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Abstract

Compressed Sensing (CS) is an appealing framework for applications such as Magnetic
Resonance Imaging (MRI). However, up-to-date, the sensing schemes suggested by CS the-
ories are made of random isolated measurements, which are usually incompatible with the
physics of acquisition. To reflect the physical constraints of the imaging device, we introduce
the notion of blocks of measurements: the sensing scheme is not a set of isolated measure-
ments anymore, but a set of groups of measurements which may represent any arbitrary shape
(radial lines for instance). Structured acquisition with blocks of measurements are easy to
implement, and they give good reconstruction results in practice. However, very few results
exist on the theoretical guarantees of CS reconstructions in this setting. In this paper, we fill
the gap between CS theory and acquisitions made in practice. To this end, the key feature to
consider is the structured sparsity of the signal to reconstruct. In this paper, we derive new
CS results for structured acquisitions and signal satisfying a prior structured sparsity. The
obtained results are RIPless, in the sense that they do not hold for any s-sparse vector, but
for sparse vectors with a given support S. Our results are thus support-dependent, and they
offer the possibility for flexible assumptions on the structure of S. Moreover, our results are
also drawing-dependent, since we highlight an explicit dependency between the probability
of reconstructing a sparse vector and the way of choosing the blocks of measurements.

Key-words: Compressed Sensing, blocks of measurements, structured sparsity, MRI, exact
recovery, `1 minimization.

1 Introduction

Since its introduction in [CRT06b, Don06], compressive sampling triggered a massive interest in
fundamental and applied research. However, despite recent progresses, existing theories are still
insufficient to explain the success of compressed acquisitions in many practical applications. Our
aim in this paper is to extend the applicability of the theory by combining two new ingredients:
structured sparsity and acquisition structured by blocks.

1.1 A brief review of existing results

Compressed sensing - as proposed in [CRT06a] - consists in recovering a signal x ∈ Cn, from
a vector of measurements y = Ax, where A ∈ Cm×n is the sensing matrix. Typical theorems
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state that if x is s-sparse, m & s log(n) and A have some good features, then x can be recovered
exactly from y by solving the following `1 minimization problem :

min
x∈Cn,Ax=y

‖x‖1. (1)

Moreover, it can be shown that the recovery is robust to noise if the constraint in (1) is penalized.
An important fact about this theorem is that the number of measurements mostly depends on
the intrinsic dimension s rather than the ambient dimension n.

The first sensing matrices studied were generated by selecting a few Fourier coefficients
uniformly at random [CRT06a]. The theory was then extended to random matrices with i.i.d.
components [CT06] and sensing vectors selected randomly from orthogonal bases [CRT06b] or
discrete or continuous frames [CP11]. An interesting class of sensing matrices for application
was introduced in [Rom09] and based on a convolution with a random vector. In the meanwhile,
different tools were introduced to analyse sensing matrices such as UUP (uniform uncertainty
principle), RIP (restricted isometry property). Many recent works on CS are rather based on
coherence or local coherence [KW14] and RIPless proofs [CP11]. The book [FR13] proposes a
detailed and self-contained description of most of those concepts.

A common aspect of the above results is that they assume no structure - apart from sparsity
- in the signals to recover. Recovering arbitrary sparse vectors is a very demanding property
that precludes the use of CS in many practical settings. To the best of our knowledge, the work
[AHPR13] is the first to consider the recovery of sparse signals with a structured support. To
treat such cases, the authors introduce new concepts such as sparsity by levels.

1.2 The need for new results

One of the main current limitations of CS is the small number of sensing matrices studied so far.
Let us illustrate this insufficiency with a practical example from Magnetic Resonance Imaging
(MRI). This example will be the red thread of the paper.

In MRI, images are sampled in the Fourier domain and can be assumed to be sparse in the
wavelet domain. Under this hypothesis, a byproduct of standard compressed sensing results
[CP11] implies that variable density sampling [PVW11, CCW13, KW14] allows perfect recon-
struction with a limited number of measurements. The theory in [AHPR13], based on structured
sparsity, also leads to the same conclusion. This is illustrated in Figure (1). The white dots
on the left image indicate which Fourier coefficients are probed. As can be seen, 4.6% of the
coefficients are enough to reconstruct a well resolved image.

Unfortunately, probing Fourier coefficients independently at random is infeasible in MRI:
the samples have to lie on piecewise smooth trajectories [CCKW14, BWB14]. One of the most
successful practical sampling scheme in MRI consists of measuring whole lines of Fourier coeffi-
cients at random [LDP07]. The lines are all parallel and drawn indepently, at random, according
to a certain distribution. This is illustrated in Figure 2 in 2D 1. As can be seen on this example,
compressed acquisitions with a lot of structure make it possible to reconstruct well resolved im-
ages. To the best of our knowledge, there currently exists no theory able to explain this favorable
behavior. The only works dealing with such an acquisition are [PDG15, BBW14]. They assume
no structure in the sparsity and we showed in [BBW14] that structure was crucially needed to
explain results such as those in Figure 2. We will recall this result in Section 4.3.1.

1.3 Contributions

The main contributions of this paper are the following: (i) we provide recovery guarantees for
vectors x ∈ Cn with a fixed support S ⊂ {1, . . . , n}. This is in strong contrast with the usual
works that consider the reconstruction of arbitrary s-sparse vectors. (ii) we provide a theoretical

1Paper [LDP07] considers 3D lines.
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justification to the use of block acquisitions in compressed sensing. By doing so, we enrich the
family of sensing matrices available for compressed sensing. The proposed theory has a few
important consequences:

• the concepts of RIP or coherence are not sound anymore. They are replaced by a new
quantity Γ(S, π) which explicitly depends on the support S, the sensing vectors and the
drawing probability π of measurements.

• the proposed theory allows envisioning the use of CS in situations that were not possible
before. The use of incoherent transforms is not necessary anymore, given that the support
S has some good properties.

• The example given in Figure 2 can be analyzed precisely. In particular, we show that a
block structured acquisition can be used, only if the support structure is adapted to it.
The resulting structures are more complex than the sparsity by levels of [AHPR13].

• The explicit dependency on the support S allows to provide guarantees of reconstruction
for random signals with known distribution.

(a) (b) SNR = 24.2 dB (c)

(d) SNR = 21 dB (e)

Figure 1: An example of reconstruction of a 2048×2048 MR image from isolated measurements.
(a) Sensing pattern from a variable density sampling strategy (with 4.6% measurements). (b)
Corresponding reconstruction via `1-minimization. (c) A zoom on a part of the reconstructed
image. (d) Image obtained by using the pseudo-inverse transform. (e) A zoom on a part of this
image.

1.4 Related notions in the literature

In this paper, structured acquisition denotes the constraints imposed by the physics of the
acquisition, that are modeled using blocks of measurements extracted from a full deterministic
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(a) (b) SNR = 24.1 dB (c)

(d) SNR = 21 dB (e)

Figure 2: An example of reconstruction of a 2048×2048 MR image from blocks of measurements.
(a) Sampling pattern horizontal lines (13% of measurements). (b) Corresponding reconstruction
via `1-minimization. (c) A zoom on a part of the reconstructed image. (d) Image obtained by
using the pseudo-inverse transform. (e) A zoom on a part of this image.

matrix A0. This notion of structured acquisition differs from the notion of structured random
matrices, as described in [Rau10] and [DE11]. Indeed, this latter strategy is based on acquiring
isolated measurements randomly drawn from the rows of a deterministic matrix. The resulting
sensing matrix has thus some inherent structure, which is not the case of random matrices with
i.i.d. entries, that were initially considered in CS. In our paper, the sensing matrix A is even
more structured, in the sense that the full sampling matrix A0 has been partitioned into blocks
of measurements.

We also focus on obtaining RIPless results by combining structured acquisition and struc-
tured sparsity. RIPless results [CP11] refer to CS approaches that are non-uniform in the sense
they hold for a given sensing matrix A and a given support S of length s, but not for all s-sparse
vectors. Nevertheless, existing RIPless results in the literature are only based on the degree of
sparsity s = |S|. A main novelty of this paper is to develop RIPless results that depend explic-
itly on the support S (and not only on its length s) of the signal to reconstruct. This strategy
allows to incorporate any kind of prior information on the structure of S to study its influence
on the quality of CS reconstructions. To the best of our knowledge, this setting has not been
considered so far. Note that preliminary results have been proposed in [GN08, HSIG13].

In [DE11], a more general model on the signal sparsity is also considered. Indeed, it deals
with sparse signals that can be represented in a union of subspaces. Nevertheless, the authors
focus on modifying the recovery algorithm to the chosen assumption on sparsity. In this paper,
any assumption on the support S of the signal to reconstruct can be addressed, including the
case of union of subspaces for instance. Moreover, we do not particularize the reconstruction
method. Indeed, instead of modifying the recovery algorithm (i.e. the `1-minimization problem)
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as in [DE11, JKN+12], we focus on adapting the sampling scheme to the assumption made on
sparsity. Furthermore, as [AHR14b] suggests, it seems that exploiting structure in sampling is
more efficient that exploiting structure in the recovery algorithm.

1.5 Organization of the paper

The paper organization is as follows. Section 2 gives the formal setting of structured acquisition.
Section 3 gives the main results, with a precise definition of Γ(S, π). Applications of our main
theorem to various settings are presented in Section 4. Technical appendices contain the proofs
of the main results of this paper.

2 Preliminaries

2.1 Notation

In this paper, n denotes the dimension of the signal to reconstruct. The notation S ⊂ {1, . . . , n}
refers to the support of the signal to reconstruct. The vectors (ei)1≤i≤p denote the vectors of the

canonical basis of Rd, where d will be equal to n or
√
n, depending on the context. In the sequel,

we set PS ∈ Rn×n to be the projection matrix onto span ({ei, i ∈ S}), i.e. the diagonal matrix
with the j-th diagonal entry equal to 1 if j ∈ S, and 0 otherwise. We will use the shorthand
notation MS ∈ Cn×n and vS ∈ Cn to denote the matrix MPS and the vector PSv for M ∈ Cn×n
and v ∈ Cn. For any matrix M , for any 1 ≤ p, q ≤ ∞, the operator norm ‖M‖p→q is defined as

‖M‖p→q = sup
‖v‖p≤1

‖Mv‖q,

with ‖ · ‖p and ‖ · ‖q denoting the standard `p and `q norms. Note that for a matrix M ∈ Rn×n,

‖M‖∞→∞ = max
1≤i≤n

‖e∗iM‖1.

Finally, the function sign : Rn → Rn is defined by

(sign(x))i =


1 if xi > 0
−1 if xi < 0
0 if xi = 0.

2.2 Sampling strategy

In this paper, we assume that we are given some orthogonal matrix A0 ∈ Cn×n representing the
set of possible linear measurements imposed by a specific sensor device. Let (Ik)1≤k≤M denote a
partition of the set {1, . . . , n}. The rows (a∗i )1≤i≤n ∈ Cn of A0 are partitioned into the following
blocks dictionary (Bk)1≤k≤M , such that

Bk = (a∗i )i∈Ik ∈ C|Ik|×n s.t. Ik ⊂ {1, . . . , n},

with tMk=1Ik = {1, . . . , n}. The sensing matrix A is then constructed by randomly drawing
blocks as follows

A =
1√
m

(
1
√
πK`

BK`

)
1≤`≤m

, (2)

where (K`)1≤`≤m are i.i.d. copies of a random variable K such that

P(K = k) = πk,
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for all 1 ≤ k ≤ M . Moreover, thanks to the renormalization of the blocks BK`
by the weights

1/
√
πK`

in model (2), the random block BK satisfies

E
(
B∗KBK
πK

)
=

M∑
k=1

B∗kBk = Id, (3)

since A0 is orthogonal and (Bk)1≤k≤M is a partition of the rows of A0.

Remark 2.1. The case of overlapping blocks can also be handled. To do so, we may define the
blocks (Bk)1≤k≤M as follows:

Bk =

(
1
√
αi
a∗i

)
i∈Ik

, for 1 ≤ k ≤M,

where
M⋃
k=1

Ik = {1, . . . , n}. The coefficients (αi)1≤i≤n denotes the multiplicity of the row a∗i ,

namely the number of appearances αi = |{k, i ∈ Ik}| of this row in different blocks. This

renormalization is sufficient to ensure the isotropy condition E
(
B∗KBK

πK

)
= Id where K is defined

as above.

