α j ≡ 0 and β j ≡ 0 for all j ≤ 0. Finally, using (4.1) and the property

f j ∈ L 2 (E) ∩ C ∞ (E) for all j ≥ k, observe that λ 2 0 (f j , f j ) + (Df j , Df j ) ≤ (V f j , f j ) + (Df j , Df j ) = (f j , Hf j ) = (f j , f j-1 ) < ∞, for all j > k.
Here, "integration by parts" in the first equality is justified because H min is essentially self-adjoint (i.e. C ∞ c (E) is an operator core of H max ). Hence, α ′ j and β ′ j are bounded for all j > k. It turns out that α j and β j satisfy a system of differential inequalities, as seen in the next proposition. Proposition 4.4. Let α j and β j be as in (4.6). Then, for all j ≥ 1 and all T ≥ 0 we have

α j + β j ≤ α ′ j β ′ j + ∞ l=0 α ′ j+l+1 β ′ j-l-1 + α ′ j-l-1 β ′ j+l+1 (4.7)
and

α j ≤ λ 2 0 ∞ l=0 α ′ j+l+1 β ′ j-l + α ′ j-l β ′ j+l+1 , (4.8) 
where λ 0 is as in (4.1) and α ′ i , β ′ i denote the right-hand derivatives.

Remark 4.5. Note that the sums in (4.7) and (4.8) are finite since α i ≡ 0 and β i ≡ 0 for i ≤ 0. As our goal is to show that f k = u = 0, we will only use the first k inequalities in (4.7) and the first k inequalities in (4.8).

Proof of Proposition 4.4. From (4.6) and (4.1) it follows that

α j + β j ≤ T 0 ((f j , V f j ) t + (Df j , Df j ) t ) dt. (4.9) 
We start from (4.9), use (3.3), Cauchy-Schwarz inequality, and (4.5) to obtain

α j + β j ≤ T 0 ((f j , V f j ) t + (Df j , Df j ) t ) dt = T 0 |(f j , Hf j ) t -(f j , D * Df j ) t + (Df j , Df j ) t | dt ≤ λ 0 B T |Df j (x)||f j (x)| dµ(x) + T 0 |(f j , Hf j ) t | dt ≤ α ′ j β ′ j + T 0 |(Hf j+1 , f j-1 ) t | dt.
We continue the process as follows:

α j + β j ≤ α ′ j β ′ j + T 0 |(Hf j+1 , f j-1 ) t | dt = α ′ j β ′ j + T 0 |(D * Df j+1 , f j-1 ) t + (f j+1 , V f j-1 ) t | dt ≤ α ′ j β ′ j + T 0 |(D * Df j+1 , f j-1 ) t -(Df j+1 , Df j-1 ) t | dt + T 0 |(Df j+1 , Df j-1 ) t -(f j+1 , D * Df j-1 ) t | dt + T 0 |(f j+1 , Hf j-1 ) t | dt ≤ α ′ j β ′ j + α ′ j+1 β ′ j-1 + α ′ j-1 β ′ j+1 + T 0 |(Hf j+2 , f j-2 ) t | dt,
where we used triangle inequality, (3.3), Cauchy-Schwarz inequality, and (4.5). We continue like this until the last term reaches the subscript j -l ≤ 0, which makes the last term equal zero by properties of f i discussed above. This establishes (4.7).

To show (4.8), we start from the definition of α j , use (3.3), Cauchy-Schwarz inequality, and (4.5) to obtain

α j = λ 2 0 T 0 (f j , f j ) t dt = λ 2 0 T 0 |(f j , Hf j+1 ) t | dt = λ 2 0 T 0 |(f j , D * Df j+1 ) t + (V f j , f j+1 ) t | dt ≤ λ 2 0 T 0 |(f j , D * Df j+1 ) t -(Df j , Df j+1 ) t | dt + λ 2 0 T 0 |(Df j , Df j+1 ) t -(D * Df j , f j+1 ) t | dt + λ 2 0 T 0 |(Hf j , f j+1 ) t | dt ≤ λ 2 0 α ′ j+1 β ′ j + α ′ j β ′ j+1 + λ 2 0 T 0 |(f j-1 , f j+1 ) t | dt.
We continue like this until the last term reaches the subscript j -l ≤ 0, which makes the last term equal zero by properties of f i discussed above. This establishes (4.8).