Note that our block sampling strategy encompasses the standard acquisition based on isolated
measurements. Indeed, isolated measurements can be considered as blocks of measurements
consisting of only one row of A0.

Remark 2.2. More generally, the theorems could be extended - with slight adaptations - to the
case where the sensing matrix is

A =
1√
m

BK1

...
BKm


where BK1 , . . . , BKm are i.i.d. copies of a random matrix B ∈ Cb×n satisfying

E(B∗B) = Id.

The integer b is itself random and Id is the n×n identity matrix. Assuming that B takes its value
in a countable family (Bk)k∈K, this formalism covers a large number of applications described in
[BBW14]: (i) blocks with i.i.d. entries, (ii) partition of the rows of orthogonal transforms, (iii)
cover of the rows of orthogonal transforms, (iv) cover of the rows from tight frames.

3 Main Results

3.1 Fundamental quantities

Before introducing our main results, we need to define some quantities (reminiscent of the
coherence) that will play a key role in our analysis.

Definition 3.1. Consider a blocks dictionary (Bk)1≤k≤M . Let S ⊂ {1, . . . , n} and π be a
probability distribution on {1, . . . ,M}. Define

Θ(S, π) := max
1≤k≤M

1

πk
‖B∗kBk,S‖∞→∞ = max

1≤k≤M
max

1≤i≤n

‖e∗iB∗kBk,S‖1
πk

, (4)

Υ(S, π) := max
1≤i≤n

sup
‖v‖∞≤1

M∑
k=1

1

πk
|e∗iB∗kBk,Sv|

2 , (5)

Γ(S, π) := max (Υ(S, π),Θ(S, π)) . (6)
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For the sake of readability, we will sometimes use the shorter notation Θ,Υ and Γ to denote
Θ(S, π),Υ(S, π) and Γ(S, π). In Definition 3.1, Θ is related to the local coherence and the degree
of sparsity, when the blocks are made of only one row (the case of isolated measurements).
Indeed, in such a case, Θ reads as follows

Θ(S, π) := max
1≤k≤n

‖ak‖∞‖ak,S‖1
πk

≤ s · max
1≤k≤n

‖ak‖2∞
πk

.

The quantity max1≤k≤n
‖ak‖2∞
πk

refers to the usual notion of coherence described in [CP11]. The
quantity Υ is new and it is more delicate to interpret. It reflects an inter-block coherence. A
rough upper-bound for Υ is

Υ(S, π) ≤
M∑
k=1

1

πk
‖B∗kBk,S‖

2
∞→∞ .

by switching the maximum and supremum with the sum in the definition of Υ. However, it is
important to keep this order (maximum, supremum and sum) to measure interferences between
blocks. In Section 4, we give more precise evaluations of Θ(S, π) and Υ(S, π) in particular cases.

Remark 3.2 (Support-dependency and drawing-dependency). In Definition 3.1, the quantities
Θ and Υ are drawing-dependent and support-dependent. Indeed, Γ does not only depend on the
degree of sparsity s = |S|. To the best of our knowledge, existing theories in CS only rely on
s, see [CRT06a, CP11], or on degrees of sparsity structured by levels, see [AHPR13]. Since
Γ is explicitly related to S, this allows to incorporate prior assumptions on the structure of S.
Besides, the dependency on π (i.e. the way of drawing the measurements) is also explicit in the
definition of Γ. This offers the flexibility to analyze the influence of π on the required number of
measurements. We therefore believe that the introduced quantities might play an important role
in the future analysis of CS.

3.2 Exact recovery guarantees

Our main result reads as follows.

Theorem 3.3. Let S ⊂ {1, . . . , n} be a set of indices of cardinality s ≥ 16 and suppose that
x ∈ Cn is an s-sparse vector supported on S. Fix ε ∈ (0, 1). Suppose that the sampling matrix
A is constructed as in (2). Suppose that Γ(S, π) ≥ 1. If

m ≥ 73 · Γ(S, π) ln(64s)

(
ln

(
9n

ε

)
+ ln ln(64s)

)
, (7)

then x is the unique solution of (1) with probability larger than 1− ε.

Remark 3.4. In the sequel, we will simplify condition (7) by writing:

m ≥ C · Γ(S, π) ln(s) ln
(n
ε

)
where C is a universal constant.

The proof of Theorem 3.3 is contained in AppendixA.1. It relies on the construction of an
inexact dual certificate satisfying appropriate properties that are described in Lemma A.1. Then
our proof is based on the so-called golfing scheme introduced in [Gro11] for matrix completion,
and adapted by [CP11] for compressed sensing from isolated measurements. Nevertheless, the
methodology in the proof differs from the techniques that are described in [CP11]. Indeed, a
straightforward adaptation of the arguments in [CP11] does not allow to relate the number of
measurements to the support S. In the golfing scheme, the main trick is the control of operator
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norms of random matrices extracted from the sensing matrix A. In [CP11], it is proposed to
control (in probability) the operator norms ‖ · ‖∞→2 and ‖ · ‖2→2. However, this technique only
gives results depending on the degree of sparsity s. In order to include an explicit dependency
on the support S, one has to modify the golfing scheme in [CP11], by controlling the operator
norm ‖ · ‖∞→∞, instead of controlling the operator norms ‖ · ‖∞→2 and ‖ · ‖2→2. A similar idea
has been developed in [AHPR13] but our main result is more general than the finite-dimensional
setting in [AHPR13].

Remark 3.5. Compared to standard results in compressed sensing, the condition required in
Theorem 3.3 involves an extra ln(s) factor. The latter can be removed at the price of additional
technicalities, using an extra hypothesis called the Balancing Property in [AHPR13]. In this
paper, this possibility has been put aside for the sake of clarity.

3.3 Consequences for stochastic signal models

The explicit dependency of Γ in S allows us to consider the case of a random support S.

Proposition 3.6. Let S ⊂ {1, . . . , n} denote a random support. For some real positive γ,
suppose that the event Γ(S, π) ≤ γ occurs with probability larger than 1 − ε′(γ). If m &
γ ln(s) ln(n/ε), then x is the unique solution of Problem 1 with probability higher than 1 −
ε− εε′(γ).

Proof. Set m & γ ln(s) ln(n/ε). Define the event R “x is the unique solution of Problem 1”
where R stands for “reconstruction of the signal”. Define also A the event “Γ(S, π) ≥ γ”. The
hypothesis of Proposition 3.6 and Theorem 3.3 give that P (R|A) ≥ 1− ε. To prove Proposition
3.6, we must quantify

P (R) = P (R ∩A) + P (R ∩Ac) = P (R|A)P(A) + P (R ∩Ac)
≥ (1− ε)

(
1− ε′(γ)

)
= 1− ε− εε′(γ),

which concludes the proof. �

3.4 Choice of the drawing probability

The choice of a drawing probability π minimizing the required number of block measurements
in Theorem 3.3, is a delicate issue. The distribution π? minimizing Θ(S, π) in Equation (4) can
be obtained explicitly:

π?k =
‖B∗kBk,S‖∞→∞∑M
`=1 ‖B∗`B`,S‖∞→∞

, for 1 ≤ k ≤M. (8)

Unfortunately, the minimization of Υ(S, π) with respect to π seems much more involved and we
leave this issue as an open question in the general case.

Note however that in all the examples treated in the paper, we derive upper bounds depending
on (S, π) for Υ(S, π) and Θ(S, π) that coincide. The distribution π? is then set to minimize the
latter upper bound.

Note also that optimizing π independently of S will result in a sole dependence to the degree
of sparsity s = |S| which is not desirable if one wants to exploit structured sparsity.

4 Applications

In this section, we first show that Theorem 3.3 can be used to recover state of the art results in
the case of isolated measurements [CP11]. We then show that it allows recovering recent results
when a prior on the sparsity structure is available. The proposed setting however applies to a
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wider setting even in the case of isolated measurements. Finally, we illustrate the consequences
of our results when the acquisition is constrained by blocks of measurements. In the latter
case, we show that the sparsity structure should be adapted to the sampling structure for exact
recovery.

4.1 Isolated measurements with arbitrary support

First, we focus on an acquisition based on isolated measurements which is the most widespread
in CS. This case corresponds to choose blocks of form Bk = a∗k for 1 ≤ k ≤ n with M = n,
where a∗k are the rows of an orthogonal matrix. In such a setting, the sensing matrix can be
written as follows

A =
1√
m

(
1
√
πK`

a∗K`

)
1≤`≤m

, (9)

where (K`)1≤`≤m are i.i.d. copies of K such that P (K = k) = πk, for 1 ≤ k ≤ n.
We apply Theorem 3.3 when only the degree of sparsity s of the signal to reconstruct is

known. This is the setting considered in most CS papers (see e.g. [CT06, Rau10, CP11]). In
this context, our main result can be rewritten as follows.

Corollary 4.1. Let S ⊂ {1, . . . , n} be a set of indices of cardinality s and suppose that x ∈ Cn
is an s-sparse vector. Fix ε ∈ (0, 1). Suppose that the sampling matrix A is constructed as in
(9). If

m ≥ C · s · max
1≤k≤n

‖ak‖2∞
πk

ln(s) ln
(n
ε

)
, (10)

then x is the unique solution of (1) with probability at least 1− ε.
Moreover, the drawing distribution minimizing (10) is πk = ‖ak‖2∞∑n

`=1 ‖a`‖2∞
, which leads to

m ≥ C · s ·
n∑
k=1

‖ak‖2∞ ln(s) ln
(n
ε

)
.

The proof is given in Appendix D.1.
Note that Corollary 4.1 is identical to Theorem 1.1 in [CP11] up to a logarithmic factor.

This result is usually used to explain the practical success of variable density sampling. It is the
core of papers such as [PVW11, KW14, CCKW14].

4.2 Isolated measurements with structured sparsity

When using coherent transforms, meaning that the term max1≤k≤n
‖ak‖2∞
πk

in Equation (10) is
an increasing function of n, Corollary 4.1 is unsufficient to justify the use of CS in applications.
In this section, we show that the proposed results allow justifying the use of CS even in the
extreme case where the sensing is performed with the canonical basis.

4.2.1 A toy example: sampling isolated measurements from the Identity matrix
and knowing the support S

Suppose that the signal x to reconstruct is S-sparse where S ⊆ {1, . . . , n} is a fixed subset.
Consider the highly coherent case where A0 = Id. All current CS theories would give the same
unsatisfactory conclusion: it is not possible to use CS since A0 is a perfectly coherent transform.
Indeed, the bound on the required number of isolated measurements given by standard CS
theories [CP11] reads as follows

m ≥ C · s · max
1≤k≤n

‖e∗k‖2∞
πk

ln (n/ε) = C · s · max
1≤k≤n

1

πk
ln (n/ε) .
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Without any assumption on the support S, one can choose to draw the measurements uniformly
at random, i.e. πk = 1/n for 1 ≤ k ≤ n. This particular choice leads to a required number of
measurements of the order

m ≥ C · s · n ln (n/ε) ,

which corresponds to fully sampling the acquisition space several times.
Let us now see what conclusion can be drawn with Theorem 3.3.

Corollary 4.2. Let S ⊆ {1, . . . , n} of cardinality s. Suppose that x ∈ Cn is an S-sparse vector.
Fix ε ∈ (0, 1). Suppose that the sampling matrix A is constructed as in (9) with A0 = Id. Set

πk =
δk,S
s for 1 ≤ k ≤ n where δk,S = 1 if k ∈ S, 0 otherwise. Suppose that

m ≥ C · s · ln(s) ln
(n
ε

)
.

then x is the unique solution of (1) with probability at least 1− ε.
With this new result, O(s ln(s) ln(n)) measurements are sufficient to reconstruct the signal

via a totally coherent. The least amount of measurements necessary to recover x is of order
O(s ln(s)), by an argument of coupon collector effect [Fel08, p.262]. Therefore, Corollary 4.2 is
near-optimal up to logarithmic factors.

Proof. The result ensues from a direct evaluation of Γ. Indeed,

‖eke∗k,S‖∞→∞ = max
1≤i≤n

sup
‖v‖∞≤1

|
〈
ei, eke

∗
k,Sv

〉
| = sup

‖v‖∞≤1
|e∗k,Sv| = δk,S ,

where δk,S = 1 if k ∈ S, 0 otherwise. Therefore

Θ = max
1≤k≤n

δk,S
πk

.

Then, we can write that

Υ(S, π) = max
1≤i≤n

sup
‖v‖∞≤1

n∑
k=1

1

πk
|e∗i eke∗k,Sv|2 = max

1≤i≤n
sup
‖v‖∞≤1

|e∗i,Sv|2

πi

= max
1≤i≤n

δi,S
πi
.

To conclude the proof it suffices to apply Theorem 3.3. �

4.2.2 Isolated measurements when the degree of sparsity is structured by levels

In this part, we consider a partition of {1, . . . , n} into levels (Ωi)i=1,...,N ⊂ {1, . . . , n} such that⊔
1≤i≤N

Ωi = {1, . . . , n} and |Ωi| = Ni.

We consider that x is S-sparse with |S ∩ Ωi| = si for 1 ≤ i ≤ N meaning that restricted to the
level Ωi, the signal PΩix is si-sparse. This setting is studied extensively in the recent papers
[AHPR13, RHA14, BH14]. Theorem 3.3 provides the following guarantees.

Corollary 4.3. Let S ⊂ {1, . . . , n} be a set of indices of cardinality s, such that |S ∩ Ωi| = si
for 1 ≤ i ≤ N . Suppose that x ∈ Cn is an S-sparse vector. Fix ε ∈ (0, 1). Suppose that the
sampling matrix A is constructed as in (9). Set

m ≥ C

(
max

1≤k≤n

∑N
`=1 s`‖ak,Ω`

‖∞‖ak‖∞
πk

)
ln(s) ln

(n
ε

)
, (11)

m ≥ C

(
max

1≤i≤n
sup
‖v‖∞≤1

n∑
k=1

1

πk
|e∗i ak|

2
∣∣a∗k,Sv∣∣2

)
ln(s) ln

(n
ε

)
, (12)

then x is the unique solution of (1) with probability at least 1− ε.

10



The proof of Corollary 4.3 is given in Appendix D.2.1. We show in Appendix D.2.2 that a
simple analysis leads to results that are nearly equivalent to those in [AHPR13]. It should be

noted that the term
‖ak,Ω`

‖∞‖ak‖∞
πk

is related to the notion of local coherence defined in [AHPR13].
There are however a few differences making our approach potentially more interesting in the
case of isolated measurements:

• Our paper is based on i.i.d. sampling with an arbitrary drawing distribution. This leaves a
lot of freedom for generating sampling patterns and optimizing the probability π in order
to minimize the upper-bounds (11) and (12). In contrast, the results in [AHPR13] are
based on uniform Bernoulli sampling over fixed levels. The dependency on the levels is
not explicit and it therefore seems complicated to optimize them.

• We can deal with a fixed support S, which enlarges the possibilities for structured sparsity.
It is also possible to consider random supports as explained in Proposition 3.6.

4.2.3 Isolated measurements for the Fourier-Haar transform

The bounds in Corollary 4.3 are rather cryptic. They have to be analyzed separately for each
sampling strategy. To conclude the discussion on isolated measurements, we provide a practical
example with the 1D Fourier-Haar system.

We set A0 = Fφ∗, where F ∈ Cn×n is the 1D Fourier transform and φ∗ ∈ Cn×n is the 1D in-
verse wavelet transform. To simplify the notation, we assume that n = 2J and we decompose the
signal at the maximum level J = log2(n)− 1. In order to state our result, we introduce a dyadic
partition (Ωj)0≤j≤J of the set {1, . . . , n}. We set Ω0 = {1}, Ω1 = {2}, Ω3 = {3, 4}, . . . , ΩJ =
{n/2 + 1, . . . , n}. We also define the function j : {1, . . . , n} → {0, . . . , J} by j(u) = j if u ∈ Ωj .

Corollary 4.4. Let S ⊂ {1, . . . , n} be a set of indices of cardinality s, such that |S∩Ωj | = sj for
0 ≤ j ≤ J . Suppose that x ∈ Cn is an s-sparse vector supported on S. Fix ε ∈ (0, 1). Suppose
that A is constructed from the Fourier-Haar transform A0. Choose πk to be constant by level,
i.e. πk = π̃j(k). If

m ≥ C · max
0≤j≤J

1

π̃j
2−j

J∑
p=0

2−|j−p|/2sp · ln(s) ln
(n
ε

)
, (13)

then x is the unique solution of (1) with probability at least 1− ε.
In particular, the distribution minimizing (13) is

π̃j =
2−j

∑J
p=0 2−|j−p|/2sp∑n

`=1 2−j(`)
∑J

p=0 2−|j(`)−p|/2sp
,

which leads to

m ≥ C ·
J∑
j=0

sj +

J∑
p=0
p6=j

2−|j−p|/2sp

 · ln(s) ln
(n
ε

)
. (14)

The proof is presented in Section D.3. This corollary is once again similar to the results in
[AHR14b]. The number of measurements in each level j should depend on the degree of sparsity
sj but also on the degree of sparsity of the other levels which is more and more attenuated when
the level is far away from the j-th one.

Remark 4.5. The Fourier-Wavelet system is coherent and the initial compressed sensing the-
ories cannot explain the success of sampling strategies with such a transform. To overcome the
coherence, two strategies have been devised. The first one is based on variable density sampling
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(see e.g. [PMG+12, CCKW14, KW14]). The second one is based on variable density sampling
and an additional structured sparsity assumption (see e.g. [AHPR13] and Corollary 4.4). First,
note that the results obtained with the latter approach allow recovering signal with arbitrary

supports. Indeed,

J∑
j=0

sj +

J∑
p=0
p6=j

2−|j−p|/2sp ≤ 2s.

Second, it is not clear yet - from a theoretical point of view - that the structure assump-
tion allows obtaining better guarantees. Indeed, it is possible to show that the sole variable
density sampling leads to perfect reconstruction from m ∝ s ln(n)2 measurements, which is on
par with bound (14). It will become clear that structured sparsity is essential when using the
Fourier-Wavelet systems with structured acquisition. Morever, the numerical experiments led
in [AHR14b] let no doubt about the fact that structured sparsity is essential to ensure good
reconstruction with a low number of measurements.

4.3 Structured acquisition and structured sparsity

In this paragraph, we illustrate how Theorem 3.3 explains the practical success of structured
acquisition in applications. We will mainly focus on the 2D setting: the vector x ∈ Cn to
reconstruct can be seen as an image of size

√
n×
√
n.

4.3.1 The limits of structured acquisition

In [BBW14, PDG15], the authors provided theoretical CS results when using block-constrained
acquisitions. Moreover, the results in [BBW14] are proved to be tight in many practical situa-
tions. Unfortunately, the bounds on the number of blocks of measurements necessary for perfect
reconstruction are incompatible with a faster acquisition.

To illustrate this fact, let us recall a typical result emanating from [BBW14]. It shows that
the recovery of sparse vectors with an arbitrary support is of little interest when sampling lines
of tensor product transforms. This setting is widely used in imaging. It corresponds to the MRI
sampling strategy proposed in [LDP07].

Proposition 4.6 ([BBW14]). Suppose that A0 = φ ⊗ φ ∈ Cn×n is a 2D separable transform,
where φ ∈ C

√
n×
√
n is an orthogonal transform. Consider blocks of measurements made of

√
n

horizontal lines in the 2D acquisition space, i.e. for 1 ≤ k ≤
√
n

Bk =
(
φk,1φ, . . . , φk,

√
nφ
)
.

If the number of acquired lines m is less than min(2s,
√
n), then there exists no decoder ∆

such that ∆(Ax) = x for all s-sparse vector x ∈ Cn.
In other words, the minimal number m of distinct blocks required to identify every s-sparse

vectors is necessarily larger than min(2s,
√
n).

This theoretical bound is quite surprising: it seems to enter in contradiction with the practical
results obtained in Figure 2 or with one of the most standard CS strategy in MRI [LDP07].
Indeed, the equivalent number of isolated measurements required by Proposition 4.6 is of the
order O(s

√
n). This theoretical result means that in many applications, a full sampling strategy

should be adopted, when the acquisition is structured by horizontal lines. In the next paragraphs,
we show how Theorem 3.3 allows bridging the gap between theoretical recovery and practical
experiments.

4.3.2 Breaking the limits with adapted structured sparsity

In this paragraph, we illustrate - through a simple example - that additional assumptions on
structured sparsity is the key to explain practical results.

12



Corollary 4.7. Let A0 ∈ Cn×n be the 2D Fourier transform. Assume that x is a 2D signal with
support S concentrated on q horizontal lines of the spatial plane, i.e.

S ⊂ {(j − 1)
√
n+ {1, . . . ,

√
n}, j ∈ J} (15)

where J ⊂ {1, . . . ,
√
n} and |J | = q.

Choose a uniform sampling strategy among the
√
n horizontal lines, i.e. π?k = 1/

√
n for 1 ≤

k ≤
√
n. The number m of sampled horizontal lines sufficient to reconstruct x with probability

1− ε is
m ≥ C · q · ln(s) ln

(n
ε

)
.

The proof is given in Appendix D.4 By Proposition 4.7, we can observe that the required
number of sampled lines is of the order of non-zero lines in the 2D signal. In comparison,
Proposition 4.6 in [BBW14] (with no structured sparsity) requires

m & s · ln(n/ε),

measurements, to get the same guarantees. This means that the required number of horizontal
lines to sample is of the order of the non-zero coefficients. By putting aside the logarithmic
factors, we see that the gain with our new approach is considerable. Clearly, our strategy is able
to take advantage of the sparsity structure of the signal of interest.

4.3.3 Consequences for MRI sampling

We now turn to a real MRI application. We assume that the sensing matrix A0 ∈ Cn×n
is the product of the 2D Fourier transform F2D with the inverse 2D wavelet transform Φ∗.
We aim at reconstructing a vector x ∈ Cn that can be seen as a 2D wavelet transform with√
n ×
√
n coefficients. Set J = log2 (

√
n) − 1 and let (τj)0≤j≤J denote a dyadic partition of

the set {1, . . . ,
√
n}, i.e. τ0 = {1}, τ1 = {2}, τ2 = {3, 4}, . . . , τJ = {

√
n/2 + 1, . . . ,

√
n}. Define

j : {1, . . . ,
√
n} → {0, . . . , J} by j(u) = j if u ∈ τj . Finally, define the sets Ω`,`′ = τ` × τ`′ , for

0 ≤ `, `′ ≤ J . See Figure 3 for an illustration of these sets.

Definition 4.8. Given S = supp(x), define the following quantity

sc` := max
0≤l′≤J

max
k∈τ`′

∣∣S ∩ Ω`,`′ ∩ Ck
∣∣ , (16)

where Ck represents the set corresponding to the k-th vertical line (see Figure 3).

The quantity sc` represents the maximal sparsity of x restricted to columns (or vertical lines)
of ∪1≤l′≤JΩ`,`′ . We have now settled everything to state our result.

As a first step, we will consider the case of Shannon’s wavelets, leading to a block-diagonal
sampling matrix A0.

Corollary 4.9. Let S ⊂ {1, . . . , n} be a set of indices of cardinality s. Suppose that x ∈ Cn
is an s-sparse vector supported on S. Fix ε ∈ (0, 1). Suppose that A0 is the product of the 2D
Fourier transform with the 2D inverse Shannon’s wavelets transform. Consider that the blocks of
measurements are the

√
n horizontal lines in the 2D setting. Choose (πk)1≤k≤

√
n to be constant

by level, i.e. πk = π̃j(k). If the number of horizontal lines to acquire satisfies

m & max
0≤j≤J

1

π̃j
2−jscj ln(s) ln

(n
ε

)
,

then x is the unique solution of Problem 1. Furthermore, choosing π̃j =
scj/2

j∑J
`=0 s

c
`

, for 0 ≤ j ≤ J ,

leads to the following upper bound

m &
J∑
j=0

scj ln(s) ln
(n
ε

)
.
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Figure 3: 2D view of the signal x ∈ Cn to reconstruct. The vector x can be reshaped in a
√
n×
√
n

matrix. Ck represents the coefficient indexes corresponding to the k-th vertical column.