End of the proof of Theorem 1. We will now transform the system (4.7)-(4.8) by introducing new variables:

ω j (T ) := α j (T ) + β j (T ), θ j (T ) := α j (T ) -β j (T ) T ∈ [0, ∞). (4.10) 
To carry out the transformation, observe that Cauchy-Schwarz inequality applied to vectors

α ′ i , β ′ i and β ′ p , α ′ p in R 2 gives α ′ i β ′ p + α ′ p β ′ i ≤ ω ′ i ω ′ p ,
which, together with (4.7)-(4.8) leads to

ω j ≤ 1 2 (ω ′ j ) 2 -(θ ′ j ) 2 + ∞ l=0 ω ′ j+l+1 ω ′ j-l-1 (4.11) and 1 2 
(ω j + θ j ) ≤ λ 2 0 ∞ l=0 ω ′ j+l+1 ω ′ j-l , (4.12) 
where λ 0 is as in (4.1) and ω ′ i , θ ′ i denote the right-hand derivatives. The functions ω j and θ j satisfy the following properties: (i) ω j and θ j are absolutely continuous on [0, ∞), and the right-hand derivatives ω ′ j and θ ′ j exist everywhere; (ii) ω j and ω ′ j are nonnegative and non-increasing; (iii) ω j is convex; (iv) ω ′ j is bounded for all j ≥ k; (v) ω j (0) = θ j (0) = 0; and (vi) |θ j (T )| ≤ ω j (T ) and |θ ′ j (T )| ≤ ω ′ j (T ) for all T ∈ [0, ∞). In Section IV.3 of [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF] it was shown that if ω j and θ j are functions satisfying the above described properties (i)-(vi) and the system (4.11)-(4.12), then ω j ≡ 0 for all j = 1, 2, . . . , k. In particular, we have ω k (T ) = 0, for all T ∈ [0, ∞), and hence f k = 0. Going back to (4.4), we get u = 0, and this concludes the proof of essential self-adjointness of H k on C ∞ c (E). The essential self-adjointness of H 2 , H 3 , . . . , and H k-1 on C ∞ c (E) follows by Proposition 4.2.

(Recall that dµ = κ(x) dx 1 dx 2 . . . dx n , where κ(x) is a positive C ∞ -density.) Since X j = (g T M ) jl γ ∂γ ∂x l , we have

div µ (X) = |dγ| 2 -γ(∆ M,µ γ), (5.7) 
where |dγ(x)| is the norm of dγ(x) ∈ T * x M induced by g T M , and ∆ M,µ is as in (1.1) with metric g T M . Combining (5.4)-(5.7) and noting that

(dγ ⊗ w, dγ ⊗ z) L 2 µ (T * M ⊗E) = M |dγ| 2 w, z dµ, we obtain (H 1 w, z) µ 1 = M ∇w, ∇z γ 2 dµ + M V w, z γ 2 dµ + M γ(∆ M,µ γ) w, z dµ = (∇w, ∇z) L 2 µ 1 (T * M ⊗E) + (V w, z) µ 1 + (γ -1 (∆ M,µ γ)w, z) µ 1 = (∇ * ,µ 1 ∇w, z) µ 1 + (V w, z) µ 1 + (γ -1 (∆ M,µ γ)w, z) µ 1 , (5.8) 
which shows (5.3). By (2.5) and (5.2) it follows that

V (x) = ∆ M,µ γ γ Id(x) + V (x) ≥ (C -1)Id(x), for all x ∈ M,
where C is as in (2.6). Thus, by Theorem 1 the operator (H

1 ) k | C ∞ c (E) is essentially self-adjoint in L 2 µ 1 (E) for all k ∈ Z + .