The proof is given in Section D.5. Corollary 4.9 shows that the number of lines acquired at
level j depends only on an extra-column structure of S. Now let us turn to a case where the
matrix A0 is not block-diagonal anymore.

Corollary 4.10. Suppose that x ∈ Cn is an S-sparse vector. Fix ε ∈ (0, 1). Suppose that A0 is
the product of the 2D Fourier transform with the 2D inverse Haar transform. Consider that the
blocks of measurements are the

√
n horizontal lines. Choose (πk)1≤k≤

√
n to be constant by level,

i.e. πk = π̃j(k).
If the number m of drawn horizontal lines satisfies

m & max
0≤j≤J

2−j

π̃j

J∑
r=0

2−|j−r|/2scr ln(s) ln
(n
ε

)
,

then x is the unique solution of Problem 1 with probablity 1− ε.
In particular, if

πk =
2−j(k)

∑J
r=0 2−|j−r|/2scr∑√n

`=1 2−j(`)
∑J

r=0 2−|j(`)−r|/2scr
,

then

m &
J∑
j=0

scj +

J∑
r=0
r 6=j

2−|j−r|/2scr

 · ln(s) ln
(n
ε

)

ensures perfect reconstruction with probability 1− ε.

The proof of Corollary 4.10 is given in Section D.6.
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This result indicates that the number of acquired lines in the ”horizontal” level j should be
chosen depending on the quantities scj . Note that this is very different from the sparsity by levels
proposed in [AHPR13]. In conclusion, Corollary 4.10 reveals that with a structured acquisition,
the sparsity needs to be more structured in order to guarantee exact recovery. To the best of our
knowledge, this is the first theoretical result which can explain why sampling lines in MRI as in
[LDP07] might work. In Figure 4, we illustrate that the results in Corollary 4.10 seem to indeed
correspond to the practical reality. In this experiment, we seek reconstructing a reeds image
from block structured measurements. As a test image, we chose a reeds image with vertical
stripes of its rotated version. This particular geometrical structure explains that the quantities
scj are much higher for the horizontal stripes than for the vertical one. As can be seen, the image
with a low scj is much better reconstructed than the one with a high scj . This wa predicted by
our theory.
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Sampling scheme

(a) Original image (b) SNR = 27.8 dB

sc = (16, 16, 32, 59, 81, 75, 48)

(c) Original image (d) SNR = 14.7 dB

sc = (16, 16, 32, 64, 124, 240, 411)

Figure 4: An example of reconstruction of a 2048×2048 real image sensed in the Fourier domain.
In (a) (c), Reference images to reconstruct: (c) is the same image as (a) but rotated of 90◦. We

precise the value of the vector sc =
(
scj

)
1≤j≤7

for both images. Note that the quantities scj are

larger in the case of image (b). For the reconstruction, we use the sampling scheme at the top of
the Figure. It corresponds to 9.8 % of measurements. In (b) (d), corresponding reconstruction
via `1-minimization. We have rotated the image in (d) to facilitate the comparison between
both. Note that (b) is much better reconstructed than (d). This is predicted by Corollary 4.10.

16



5 Extensions

5.1 The case of Bernoulli block sampling

We analyzed the combination of structured acquisition and structured sparsity with i.i.d. draw-
ings of random blocks. These results can be extended to a Bernoulli sampling setting. In such
a setting, the sensing matrix is constructed as follows

A =

(
δk√
πk
Bk

)
1≤k≤M

,

where (δk)1≤k≤M are independent Bernoulli random variables such that P (δk = 1) = πk, for

1 ≤ k ≤ M . We may set
∑M

k=1 πk = m in order to measure m blocks of measurements
in expectation. By considering the same definition for Γ(S, π) with (πk)1≤k≤M the Bernoulli
weights, it is possible, for the case of Bernoulli block sampling, to give a reconstruction result
that shares a similar flavor to Theorem 3.3.

5.2 Towards new sampling schemes?

The results in Section 4.3.3 lead to the conclusion that exact recovery with structured acquisition
can only occur if the the signal to reconstruct possesses an adequate sparsity pattern. We believe
that the proposed theorems might help designing new efficient and feasible sampling schemes.
Ideally, this could be done by optimizing Γ(S, π) assuming that S belongs to some set of realistic
signals. Unfortunately, this optimization seems unrealistic to perform numerically, owing to the
huge dimensions of the objects involved. We therefore leave this question open for future works.

However, probing the limits of a given system, as was proposed in Corollary 4.10 helps
designing better sampling schemes. To illustrate this fact, we performed a simple experiment.
Since the quantity sjc is critical to characterize a sampler efficiency, it is likely that mixing
horizontal and vertical sampling lines improves the situation. We aim at reconstructing the MR
image shown in Figure 5 and assume that it is sparse in the wavelet basis. In Figure 5(a)(d),
we propose two different sampling schemes. The first one is based solely on parallel lines in the
horizontal direction, while the second one is based on a combination of vertical and horizontal
lines. The combination of vertical and horizontal lines provides much better reconstruction
results despite a lower total number of measurements.
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Reference image

(a) Sampling scheme (b) SNR = 24.47 dB (c)

(d) Sampling scheme (e) SNR = 26.74 dB (f)

Figure 5: An example of MRI reconstruction of a 2048×2048 phantom. The reference image to
reconstruct is presented at the top of the figure. It is considered sparse in the wavelet domain.
In (a) (d), we present two kinds of sampling schemes with 20 % of measurements: the samples
are acquired in the 2D Fourier domain. In (b) (e), we show the corresponding reconstruction
via `1-minimization. In (c) (f) we enhance the results by zooming on the reconstructed images.
Note that the horizontal and vertical sampling scheme produces much better reconstruction
results despite a smaller number of measurements since samples are overlapping. Moreover, the
acquisition time would be exactly the same for an MRI.
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A Proofs of the main results

A.1 Proof of Theorem 3.3

In this section, we give sufficient conditions to guarantee that the vector x is the unique minimizer
of (1), using an inexact dual certificate see [CP11].

Lemma A.1 (Inexact duality [CP11]). Suppose that x ∈ Rn is supported on S ⊂ {1, . . . , n}.
Assume that AS is full column rank and that

‖ (A∗SAS)−1 ‖2→2 ≤ 2 and max
i∈Sc
‖A∗SAei‖2 ≤ 1, (17)

where (A∗SAS)−1 only makes sense on the set span{ei, i ∈ S}. Morever, suppose that there exists
v ∈ Rn in the row space of A obeying

‖vS − sign(xS)‖2 ≤ 1/4 and ‖vSc‖∞ ≤ 1/4, (18)

Then, the vector x is the unique solution of the minimization problem (1)

First, let us focus on Conditions (17). Remark that A∗SAS is invertible by assuming that AS
is full column-rank. Moreover,

‖ (A∗SAS)−1 ‖2→2 =

∥∥∥∥∥
∞∑
k=0

(A∗SAS − PS)k

∥∥∥∥∥
2→2

≤
∞∑
k=0

‖A∗SAS − PS‖
k
2→2 .

Therefore, if ‖A∗SAS − PS‖2→2 ≤ 1/2 is satisfied, then ‖ (A∗SAS)−1 ‖2→2 ≤ 2. Moreover, by

Lemma C.1, ‖ (A∗SAS)−1 ‖2→2 ≤ 2 with probability at least 1− ε, provided that

m ≥ 28

3
Θ(S, π) ln

(
2s

ε

)
.

By definition of Γ(S, π), the first inequality of Conditions (17) is therefore ensured with proba-
bility larger than 1− ε if

m ≥ 28

3
Γ(S, π) ln

(
2s

ε

)
. (19)

Furthermore, using Lemma C.5, we obtain that

max
i∈Sc
‖A∗SAei‖2 ≤ 1

with probability larger than 1− ε if

m ≥ Θ(S, π)

(
1 + 4

√
ln
(n
ε

)
+ 4ln

(n
ε

))
.

Again by definition of Γ(S, π), the second part of Conditions (18) is ensured if n ≥ 3 and

m ≥ 9Γ(S, π) ln
(n
ε

)
. (20)

Conditions (18) remain to be verified. The rest of the proof of Theorem 3.3 relies on the
construction of a vector v satisfying the conditions described in Lemma A.1 with high probability.
To do so, we adapt the so-called golfing scheme introduced by Gross [Gro11] to our setting. More
precisely, we will iteratively construct a vector that converges to a vector v satisfying (18) with
high probability.

Let us first partition the sensing matrix A into blocks of blocks so that, from now on, we
denote by A(1) the first m1 blocks of A, A(2) the next m2 blocks, and so on. The L random
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matrices
{
A(`)

}
`=1,...,L

are independently distributed, and we have that m = m1 +m2 + . . .+mL.

As explained before, A
(`)
S denotes the matrix A(`)PS .

The golfing scheme starts by defining v(0) = 0, and then it iteratively defines

v(`) =
m

m`
A(`)∗A

(`)
S

(
sign(x)− v(`−1)

)
+ v(`−1), (21)

for ` = 1, . . . , L, where sign(xi) = 0 if xi = 0. In the rest of the proof, we set v = v(L). By
construction, v is in the row space of A. The main idea of the golfing scheme is then to combine
the results from the various Lemmas in Section C with an appropriate choice of L to show that
the random vector v satisfies the assumptions of Lemma A.1 with large probability. Using the

shorthand notation v
(`)
S = PSv

(`), let us define

w(`) = sign(x)− v(`)
S , ` = 1, . . . , L,

where x ∈ Cn is the solution of Problem (1).
From the definition of v(`), it follows that, for any 1 ≤ ` ≤ L,

w(`) =

(
PS −

m

m`
A

(`)∗
S A

(`)
S

)
w(`−1) =

∏̀
j=1

(
PS −

m

mj
A

(j)∗
S A

(j)
S

)
sign(x), (22)

and

v =
L∑
`=1

m

m`
A(`)∗A

(`)
S w(`−1). (23)

Note that in particular, w(0) = sign(x) and w(L) = sign(x) − v. In what follows, it will be

shown that the matrices PS − m
m`
A

(`)∗
S A

(`)
S are contractions and that the norm of the vector w(`)

decreases geometrically fast with `. Therefore, v
(`)
S becomes close to sign(xS) as ` tends to L. In

particular, we will prove that ‖w(L)‖2 ≤ 1/4 for a suitable choice of L. In addition, we also show
that v satisfies the condition ‖vSc‖∞ ≤ 1/4. All these conditions will be shown to be satisfied
with a large probability (depending on ε).

For all 1 ≤ ` ≤ L, assume that ∥∥∥w(`)
∥∥∥

2
≤ r`

∥∥∥w(`−1)
∥∥∥

2
(C1-`)∥∥∥∥ mm`

(
A

(`)
Sc

)∗
A

(`)
S w(`−1)

∥∥∥∥
∞
≤ t`‖w(`−1)‖∞ (C2-`)∥∥∥∥( m

m`

(
A

(`)
S

)∗
A

(`)
S − PS

)
w(`−1)

∥∥∥∥
∞
≤ t′`‖w(`−1)‖∞, (C3-`)

with

(i) L = 2 +
⌈

ln(s)
2 ln 2

⌉
,

(ii) r` = 1
2 , for ` = 1, . . . , L,

(iii) t` = t′` = 1
5 for ` = 1, . . . , L.

Note that using (C1-`), we can write that

‖sign(xS)− vS‖2 = ‖w(L)
S ‖2 ≤ ‖sign(xS)‖2

L∏
`=1

r` ≤
√
s

L∏
`=1

r` ≤
√
s

2L
≤ 1

4
, (24)

where the last inequality follows from the previously specified choice on L.
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Furthermore, Equation (C2-`) implies that

‖vSc‖∞ =

∥∥∥∥∥
L∑
`=1

m

m`

(
A

(`)
Sc

)∗
A

(`)
S w(`−1)

∥∥∥∥∥
∞

≤
L∑
`=1

∥∥∥∥ mm`

(
A

(`)
Sc

)∗
A

(`)
S w(`−1)

∥∥∥∥
∞

≤
L∑
`=1

t`

∥∥∥w(`−1)
∥∥∥
∞

≤
L∑
`=1

t`

`−1∏
j=1

t′j

=

(
1

5

)
1− (1/5)L

1− 1/5
≤ 1

4
. (25)

Note that in Inequality (25), the control of the operator norms ∞ → ∞ avoids the apparition
of
√
s as in the usual golfing scheme of [CP11]. Indeed, in our proof strategy, we have used the

fact that ‖w0‖∞ = ‖sign(xS)‖∞ = 1, whereas in [CP11] ‖w0‖2 = ‖sign(xS)‖2 ≤
√
s is involved.

This is a key step in the proof, since the absence of the degree of sparsity at this stage allows to
derive results depending only on S and not on its cardinality s = |S|.

We denote by p1(`), p2(`) and p3(`) the probabilities that the upper bounds (C1-`), (C2-`)
and (C3-`) do not hold.

Let us call ”failure C” the event in which one of the 3L inequalities (C1-`), (C2-`), (C3-`) is
not satisfied. Then,

P (failure C) ≤
L∑
`=1

P (failure (C1-`)) + P (failure (C2-`)) + P (failure (C3-`)) .

Therefore a sufficient condition for P (failure C) ≤ ε is
∑L

`=1 p1(`) + p2(`) + p3(`) ≤ ε which
holds provided that p1(`) ≤ ε/3L, p2(`) ≤ ε/3L and p3(`) ≤ ε/3L for every ` = 1, . . . , L. By
Lemma C.2, condition p1(`) ≤ ε/3L is satisfied if

m` ≥ 32Γ(S, π)

(
ln

(
3L

ε

)
+

1

4

)
.

By Lemma C.3, condition p2(`) ≤ ε/3L is satisfied if

m` ≥ 101Γ(S, π) ln

(
12nL

ε

)
.

By Lemma C.4, condition p3(`) ≤ ε/3L is satisfied if

m` ≥ 101Γ(S, π) ln

(
12nL

ε

)
.

Overall, condition

m` ≥ 101Γ(S, π) ln

(
12nL

ε

)
(26)

ensures that (24) and (25) are satisfied with probability 1− ε. Condition

m =
L∑
`=1

m` ≥ 101

(
ln(s)

2 ln(2)
+ 3

)
Γ(S, π) ln

(
12nLε−1

)
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will imply (26). The latter condition can be simplified into

m ≥ 73 · Γ(S, π) ln(64s)

(
ln

(
9n

ε

)
+ ln ln(64s)

)
. (27)

The latter condition ensures that the random vector v, defined by (23), satisfies Assumptions
18 of Lemma A.1 with probability larger than 1− ε.

Hence, we have thus shown that if conditions (19), (20) and (27) are satisfied, then the
Assumptions 17 and 18 of Lemma A.1 simultaneously hold with probability larger than 1− 3ε.
Note that bound (27) implies (19) and (20).

B Bernstein’s inequalities

Theorem B.1 (Scalar Bernstein Inequality). Let x1, . . . , xm be independent real-valued, zero-
mean, random variables such that |x`| ≤ K almost surely for every ` ∈ {1, . . . ,m}. Assume that
E|x`|2 ≤ σ2

` for ` ∈ {1, . . . ,m}. Then for all t > 0,

P

(∣∣∣∣∣
m∑
`=1

x`

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
,

with σ2 ≥
∑m

`=1 σ
2
` .

Theorem B.2 (Vector Bernstein Inequality (V1)). [CP11, Theorem 2.6] Let (yk)1≤k≤m be a
finite sequence of independent random complex vectors of dimension n. Suppose that Eyk = 0
and ‖yk‖2 ≤ K a.s. for some constant K > 0 and set σ2 ≥

∑
k E‖yk‖22. Let Z = ‖

∑m
k=1 yk‖2.

Then, for any 0 < t ≤ σ2/K, we have that

P (Z ≥ t) ≤ exp

(
−(t/σ − 1)2

4

)
≤ exp

(
− t2

8σ2
+

1

4

)
.

Theorem B.3 (Bernstein Inequality for self-adjoint matrices). Let (Zk)1≤k≤n be a finite se-
quence of independent, random, self-adjoint matrices of dimension d, and let ak be a sequence
of fixed self-adjoint matrices. Suppose that Zk is such that EZk = 0 and ‖Zk‖2→2 ≤ K a.s.
for some constant K > 0 that is independent of k. Moreover, assume that EZ2

k � A2
k for each

1 ≤ k ≤ n. Define

σ2 =

∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥
2→2

Then, for any t > 0, we have that

P

(∥∥∥∥∥
n∑
k=1

Zk

∥∥∥∥∥
2→2

≥ t

)
≤ d exp

(
− t2/2

σ2 +Kt/3

)
.

Proof. This result is as an application of the techniques developed in [Tro12] to obtain tail
bounds for sum of random matrices. Our arguments follow those in the proof of Theorem 6.1
in [Tro12]. We assume that K = 1 since the general result follows by a scaling argument. Using
the assumption that EZ2

k � A2
k, and by applying the arguments in the proof of Lemma 6.7 in

[Tro12], we obtain that
E exp (θZk) � exp

(
g(θ)A2

k

)
,

for any real θ > 0, where g(θ) = eθ − θ − 1, and the notation exp(A) denotes the matrix
exponential of a self-adjoint matrice A (see [Tro12] for further details). Therefore, by Corollary
3.7 in [Tro12], it follows that

P

(∥∥∥∥∥
n∑
k=1

Zk

∥∥∥∥∥
2→2

≥ t

)
≤ d inf

θ>0

{
e−θt+σ

2g(θ)
}
, (28)
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where σ2 =
∥∥∑n

k=1A
2
k

∥∥
2→2

. To conclude, we follow the proof of Theorem 6.1 in [Tro12]. The
function θ 7→ −θt + σ2g(θ) attains its minimum for θ = ln(1 + t/σ2), which implies that the
minimal value of the right-hand size of Inequality (28) is d exp

(
−σ2h(t/σ2)

)
where h(u) =

(1+u) ln(1+u)−u for u ≥ 0. To complete the proof, it suffices to use the standard lower bound

h(u) ≥ u2/2
1+u/3 for u ≥ 0. �

C Estimates: auxiliary results

Let S be the support of the signal to be reconstructed such that |S| = s. We set

Λ(S, π) := max
1≤k≤M

1

πk

∥∥B∗k,SBk,S∥∥2→2
.

Note that
∥∥∥B∗k,SBk,S∥∥∥

2→2
≤
∥∥∥B∗k,SBk,S∥∥∥∞→∞ ≤ ‖B∗kBk,S‖∞→∞ , therefore,

Λ(S, π) ≤ Θ(S, π).

To make the notation less cluttered, we will write Λ, Θ, Υ and Γ instead of Λ(S, π), Θ(S, π),
Υ(S, π) and Γ(S, π).

Lemma C.1. Let S ⊂ {1, . . . , n} be of cardinality of s. Suppose that Θ ≥ 1. Then, for any
δ > 0, one has that

P (‖A∗SAS − PS‖2→2 ≥ δ) ≤ 2s exp

(
− mδ2/2

Θ(1 + δ/3)

)
. (E1)

Proof. We decompose the matrix A∗SAS − PS as

A∗SAS − PS =
1

m

m∑
k=1

B∗Jk,SBJk,S

πJk
− PS =

1

m

m∑
k=1

Xk,

where Xk :=

(
B∗Jk,SBJk,S

πJk
− PS

)
. It is clear that EXk = 0, and since for all 1 ≤ k ≤ M ,

‖Bk,SB
∗
k,S‖2→2
πk

≤ Λ ≤ Θ, we have that

‖Xk‖2→2 ≤ max


∥∥∥B∗Jk,SBJk,S∥∥∥2→2

πJk
− 1, 1

 ≤ Θ.

Lastly, we remark that

0 � EX2
k = E

[
B∗Jk,SBJk,S

πJk

]2

− PS � max
1≤k≤M

∥∥∥B∗k,SBk,S∥∥∥
2→2

πk
E
[
B∗Jk,SBJk,S

πJk

]

� max
1≤k≤M

∥∥∥B∗k,SBk,S∥∥∥
2→2

πk
PS � ΛPS

� ΘPS .

Therefore, using Theorem B.3, we can set σ2 =
∥∥∑m

k=1 EX2
k

∥∥
2→2
≤ mΘ. Hence, inequality (E1)

immediately follows from Bernstein’s inequality for random matrices (see Theorem B.3). �

Lemma C.2. Let S ⊂ {1, . . . , n}, such that |S| = s. Let w be a vector in Cn. Then, for any
0 ≤ t ≤ 1, one has that

P (‖(A∗SAS − PS)w‖2 ≥ t‖w‖2) ≤ exp

(
−mt

2

8Θ
+

1

4

)
. (E2)
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Proof. Without loss of generality we may assume that ‖w‖2 = 1. We remark that

(A∗SAS − Ids)wS =
1

m

m∑
k=1

(
B∗Jk,SBJk,S

πJk
− PS

)
w =

1

m

m∑
k=1

yk,

where yk =

(
B∗Jk,SBJk,S

πJk
− PS

)
w is a random vector with zero mean. Simple calculations yield

that ∥∥∥∥ 1

m
yk

∥∥∥∥2

2

=
1

m2

(
w∗
(
B∗Jk,SBJk,S

πJk

)2

w − 2w∗
B∗Jk,SBJk,S

πJk
w + w∗w

)

≤ 1

m2

(
Λw∗

B∗Jk,SBJk,S

πJk
w − 2w∗

B∗Jk,SBJk,S

πJk
w + 1

)
=

1

m2

(
(Λ− 2)w∗

B∗Jk,SBJk,S

πJk
w + 1

)
≤ 1

m2

(
(Λ− 2) Λ‖w‖22 + 1

)
=

1

m2
((Λ− 2) Λ + 1)

≤ 1

m2
(Λ− 1)2 ≤ 1

m2
Λ2 ≤ 1

m2
Θ2.

Now, let us define Z =
∥∥ 1
m

∑m
k=1 yk

∥∥
2
. By independence of the random vectors yk, it follows

that

E
[
Z2
]

=
1

m
E ‖y1‖22 =

1

m
E
[〈

B∗J,SBJ,S

πJ
w,
B∗J,SBJ,S

πJ
w

〉
− 2

〈
B∗J,SBJ,S

πJ
w,w

〉
+ 〈w,w〉

]
=

1

m
E

[〈(
B∗J,SBJ,S

πJ

)2

w,w

〉
− 2
‖BJ,Sw‖22

πJ
+ 1

]
.

To bound the first term in the above equality, one can write

E

[〈(
B∗J1,S

BJ1,S

πJ1

)2

w,w

〉]
=

〈
E

[(
B∗J1,S

BJ1,S

πJ1

)2
]
w,w

〉

≤ Λ

〈
E
[(

B∗J1,S
BJ1,S

πJ1

)]
w,w

〉
≤ Λ‖w‖22 ≤ Θ.

One immediately has that E‖BJ,Sw‖2

2
πk

= ‖w‖22 = 1. Therefore, one finally obtains that

E
[
Z2
]
≤ Θ− 1

m
≤ Θ

m
.