Proof of Theorem 3

Throughout the section, we assume that the hypotheses of Theorem 3 are satisfied. In subsequent discussion, the notation D is as in (3.1) and the operators H min and H max are as in Section 4.1. We begin with the following lemma, whose proof is a direct consequence of the definition of H max and local elliptic regularity. Lemma 6.1. Under the assumption V ∈ L ∞ loc (End E), we have the following inclusion:

Dom(H max ) ⊂ W 2,2
loc (E). The proof of the next lemma is given in Lemma 8.10 of [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF]. where (•, •) on the left-hand side denotes the duality between W 1,2 loc (E) and W -1,2 comp (E).

Proof. Since u ∈ L 2 (E) and Hu = 0, we have u ∈ Dom(H max ) ⊂ W 2,2 loc (E) ⊂ W 1,2 loc (E), where the first inclusion follows by Lemma 6.1. Since ψ is a Lipschitz compactly supported function, we get ψu ∈ W 1,2 comp (E) and, hence, H(ψu) ∈ W -1,2 comp (E). Now the equality (6.2) follows from (6.1), the assumption Hu = 0, and (ψu, H(ψu)) = (ψu, D * D(ψu)) + (V ψu, ψu) = (D(ψu), D(ψu)) + (V ψu, ψu), where in the second equality we used integration by parts; see Lemma 8.8 in [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF]. Here, the two leftmost symbols (•, •) denote the duality between W 1,2 comp (E) and W -1,2 loc (E), while the remaining ones stand for L 2 -inner products.

The key ingredient in the proof of Theorem 3 is the Agmon-type estimate given in the next lemma, whose proof, inspired by an idea of [START_REF] Nenciu | On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in R n[END_REF], is based on the technique developed in [START_REF] De Verdière | Confining quantum particles with a purely magnetic field[END_REF] for magnetic Laplacians on an open set with compact boundary in R n . Lemma 6.4. Let λ ∈ R and let v ∈ L 2 (E) be a weak solution of (H -λ)v = 0. Assume that that there exists a constant c 1 > 0 such that, for all u ∈ W 1,2 comp (E),

(u, (H -λ)u) ≥ λ 2 0 M max 1 r(x) 2 , 1 |u(x)| 2 dµ(x) + c 1 u 2 , (6.3) 
where r(x) is as in (2.7), λ 0 is as in (2.2), the symbol (•, •) on the left-hand side denotes the duality between W 1,2 comp (E) and W -1,2 loc (E), and | • | is the norm in the fiber E x . Then, the following equality holds: v = 0.

Proof. Let ρ and R be numbers satisfying 0 < ρ < 1/2 and 1 < R < +∞. For any ε > 0, we define the function f ε : M → R by f ε (x) = F ε (r(x)), where r(x) is as in (2.7) and F ε : [0, ∞) → R is the continuous piecewise affine function defined by

F ε (s) =                  0 for s ≤ ε ρ(s -ε)/(ρ -ε) for ε ≤ s ≤ ρ s for ρ ≤ s ≤ 1 1 for 1 ≤ s ≤ R R + 1 -s for R ≤ s ≤ R + 1 0 for s ≥ R + 1.
Let us fix x 0 ∈ M . For any α > 0, we define the function p α : M → R by

p α (x) = P α (d g T M (x 0 , x)),
where P α : [0, ∞) → R is the continuous piecewise affine function defined by

P α (s) =    1 for s ≤ 1/α -αs + 2 for 1/α ≤ s ≤ 2/α 0 for s ≥ 2/α. Since d g T M (x 0 , x) ≤ d g T M (x 0 , x), it follows that the support of f ε p α is contained in the set B α := {x ∈ M : d g T M (x 0 , x) ≤ 2/α}.
By assumption (A1) we know that M is a geodesically complete Riemannian manifold. Hence, by Hopf-Rinow Theorem the set B α is compact. Therefore, the support of f ε p α is compact. Additionally, note that f ε p α is a β-Lipschitz function (with respect to the distance corresponding to the metric g T M ) with β = ρ ρ-ε + α. Since v ∈ L 2 (E) and (H -λ)v = 0, we have v ∈ Dom(H max ) ⊂ W 2,2 loc (E) ⊂ W 1,2 loc (E), where the first inclusion follows by Lemma 6.1. Since f ε p α is a Lipschitz compactly supported function, we get f ε p α v ∈ W 1,2 comp (E) and, hence, ((H -λ)(f ε p α v)) ∈ W -1,2 comp (E). Using (2.2) we have