Using the above upper bounds, namely
∥∥ 1
myk

∥∥
2
≤ Θ

m and E
[
Z2
]
≤ Θ

m , the result of the lemma
is thus a consequence of the Bernstein’s inequality for random vectors (see Theorem B.2), which
completes the proof. �

Lemma C.3. Let S ⊂ {1, . . . , n}, such that |S| = s. Let v be a vector of Cn. Then we have

P (‖A∗ScASv‖∞ ≥ t‖v‖∞) ≤ 4n exp

(
− mt2/4

Υ + Θt/3

)
. (E3)

Proof. Suppose without loss of generality that ‖v‖∞ = 1. Then,

‖A∗ScASv‖∞ = max
i∈Sc
|〈ei, A∗ASv〉| = max

i∈Sc

1

m

∣∣∣∣∣
m∑
k=1

〈
ei,

B∗JkBJk,S

πJk
v

〉∣∣∣∣∣ .
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Let us define Zk =

〈
ei,

B∗Jk
BJk,S

πJk
v

〉
. Note that EZk = 0, since for i ∈ Sc, E

〈
ei,

B∗Jk
BJk,S

πJk
v

〉
=

e∗i
∑M

k=1 πk
B∗kBk,S

πk
v = e∗iPSv = 0. From Holder’s inequality, we get

|Zk| =
∣∣∣∣〈ei, B∗JkBJk,SπJk

v

〉∣∣∣∣ =

∣∣∣∣e∗i B∗JkBJk,SπJk
v

∣∣∣∣ ≤ max
j∈Sc

1≤k≤M

1

πk

∥∥B∗k,SBkej∥∥1
‖v‖∞

≤ max
1≤k≤n

max
j∈Sc

1≤k≤M

1

πk

∥∥e∗jB∗kBk,S∥∥1
= Θ.

Furthermore,

E|Zk|2 = E
∣∣∣∣〈ei, B∗JkBJk,SπJk

v

〉∣∣∣∣2 =
M∑
`=1

|e∗iB∗`B`,Sv|
2

π`

≤ Υ.

Therefore
∑m

k=1 E|Zk|2 ≤ mΥ. Using real-valued Bernstein’s inequality B.1 in the case of
complex random variables, we obtain

P

(
1

m

∣∣∣∣∣
m∑
k=1

〈
ei,

B∗JkBJk,S

πJk
v

〉∣∣∣∣∣ ≥ t
)

≤ P

(
1

m

∣∣∣∣∣
m∑
k=1

Re

〈
ei,

B∗JkBJk,S

πJk
v

〉∣∣∣∣∣ ≥ t/√2

)
...

+ P

(
1

m

∣∣∣∣∣
m∑
k=1

Im

〈
ei,

B∗JkBJk,S

πJk
v

〉∣∣∣∣∣ ≥ t/√2

)

≤ 4 exp

(
− mt2/4

Υ + Θt/3

)
.

Taking the union bound over i ∈ Sc completes the proof. �

Lemma C.4. Let S ⊂ {1, . . . , n}, such that |S| = s. Suppose that Θ ≥ 1.Let v be a vector of
Cn. Then we have

P (‖(A∗SAS − PS) v‖∞ ≥ t‖v‖∞) ≤ 4s exp

(
− mt2/4

Υ + Θt/3

)
. (E4)

Proof. Suppose without loss of generality that ‖v‖∞ = 1. Then,

‖(A∗SAS − PS) v‖∞ = max
i∈S
|〈ei, (A∗SAS − PS) v〉| = max

i∈S

1

m

∣∣∣∣∣
m∑
k=1

〈
ei,

(
B∗Jk,SBJk,S

πJk
− PS

)
v

〉∣∣∣∣∣ .
Let us define Zk =

〈
ei,

(
B∗Jk,SBJk,S

πJk
− PS

)
v

〉
. Note that EZk = 0. From Holder’s inequality,

we get

|Zk| =
∣∣∣∣〈ei,(B∗Jk,SBJk,SπJk

− PS
)
v

〉∣∣∣∣ ≤ ∥∥∥∥B∗Jk,SBJk,SπJk
− PS

∥∥∥∥
∞→∞

≤ max(Θ− 1, 1) ≤ Θ,
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since ‖B∗k,SBk,S‖∞→∞ ≤ ‖B∗kBk,S‖∞→∞, and using the same argument as in Lemma C.3. Fur-
thermore,

E|Zk|2 = E
∣∣∣∣〈ei,(B∗Jk,SBJk,SπJk

− PS
)
v

〉∣∣∣∣2
= E

∣∣∣∣〈ei, B∗Jk,SBJk,SπJk
v

〉∣∣∣∣2 − 〈ei, v〉E〈ei, B∗Jk,SBJk,SπJk
v

〉
− 〈ei, v〉∗ E

〈
ei,

B∗Jk,SBJk,S

πJk
v

〉
+ |〈ei, v〉|2

= E
∣∣∣∣〈ei, B∗Jk,SBJk,SπJk

v

〉∣∣∣∣2 − |〈ei, v〉|2 ≤ E
∣∣∣∣〈ei, B∗Jk,SBJk,SπJk

v

〉∣∣∣∣2 =
M∑
`=1

∣∣∣e∗iB∗`,SB`,Sv∣∣∣2
π`

≤ Υ.

Therefore,
∑m

k=1 E|Zk|2 ≤ mΥ, and using real-valued Bernstein’s inequality B.1 in the case of
complex random variables, we obtain

P

(
1

m

∣∣∣∣∣
m∑
k=1

〈
ei,

(
B∗Jk,SBJk,S

πJk
− PS

)
v

〉∣∣∣∣∣ ≥ t
)

≤ P

(
1

m

∣∣∣∣∣
m∑
k=1

Re

〈
ei,

(
B∗Jk,SBJk,S

πJk
− PS

)
v

〉∣∣∣∣∣ ≥ t/√2

)
+ P

(
1

m

∣∣∣∣∣
m∑
k=1

Im

〈
ei,

(
B∗Jk,SBJk,S

πJk
− PS

)
v

〉∣∣∣∣∣ ≥ t/√2

)

≤ 4 exp

(
− mt2/4

Υ + Θt/3

)
.

Taking the union bound over i ∈ S completes the proof. �

Lemma C.5. Let S be a subset of {1, . . . , n}. Then, for any 0 ≤ t ≤ m, one has that

P
(

max
i∈Sc
‖A∗SAei‖2 ≥ t

)
≤ n exp

−
(√

mt/
√

Θ− 1
)2

4

 . (E5)

Proof. Let us fix some i ∈ Sc. For k = 1, . . . ,M , we define the random vector

xk :=
B∗Jk,SBJk
πJk

ei.

Then, since i ∈ Sc one easily gets Exk =
∑M

`=1B
∗
`,SB`ei =

∑M
`=1 (B`PS)∗B`ei = PS

∑M
`=1B

∗
`B`ei =

PSei = 0 (note that PS is self-adjoint). In addition, we can write

‖A∗SAei‖2 =

∥∥∥∥∥ 1

m

m∑
k=1

B∗Jk,SBJk
πJk

ei

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

M∑
k=1

xk

∥∥∥∥∥
2

.

Then,

‖xk‖2 =

∥∥∥∥B∗Jk,SBJkπJk
ei

∥∥∥∥
2

≤
∥∥∥∥B∗Jk,SBJkπJk

ei

∥∥∥∥
1

=

∥∥∥∥e∗i B∗JkBJk,SπJk

∥∥∥∥
1

≤ 1

πJk

∥∥B∗JkBJk,S∥∥∞→∞ ≤ Θ.

Furthermore, one has that

E ‖xk‖22 = E
∥∥∥∥B∗Jk,SBJkπJk

ei

∥∥∥∥2

2

≤ E
∥∥∥∥BJk,S√

πJk

∥∥∥∥2

2→2

∥∥∥∥ BJk√
πJk

ei

∥∥∥∥2

2

≤ ΛE
∥∥∥∥ BJk√

πJk
ei

∥∥∥∥2

2

= Λ‖ei‖22 = Λ,

m∑
k=1

E ‖xk‖22 ≤ mΛ ≤ mΘ.

26



Hence, using the above upper bounds, it follows from Bernstein’s inequality for random vectors
(see Theorem B.2) that

P (‖A∗SAei‖2 ≥ t) ≤ exp

−
(√

mt/
√

Θ− 1
)2

4

 ,

Finally, Inequality (E4) follows from a union bound over i ∈ Sc, which completes the proof. �

D Proof of results in Applications

D.1 Proof of Corollary 4.1

The proof relies on the evaluation of Θ and Υ in the case of isolated measurements. In this case,
we have n blocks composed of isolated measurements. Then, each block corresponds to one of
the rows (a∗k)1≤k≤n of A0. Recall that ‖aka∗k,S‖∞→∞ = max1≤i≤n sup‖v‖∞≤1 |e∗i aka∗k,Sv|, so the
norm ‖aka∗k,S‖∞→∞ is the maximum `1-norm of the rows of the matrix aka

∗
k,S . Therefore, the

quantities in Definition 3.1 can be rewritten as follows

Θ(S, π) := max
1≤k≤n

‖aka∗k,S‖∞→∞
πk

= max
1≤k≤n

‖ak‖∞‖ak,S‖1
πk

(29)

≤ s · max
1≤k≤n

‖ak‖2∞
πk

,

Υ(S, π) = max
1≤i≤n

sup
‖v‖∞≤1

n∑
k=1

1

πk
|e∗i ak|2|a∗k,Sv|2 (30)

≤ sup
‖v‖∞≤1

n∑
k=1

1

πk
‖ak‖2∞|a∗k,Sv|2

≤ sup
‖v‖∞≤1

max
1≤`≤n

‖a`‖2∞
π`

n∑
k=1

|a∗k,Sv|2 = sup
‖v‖∞≤1

‖A0PSv‖22 max
1≤`≤n

‖a`‖2∞
π`

= sup
‖v‖∞≤1

‖PSv‖22 max
1≤`≤n

‖a`‖2∞
π`

≤ s · max
1≤k≤n

‖ak‖2∞
πk

.

Therefore we can choose Γ(S, π) = s ·max1≤k≤n
‖ak‖2∞
πk

, and the result follows by Theorem 3.3.

D.2 Around Corollary 4.3

D.2.1 Proof of Corollary 4.3

Again, this is all about evaluating Θ and Υ in this specific case. Concerning the evaluation of
Υ, we can use the expression (30) to conclude that

Υ(S, π) = max
1≤i≤n

sup
‖v‖∞≤1

n∑
k=1

1

πk
|e∗i ak|2|a∗k,Sv|2.
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To control Θ, using (29), it suffices to write:

Θ(S, π) = max
1≤k≤n

‖aka∗k,S‖∞→∞
πk

≤ max
1≤k≤n

‖ak‖∞‖ak,S‖1
πk

≤ max
1≤k≤n

‖ak‖∞
∑N

`=1 ‖ak,Ω`
‖∞s`

πk
.

By Theorem 3.3, the two conditions

m ≥ C

(
max

1≤k≤n

∑N
`=1 s`‖ak,Ω`

‖∞‖ak‖∞
πk

)
ln(s) ln

(n
ε

)
,

m ≥ C

(
max

1≤i≤n
sup
‖v‖∞≤1

n∑
k=1

1

πk
|e∗i ak|

2
∣∣a∗k,Sv∣∣2

)
ln(s) ln

(n
ε

)
,

lead to the desired conclusion.

D.2.2 Comparison of Corollary 4.3 and the results in [AHPR13].

Note that the sampling in [AHPR13] is based on Bernoulli drawings structured by level. Their
results are then easily transposable to the case of i.i.d. sampling with constant probability by
level. The first condition on m in Corollary 4.3 is similar to condition (4.4) in Theorem 4.4

of [AHPR13], since we recognize the term
‖ak,Ω`

‖∞‖ak‖∞
πk

as the (k, `)-local coherence defined in
[AHPR13]. Let us show that the second condition on m is similar to equation (4.5) in [AHPR13].
First, observe that

max
1≤i≤n

sup
‖v‖∞≤1

n∑
k=1

1

πk
|e∗i ak|

2
∣∣a∗k,Sv∣∣2 ≤ max

1≤`≤N
sup
‖v‖∞≤1

n∑
k=1

1

πk
‖ak,Ω`

‖2∞
∣∣a∗k,Sv∣∣2

≤ max
1≤`≤N

sup
‖v‖∞≤1

n∑
k=1

1

πk
‖ak,Ω`

‖∞ ‖ak‖∞
∣∣a∗k,Sv∣∣2 .

Let ṽ denote the maximizer in the last expression, and define s̃k =
∣∣∣a∗k,S ṽ∣∣∣2 for 1 ≤ k ≤ n. It

follows,

max
1≤i≤n

sup
‖v‖∞≤1

n∑
k=1

1

πk
|e∗i ak|

2
∣∣a∗k,Sv∣∣2 ≤ max

1≤`≤N

n∑
k=1

1

πk
‖ak,Ω`

‖∞ ‖ak‖∞ s̃k, (31)

and
∑n

k=1 s̃k =
∑n

k=1

∣∣∣a∗k,Sv∣∣∣2 = ‖A0PS ṽ‖22 = ‖PS ṽ‖22 ≤
∑N

`=1 s`. The last inequality and

Equation (31) for i.i.d sampling correspond to the condition (4.5) in Theorem 4.4 of [AHPR13]
in the case of Bernoulli sampling. This completes the comparison between Corollary 4.3 and the
results in [AHPR13].

D.3 Proof of Corollary 4.4

Recall that (Ωj)0≤j≤J the dyadic partition of the set of indexes {1, . . . , n}. Recall also the
function j : {1, . . . , n} → {0, . . . , J} defined by j(u) = j if u ∈ Ωj . In the interests of simplifying
notation, in this section, the symbol ’&’ will be equivalent to ’≥ C·’, with C a universal constant.
The following lemma will be useful to bound above the coefficients of A0 in absolute value, and
to derive Lemmas D.2 and D.3.

Lemma D.1. [AHR14a] The magnitude of the coefficients of matrix A0 = Fφ∗, where F is the
1D Fourier transform and φ is the 1D Haar transform, satisfies

‖PΩjA0PΩ`
‖21→∞ . 2−j2−|j−`|, for 0 ≤ j, ` ≤ J. (32)
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Lemma D.2. In the case of isolated measurements, with A0 = Fφ∗ with φ to be the inverse
1D Haar transform, suppose that the signal to reconstruct x is sparse by levels, meaning that
‖PΩjx‖0 ≤ sj for 0 ≤ j ≤ J . Then,

Θ . max
1≤k≤n

2−j(k)

πk

sj(k) +

J∑
`=0

` 6=j(k)

s`2
−|j(k)−`|/2

 . (33)

Choosing πk to be constant by level, i.e. πk = π̃j(k), the last expression can be rewritten as
follows

Θ . max
0≤j≤J

2−j

π̃j

sj +

J∑
`=0
6̀=j

s`2
−|j−`|/2

 . (34)

Proof. Using (29), we can write

Θ = max
1≤k≤n

‖ak‖∞‖ak,S‖1
πk

≤ max
1≤k≤n

‖ak‖∞
∑J

`=0 ‖ak,Ω`
‖∞s`

πk

. max
1≤k≤n

1

πk
2−j(k)/2

J∑
`=0

2−j(k)/22−|j(k)−`|/2s`

. max
1≤k≤n

1

πk
2−j(k)

J∑
`=0

2−|j(k)−`|/2s`,

where we use (32) to bound above ‖ak,Ω`
‖∞. �

Lemma D.3. In the case of isolated measurements, with A0 = Fφ∗ with φ to be the inverse Haar
transform, suppose that the signal to reconstruct x is sparse by levels, meaning that ‖PΩjx‖0 ≤ sj
for 0 ≤ j ≤ J . Choosing πk to be constant by level, i.e. πk = π̃j(k), we have

Υ . max
0≤j≤J

1

π̃j
2−j

J∑
p=0

2−|j−p|/2sp. (35)

Proof. Denoting ṽ = ṽ(i) the argument of the supremum in the definition of Υ, we get

Υ := max
1≤i≤n

n∑
k=1

1

πk
|e∗i ak|2|ak,S ṽ|2 ≤ max

0≤`≤J

n∑
k=1

1

πk
‖ak,Ω`

‖2∞|ak,S ṽ|2

. max
0≤`≤J

n∑
k=1

1

πk
2−j(k)2−|j(k)−`||ak,S ṽ|2 . max

0≤`≤J

J∑
j=0

1

π̃j
2−j2−|j−`|

∑
k∈Ωj

|ak,S ṽ|2︸ ︷︷ ︸
=:Kj

We can rewrite Kj as follows Kj = ‖PΩjA0PS ṽ‖22. Therefore, since ‖ṽ‖∞ ≤ 1,

√
Kj = ‖PΩjA0PS ṽ‖2 = ‖PΩjA0

J∑
p=0

PΩpPS ṽ‖2 ≤
J∑
p=0

‖PΩjA0PΩpPS ṽ‖2

≤
J∑
p=0

‖PΩjA0PΩp‖2→2‖PΩpPS ṽ‖2 ≤
J∑
p=0

‖PΩjA0PΩp‖2→2
√
sp.
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Using Lemma 4.3 of [AHR14a], we have the following upper bound

‖PΩjA0PΩp‖2→2 . 2−|j−p|/2, for 0 ≤ j, p ≤ J.

Then,
√
Kj .

∑J
p=0 2−|j−p|/2

√
sp, and thus

Kj .

 J∑
p=0

2−|j−p|/2
√
sp

2

.

 J∑
p=0

2−|j−p|/2

 J∑
p=0

2−|j−p|/2sp


.

 J∑
p=0

2−|j−p|/2sp


where in the second inequality we use Cauchy-Schwarz inequality. Therefore,

Υ . max
0≤`≤J

J∑
j=0

2−|j−`|
1

π̃j
2−j

J∑
p=0

2−|j−p|/2sp

.

 max
0≤`≤J

J∑
j=0

2−|j−`|

 max
0≤j≤J

1

π̃j
2−j

J∑
p=0

2−|j−p|/2sp


. max

0≤j≤J

1

π̃j
2−j

J∑
p=0

2−|j−p|/2sp.

�

Note that the upper bounds given in Lemmas D.2 and D.3 coincide. Therefore, we can apply
Theorem 3.3 with the following upper bound for Γ(S, π)

Γ(S, π) . max
0≤j≤J

1

π̃j
2−j

J∑
p=0

2−|j−p|/2sp,

and conclude the proof for Corollary 4.4.

D.4 Proof of Corollary 4.7

Recall that A0 = φ ⊗ φ ∈ Cn×n, where φ ∈ C
√
n×
√
n is a 1D orthogonal transform. Consider a

blocks dictionary made of
√
n horizontal lines, i.e. for 1 ≤ k ≤

√
n

Bk =
(
φk,1φ, . . . , φk,

√
nφ
)
, and thus B∗kBk =

(
φ∗k,iφk,jId

√
n

)
1≤i,j≤

√
n
.

Now, let us fix that the signal support S is concentrated on q horizontal lines of the spatial
plane. Formally,

S ⊂ {(j − 1)
√
n+ {1, . . . ,

√
n}, j ∈ J} (36)

where J ⊂ {1, . . . ,
√
n} and |J | = q. Therefore,

B∗kBk,S =
(
δj∈Jφ

∗
k,iφk,jId

√
n

)
1≤i,j≤

√
n
,

where δj∈J = 1 if j ∈ J and 0 otherwise. In such a setting, the quantities in Definition 3.1 can
be rewritten as follows:

Θ(S, π) = max
1≤k≤M

max
1≤i≤n

‖e∗iB∗kBk,S‖1
πk

= max
1≤k≤

√
n

max
1≤ĩ≤

√
n

|φk,̃i|
∑

j∈J |φk,j |
πk

≤ max
1≤k≤

√
n
q
‖φk,:‖2∞
πk

.

(37)
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Recall that

Υ(S, π) := max
1≤i≤n

sup
‖v‖∞≤1

M∑
k=1

1

πk
|e∗iB∗kBk,Sv|

2 ,

and call (i?, v) the argument of the supremum over {1, . . . , n} and {u, ‖u‖∞ ≤ 1}. Therefore,

Υ(S, π) =
M∑
k=1

1

πk
|e∗i?B∗kBk,Sv|

2 .

We can decompose i? = (i1 − 1)
√
n+ i2 with i1, i2 integers of {1, . . . ,

√
n}. We can write

Υ(S, π) =

√
n∑

k=1

1

πk

∣∣∣∣∣∣
√
n∑

j=1

δj∈Jφ
∗
k,i1φk,je

∗
i2v[j]

∣∣∣∣∣∣
2

=

√
n∑

k=1

1

πk
|φk,i1 |2

∣∣∣∣∣∣
√
n∑

j=1

δj∈Jφk,jwj

∣∣∣∣∣∣
2

,

where w ∈ C
√
n such that wj = e∗i2v[j] and v[j] ∈ C

√
n is the restriction of v to the j-th horizontal

line, i.e. to the components of v indexed by {(j − 1)
√
n+ 1, . . . , j

√
n}. We can rewrite the last

expression as follows

Υ(S, π) =

√
n∑

k=1

1

πk
|φk,i1 |2 |〈ek, φPJw〉|

2 ≤ max
1≤`≤

√
n

1

π`
|φ`,i1 |2

√
n∑

k=1

|〈ek, φPJw〉|2

= max
1≤`≤

√
n

1

π`
|φ`,i1 |2‖φPJw‖22 = max

1≤`≤
√
n

1

π`
|φ`,i1 |2‖PJw‖22

≤ max
1≤`≤

√
n

1

π`
|φ`,i1 |2 · q,

where in the last expression we use that ‖w‖∞ ≤ 1. Choosing φ as the 1D Fourier transform gives
‖φ`,:‖∞ = 1

n1/4 and choosing a uniform sampling among the
√
n horizontal lines, i.e. π?` = 1/

√
n

for 1 ≤ ` ≤
√
n, leads to

Γ(S, π?) ≤ q,

which ends the proof of Corollary 4.7.

D.5 Proof of Corollary 4.9

We recall that the sampling matrix is then constructed from the full sampling matrix A0 ∈ Cn×n,
in the 2D setting, where A0 = F2DΨ∗ with F2D ∈ Cn×n the 2D Fourier transform and Ψ∗ ∈ Cn×n
the 2D inverse wavelet transform. Since both transforms are separable, F2D = F ⊗ F , Ψ =
ψ ⊗ ψ, with ⊗ the Kronecker product and F , ψ ∈ C

√
n×
√
n the corresponding 1D transforms.

Then A0 can also be rewritten as A0 = φ ⊗ φ, the Kronecker product of the 1D transforms
φ := Fψ∗ ∈ C

√
n×
√
n.

In this section, in order to avoid any confusion, we will denote by
(
e

(n)
i

)
1≤i≤n

the canonical

basis in dimension n.
In Corollary 4.9, we focus on the case where A0 = φ⊗ φ ∈ Cn×n is the 2D Fourier-Shannon

wavelet transform, then φ ∈ C
√
n×
√
n is the 1D Fourier-Shannon wavelets transform. Therefore,

φ and A0 are block-diagonal orthogonal matrices. The sensing schemes are based on horizontal
lines on the 2D plane, meaning that

Bk =
(
φk,1φ . . . φk,

√
nφ
)
,

for k = 1, . . . ,
√
n. By defintion of the Fourier-Shannon transform, we have that

B∗kBk =
(
φ∗k,`φk,mId√n

)
1≤`,m≤

√
n

=
1

2j(k)

(
δ`∈τj(k)

δm∈τj(k)
Id√n

)
1≤`,m≤

√
n
,
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for k = 1, . . . ,
√
n, where δ`∈τj = 1 if ` ∈ τj , and 0 otherwise.

First let us start with the evaluation of Θ. By definition of ‖ · ‖∞→∞, we have

‖B∗kBk,S‖∞→∞ = max
1≤`≤n

sup
‖v‖∞≤1
v∈Cn

∣∣∣(e(n)
`

)∗
B∗kBkPSv

∣∣∣ .
Setting ṽ = ṽ(k) the argument of the supremum in the last expression, then

Θ := max
1≤k≤

√
n

max
1≤`≤n

1

πk

∣∣∣(e(n)
`

)∗
B∗kBkPS ṽ

∣∣∣ ,
Note that ‖ṽ‖∞ ≤ 1. The index ` can be rewritten as ` = (`1− 1)

√
n+ `2, with 1 ≤ `1, `2 ≤

√
n.