D(d(f ε p α ))v 2 ≤ λ 2 0 M |d(f ε p α )(x)| 2 |v(x)| 2 dµ(x), (6.4) 
where |d(f ε p α )(x)| is the norm of d(f ε p α )(x) ∈ T * x M induced by g T M . By Corollary 6.3 with H -λ in place of H and the inequality (6.4), we get

(f ε p α v, (H -λ)(f ε p α v)) ≤ λ 2 0 ρ ρ -ε + α 2 v 2 . (6.5)
On the other hand, using the definitions of f ε and p α and the assumption (6.3) we have

(f ε p α v, (H -λ)(f ε p α v)) ≥ λ 2 0 S ρ,R,α |v(x)| 2 dµ(x) + c 1 f ε p α v 2 , (6.6) 
where S ρ,R,α := {x ∈ M : ρ ≤ r(x) ≤ R and d g T M (x 0 , x) ≤ 1/α}.

In (6.6) and (6.5), the symbol (•, •) stands for the duality between W 1,2 comp (E) and W -1,2 loc (E). We now combine (6.6) and (6.5) to get We fix ρ, R, and ε, and let α → 0+. After that we let ε → 0+. The last step is to do ρ → 0+ and R → +∞. As a result, we get v = 0.

End of the proof of Theorem (6.7)

Choosing, for instance, λ = -C -2 in (6.7) we get the inequality (6.3) with c 1 = 1. Thus, H min -λ with λ = -C -2 is a symmetric operator satisfying (u, (H min -λ)u) ≥ u 2 , for all u ∈ C ∞ c (E). In this case, it is known (see Theorem X.26 in [START_REF] Reed | Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness[END_REF]) that the essential self-adjointness of H min -λ is equivalent to the following statement: if v ∈ L 2 (E) satisfies (H -λ)v = 0, then v = 0. Thus, by Lemma 6.4, the operator (H min -λ) is essentially selfadjoint. Hence, H min is essentially self-adjoint.

4. 1 .

 1 Minimal and Maximal Operators. We define H min u := Hu, with Dom(H min ) := C ∞ c (E), and H max := (H min ) * , where T * denotes the adjoint of operator T . Denoting D max := {u ∈ L 2 (E) : Hu ∈ L 2 (E)}, we recall the following well-known property: Dom(H max ) = D max and H max u = Hu for all u ∈ D max .

Lemma 6 . 2 .. 1 ) 6 . 3 .

 62163 For any u ∈ Dom(H max ) and any Lipschitz function with compact support ψ : M → R, we have:(D(ψu), D(ψu)) + (V ψu, ψu) = Re(ψHu, ψu) + D(dψ)u 2 . (6Corollary Let H be as in (2.3), let u ∈ L 2 (E) be a weak solution of Hu = 0, and let ψ : M → R be a Lipschitz function with compact support. Then (ψu, H(ψu)) = D(dψ)u 2 , (6.2)

λ 2 0

 2 S ρ,R,α |v(x)| 2 dµ(x) + c 1 f ε p α v 2 ≤ λ

3 .

 3 Using integration by parts (seeLemma 8.8 in [5]), we have(u, Hu) = (u, D * Du) + (V u, u) = (Du, Du) + (V u, u) ≥ (V u, u), for all u ∈ W 1,2 comp (E),where the two leftmost symbols (•, •) denote the duality between W 1,2 comp (E) and W -1,2 loc (E), while the remaining ones stand for L 2 -inner products. Hence, by assumption (2.8) we get:(u, (H -λ)u) ≥ λ 2 0 M 1 r(x) 2 |u(x)| 2 dµ(x) -(λ + C) u 2 ) 2 , 1 |u(x)| 2 dµ(x) -(λ + C + 1) u 2 .

will see, Cordes's technique reduces our problem to a system of ordinary differential inequalities of the same type as in Section IV.3 of [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF]. Proposition 4.2. Let A be a densely defined operator with domain D in a Hilbert space H . Assume that A is semi-bounded from below, that AD ⊆ D, and that there exists c 0 ∈ R such that the following two properties hold:

H , for all u ∈ D, where I denotes the identity operator in H ;

Then, (A + cI) j is essentially self-adjoint on D, for all j = 1, 2, . . . , k and all c ∈ R.