Θ := max
1≤k≤

√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣∣∣φ∗k,`1 (φk,m (e(
√
n)

`2

)∗)
1≤m≤

√
n
PS ṽ

∣∣∣∣ ,
= max

1≤k≤
√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣∣∣∣∣φ∗k,`1
√
n∑

m=1

φk,m

(
e

(
√
n)

`2

)∗
(PS ṽ) [m]

∣∣∣∣∣∣ ,

where (v) [m] ∈ C
√
n is the restriction of the vector v to the m-th horizontal line, i.e. to

the components indexed by {(m − 1)
√
n + 1, . . . ,m

√
n}. Set w|(m) := (PS ṽ) [m] ∈ C

√
n, the

restriction of PS ṽ to the m-th horizontal line. Then the `2-th component of w|(m), written as

w
|(m)
`2

is equal to
(
e

(
√
n)

`2

)∗
(PS ṽ) [m]. Note that

∣∣∣w|(m)
`2

∣∣∣ ≤ 1 if (m − 1)
√
n + `2 ∈ S, and it is

equal to 0 otherwise. Then,

Θ ≤ max
1≤k≤

√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣∣∣∣∣φ∗k,`1
√
n∑

m=1

φk,mw
|(m)
`2

∣∣∣∣∣∣ . (38)

By the properties of block-diagonality of the Fourier-Shannon transform, we have

Θ ≤ max
1≤k≤

√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣∣∣∣∣φ∗k,`1
∑

m∈τj(k)

φk,mw
|(m)
`2

∣∣∣∣∣∣ (39)

≤ max
1≤k≤

√
n

max
1≤`2≤

√
n

1

πk
‖φk,:‖2∞

∣∣∣∣∣∣
∑

m∈τj(k)

w
|(m)
`2

∣∣∣∣∣∣
≤ max

1≤k≤
√
n

max
1≤`2≤

√
n

1

πk
‖φk,:‖2∞

∑
m∈τj(k)

∣∣∣w|(m)
`2

∣∣∣
. max

1≤k≤
√
n

1

πk

1

2j(k)
scj(k). (40)

Indeed,
∑

m∈τj(k)

∣∣∣w|(m)
`2

∣∣∣ is bounded above by
∑

m∈τj(k)
δ(m−1)

√
n+`2∈S , which counts the number

of intersections between S, the `2th-column and the j(k) (horizontal) level, see the blue line in
Figure 3. Taking the maximum over 1 ≤ `2 ≤

√
n leads to

∑
m∈τj(k)

δ(m−1)
√
n+`2∈S ≤ s

c
j(k).

Secondly, let us evaluate Υ. We have that

Υ := max
1≤`≤n

√
n∑

k=1

1

πk

∣∣∣(e(n)
`

)∗
B∗kBkṽ

∣∣∣2 ,
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where ṽ = ṽ(`) is the argument of the supremum on the `∞ unit-ball. Using (39), with ` =
(`1 − 1)

√
n+ `2, we can rewrite

Υ = max
1≤`1,`2≤

√
n

√
n∑

k=1

1

πk

∣∣∣∣∣∣φ∗k,`1
√
n∑

m=1

φk,mw
|(m)
`2

∣∣∣∣∣∣
2

,

where w
|(m)
`2

:=
(
e

(
√
n)

`2

)∗
(PS ṽ) [m]. Note again that

∣∣∣w|(m)
`2

∣∣∣ ≤ 1 if (m − 1)
√
n + `2 ∈ S, and it

is equal to 0 otherwise. By denoting w|(:,`2) the vector with components

w|(:,`2) :=
(
w
|(1)
`2
, w

|(2)
`2
, . . . , w

|(
√
n)

`2

)∗
, (41)

we can rewrite the previous quantity as follows

Υ = max
1≤`1,`2≤

√
n

√
n∑

k=1

1

πk

∣∣∣φ∗k,`1 〈φ∗k,:, w|(:,`2)
〉∣∣∣2 (42)

= max
1≤`1,`2≤

√
n

√
n∑

k=1

1

πk
|φk,`1 |

2
∣∣∣〈φ∗k,:, w|(:,`2)

〉∣∣∣2 .
Since φ is an orthogonal block-diagonal transform, we have

Υ = max
1≤`1,`2≤

√
n

∑
k∈τj(`1)

1

πk
|φk,`1 |

2
∣∣∣〈φ∗k,:, w|(:,`2)

〉∣∣∣2 .
Choosing πk = π̃j for k ∈ τj meaning that the probability of drawing lines is constant by levels,
we can write that

Υ = max
1≤`1,`2≤

√
n

1

π̃j(`1)

∑
k∈τj(`1)

|φk,`1 |
2
∣∣∣〈φ∗k,:, w|(:,`2)

〉∣∣∣2 ,
≤ max

1≤`1,`2≤
√
n

1

π̃j(`1)

∑
k∈τj(`1)

‖φk,:‖2∞
∣∣∣〈φ∗k,:, w|(:,`2)

〉∣∣∣2 ,
. max

1≤`1,`2≤
√
n

2−j(`1)

π̃j(`1)

∑
k∈τj(`1)

∣∣∣〈φ∗k,:, w|(:,`2)
〉∣∣∣2 ,

= max
1≤`1,`2≤

√
n

2−j(`1)

π̃j(`1)

∥∥∥Pτj(`1)
φw|(:,`2)

∥∥∥2

2
.

Since φ is orthogonal and block diagonal we have
∥∥∥Pτj(`1)

φw|(:,`2)
∥∥∥2

2
= ‖Pτj(`1)

w|(:,`2)‖22. Then,

Υ . max
1≤`1,`2≤

√
n

2−j(`1)

π̃j(`1)

∥∥∥Pτj(`1)
w|(:,`2)

∥∥∥2

2
,

. max
1≤`1≤

√
n

2−j(`1)

π̃j(`1)
scj(`1), (43)

where the last step invokes that ‖Pτj(`1)
w|(:,`2)‖22 ≤

∑
m∈τj(`1)

δ(m−1)
√
n+`2∈S ≤ scj(`1). Note that

the upper bounds (40) and (43) on Υ and Θ coincide. They lead to the following choice for
1 ≤ k ≤

√
n,

πk = π̃j(k) =
scj(k)2

−j(k)∑√n
`=1 s

c
j(`)2

−j(`)
=

scj(k)2
−j(k)∑J

j=0

∑
`∈τj s

c
j2
−j

=
scj(k)2

−j(k)∑J
j=0 s

c
j

.
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Then for this particular choice, we can rewrite

max(Θ,Υ) .
J∑
j=0

scj .

To conclude, by Theorem 3.3, a lower bound on the required number of horizontal lines to
acquire is thus

m &
J∑
j=0

scj ln(s) ln(n/ε).

D.6 Proof of Corollary 4.10

In this part, using the formalism introduced in the last section, ψ is the 1D Haar transform, and
φ is then the Fourier-Haar’s wavelet transform. In such a case, we can reuse (38) in Section D.5
to evaluate Θ:

Θ ≤ max
1≤k≤

√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣∣∣∣∣φk,`1
√
n∑

m=1

φk,mwm[`2]

∣∣∣∣∣∣ .
Using Lemma D.1, we have for 1 ≤ k,m ≤

√
n,

|φk,m| . 2−j(k)/22−|j(k)−j(m)|/2.

Therefore,

Θ ≤ max
1≤k≤

√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣φ∗k,`1∣∣
√
n∑

m=1

∣∣∣φk,mw|(m)
`2

∣∣∣
≤ max

1≤k≤
√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣φ∗k,`1∣∣ J∑
j=0

∑
m∈τj

|φk,m|
∣∣∣w|(m)

`2

∣∣∣
≤ max

1≤k≤
√
n

max
1≤`1,`2≤

√
n

1

πk

∣∣φ∗k,`1∣∣ J∑
j=0

∑
m∈τj

|φk,m|
∣∣∣w|(m)

`2

∣∣∣
. max

1≤k≤
√
n

max
1≤`2≤

√
n

1

πk
2−j(k)

J∑
j=0

2−|j(k)−j|/2
∑
m∈τj

∣∣∣w|(m)
`2

∣∣∣
. max

1≤k≤
√
n

1

πk
2−j(k)

J∑
j=0

2−|j(k)−j|/2scj . (44)

Now let us study Υ. Recall the definition of w|(:,`2) depending on `2 in (41), we can reuse
(42) to have

Υ = max
1≤`1,`2≤

√
n

√
n∑

k=1

1

πk

∣∣∣φ∗k,`1 〈φ∗k,:, w|(:,`2)
〉∣∣∣2

= max
1≤`1,`2≤

√
n

√
n∑

k=1

1

πk

∣∣φ∗k,`1∣∣2 ∣∣∣〈φ∗k,:, w|(:,`2)
〉∣∣∣2,

= max
1≤`1,`2≤

√
n

J∑
j=0

1

π̃j

∑
k∈τj

∣∣φ∗k,`1∣∣2 ∣∣∣〈φ∗k,:, w|(:,`2)
〉∣∣∣2,
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by choosing πk = π̃j for k ∈ τj , meaning that the drawing probability is constant by level. Since

for k ∈ τj , we have
∣∣∣φ∗k,`1∣∣∣2 ≤ 2−j2−|j−j(`1)| by Lemma D.1. Then,

Υ = max
1≤`1,`2≤

√
n

J∑
j=0

1

π̃j
2−j2−|j−j(`1)|

∑
k∈τj

∣∣∣〈φ∗k,:, w|(:,`2)
〉∣∣∣2

︸ ︷︷ ︸
=:Kj

.

Dealing with Kj , we can derive that

√
Kj =

∥∥∥Pτjφ∗w|(:,`2)
∥∥∥

2
=

∥∥∥∥∥Pτjφ∗
J∑
r=0

Pτrw
|(:,`2)

∥∥∥∥∥
2

≤
J∑
r=0

∥∥Pτjφ∗Pτr∥∥2→2

∥∥∥Pτrw|(:,`2)
∥∥∥

2

.
J∑
r=0

2−|j−r|/2
√
scr,

where the upper bound
∥∥Pτjφ∗Pτr∥∥2→2

. 2−|j−r|/2 can be found in [AHR14a, Lemma 4.3].
Then,

Kk .

(
J∑
r=0

2−|j−r|/2
√
scr

)2

.

(
J∑
r=0

2−|j−r|/2

)(
J∑
r=0

2−|j−r|/2scr

)

.
J∑
r=0

2−|j−r|/2scr.

Therefore,

Υ . max
1≤`1≤

√
n

J∑
j=0

1

π̃j
2−j2−|j−j(`1)|

J∑
r=0

2−|j−r|/2scr

.

 max
1≤`1≤

√
n

J∑
j=0

2−|j−j(`1)|

( max
0≤j≤J

2−j

π̃j

J∑
r=0

2−|j−r|/2scr

)

. max
0≤j≤J

2−j

π̃j

J∑
r=0

2−|j−r|/2scr. (45)

The upper bounds (44) and (45) give

max(Θ,Υ) . max
0≤j≤J

2−j

π̃j

J∑
r=0

2−|j−r|/2scr.

Therefore, by Theorem 3.3, a lower bound on the required number of horizontal lines is

m & max
0≤j≤J

2−j

π̃j

J∑
r=0

2−|j−r|/2scr ln(n/ε) ln(s).

By choosing

πk = π̃j(k) =
2−j(k)

∑J
r=0 2−|j(k)−r|/2scr∑√n

`=1 2−j(`)
∑J

r=0 2−|j(`)−r|/2scr
,
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for 1 ≤ k ≤
√
n, the lower bound on the required number of horizontal lines can be rewritten as

m &

√
n∑

`=1

2−j(`)
J∑
r=0

2−|j(`)−r|/2scr · ln(n/ε) ln(s)

&
J∑
j=0

∑
`∈τj

2−j
J∑
r=0

2−|j−r|/2scr · ln(n/ε) ln(s)

&
J∑
j=0

J∑
r=0

2−|j−r|/2scr · ln(n/ε) ln(s)

&
J∑
j=0

scj +

J∑
r=0
r 6=j

2−|j−r|/2scr

 · ln(n/ε) ln(s),

which concludes the proof of Corollary 4.10.
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