Remark 4.3. To prove Proposition 4.2, one may mimick the proof of Proposition 1.4 in [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF], which was carried out for the operator P defined in (1.2) with D = C ∞ c (M ), since only abstract functional analysis facts and the property P D ⊆ D were used.

We start the proof of Theorem 1 by noticing that the operator H min is essentially self-adjoint on C ∞ c (E); see Corollary 2.9 in [START_REF] Braverman | Essential self-adjointness of Schrödinger-type operators on manifolds[END_REF]. Thanks to Proposition 4.2, whithout any loss of generality we can change V (x) to V (x) + C Id(x) , where C is a sufficiently large constant in order to have

where λ 0 is as in (2.2) and Id(x) is the identity endomorphism of E x . Using non-negativity of D * D and (4.1) we have

which leads to u 2 ≤ (Hu, u) ≤ Hu u , for all u ∈ C ∞ c (E), and, hence,

and

In this case, by an abstract fact (see Theorem X.26 in [START_REF] Reed | Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness[END_REF]), the essential self-adjointness of

Proof of Theorem 2

We adapt the proof of Theorem 1.1 in [START_REF] Cordes | On essential selfadjointness of powers and comparison algebras. Festschrift on the occasion of the 70th birthday of Shmuel Agmon[END_REF] to our type of operator. By assumption (2.6) it follows that ((∆ M,µ + q -C + 1)u, u) ≥ u 2 , for all u ∈ C ∞ c (M ).

(5.1) Since (5.1) is satisfied and since M is non-compact and g T M is geodesically complete, a result of Agmon [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF] (see also Proposition III.6.2 in [START_REF] Cordes | Spectral Theory of Linear Differential Operators and Comparison Algebras[END_REF]) guarantees the existence of a function γ ∈ C ∞ (M ) such that γ(x) > 0 for all x ∈ M , and

We now use the function γ to transform the operator H = ∇ * ∇ + V . Let L 2 µ 1 (E) be the space of square integrable sections of E with inner product (•, •) µ 1 as in (2.1), where dµ is replaced by dµ 1 := γ 2 dµ. For clarity, we denote L 2 (E) from Section 2.1 by L 2 µ (E). In what follows, the formal adjoints of ∇ with respect to inner products (•, •) µ and (•, •) µ 1 will be denoted by ∇ * ,µ and ∇ * ,µ 1 , respectively. It is easy to check that the map

in L 2 µ 1 (E). In the sequel, we will show that H 1 has the following form:

with V (x) := ∆ M,µ γ γ Id(x) + V (x).

To see this, let w, z ∈ C ∞ c (E) and consider

Setting ξ := d(γ 2 /2) ∈ T * M and using equation (1.34) in Appendix C of [START_REF] Taylor | Partial Differential Equations II: Qualitative Studies of Linear Equations[END_REF] we have

where X is the vector field associated with ξ ∈ T * M via the metric g T M . Furthermore, by equation (1.35) in Appendix C of [START_REF] Taylor | Partial Differential Equations II: Qualitative Studies of Linear Equations[END_REF] we have (dγ ⊗ w, γ∇z) L 2 µ (T * M ⊗E) = (ξ ⊗ w, ∇z) L 2 µ (T * M ⊗E) = (∇ * ,µ (ξ ⊗ w), z) µ = -(div µ (X)w, z) µ -(∇ X w, z) µ , (5.6) where, in local coordinates x 1 , x 2 , . . . , x n , for X = X j ∂ ∂x j , with Einstein summation convention, div µ (X) := 1 κ ∂ ∂x j κX j .