
HAL Id: hal-01149441
https://hal.science/hal-01149441

Submitted on 7 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of EIRP Constraint on MU-MIMO 802.11ac
Capacity Gain in Home Networks

Khouloud Issiali, Valéry Guillet, Ghaïs El Zein, Gheorghe I. Zaharia

To cite this version:
Khouloud Issiali, Valéry Guillet, Ghaïs El Zein, Gheorghe I. Zaharia. Impact of EIRP Constraint on
MU-MIMO 802.11ac Capacity Gain in Home Networks. Mediterranean Conference on Information &
Communication Technologies (MEDICT) 2015, May 2015, Saïdia, Morocco. pp.75-84, �10.1007/978-
3-319-30301-7_9�. �hal-01149441�

https://hal.science/hal-01149441
https://hal.archives-ouvertes.fr


Impact of EIRP Constraint on MU-MIMO 802.11ac 

Capacity Gain in Home Networks 

 

Khouloud Issiali
1
, Valéry Guillet

1
, Ghais El Zein

2 
, Gheorghe Zaharia

2
, 

1

Orange Labs, 1 Rue Louis et Maurice de Broglie, 90007 Belfort Cedex, France 
2 IETR – INSA, UMR 6164, 20 av. des buttes de Coësmes, CS 70839, 

35708 Rennes Cedex 7, France 

 

{ Khouloud Issiali, Valery Guillet}@orange.com 

{Ghais.El-Zein, Gheorghe.Zaharia}@insa-rennes.fr 

Abstract. In this paper, we evaluate a downlink Multi-User Multiple-Input 

Multiple-Output (MU-MIMO) scenario, in which a 802.11ac access point with 

multiple antennas (up to 10) is transmitting to two receivers, each one with two 

antennas. Block diagonalization (BD) method is investigated under the 

Equivalent Isotropic Radiated Power (EIRP) constraint. This study shows that 

scaling the transmitted power according to the EIRP constraint can improve the 

multi-user (MU) sum capacity to single-user (SU) capacity ratio compared to 

the gain achieved under the transmitted power constraint. 

1   Introduction 

Techniques such as MU-MIMO in IEEE802.11ac systems are proposed to increase 

the throughput up to 1 Gbps [1]. These techniques consist of applying a linear 

precoding to the transmitted spatial streams. Consequently, the antenna array pattern 

and gain are modified as functions of the user location and propagation channel 

properties. This directly impacts the Equivalent Isotropic Radiated Power (EIRP).  

The European regulation sets the EIRP limit in the 5 GHz frequency bands to 200 

mW or 1 W depending on the propagation channels. This limit differs in other 

countries where it is defined based on the total transmitted power. 

The EIRP constraint is rarely evaluated in the literature for MIMO systems. In 

most of the MIMO performance results, the packet error rate or the capacity value is 

evaluated based on the same total transmitted power (   ) which is a function of the 

Signal to Noise Ratio (SNR). The used SNR is commonly defined as the ratio of the 

average total transmitted power to the average noise power. The propagation channel 

is usually normalized to have an average path loss of 0 dB. Few recent studies have 

focused on the capacity optimization problems under total transmitted (Tx) power 

constraint [2-4]. This optimization is sometimes performed on each subcarrier of the 

802.11 OFDM signal [2]. In [5], a new EIRP-based solution for IEEE 802.11 power 

scaling is proposed. However, this study is dedicated to only one single user system 

with a single spatial stream. 
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The linear precoding applied for MU-MIMO processing, like Block 

Diagonalization (BD) [3], [6], modifies dynamically the antenna array pattern and 

gain. This changes the EIRP of the Tx antenna array if Tx power remains unchanged. 

MU-MIMO and Transmit Beamforming (TxBF) are commonly associated with a 

large number of Tx antennas used to improve the antenna array gain and performance, 

as previously stated for narrowband i.i.d Rayleigh SISO channels forming the MIMO 

channel in [4], [6]. In the case of the EIRP constraint, it may not be evident that TxBF 

and MU-MIMO linear precoding still improve the system performance. 

Therefore, this paper evaluates the impact of the EIRP constraint on 802.11ac MU-

MIMO capacity gain using Matlab simulations. Two different power allocation 

schemes of the spatial streams are analyzed to optimize MU-MIMO capacity: equal 

and unequal power repartition under the same EIRP constraint. A typical indoor 

residential environment is evaluated based on the IEEE TGac correlated channels [7], 

[8]. Comparisons are given versus an i.i.d. Rayleigh coefficients. 

The rest of this paper is organized as follows. Section 2 describes the system model 

and briefly presents the BD algorithm. The problem formulation to compute the sum 

capacity for MU-MIMO system under the EIRP constraint is given in Section 3. 

Section 4 describes the simulation process and presents the simulation results with 

analysis. Finally, the conclusion is drawn in Section 5. 

We briefly summarize the notation used throughout this article. 

Superscripts    ,     and    ̅   denote the transposition, transpose conjugate and the 

complex conjugate, respectively. Expectation (ensemble averaging) is denoted by E(.). 

The Frobenius norm of a matrix is written as     . Index k is used as a user index and it 

runs from 1 to K, where K is the number of users in the studied system. 

2   System Model 

2.1 System Overview 

 

The studied 802.11ac MU-MIMO system is composed of K users connected to one 

Access Point (AP) as shown in Fig. 1. The access point has    antennas and each user 

k has    
 receiving antennas. We define    ∑    

 
   . The      (where    is the 

number of parallel symbols transmitted simultaneously for the k
th

 user) transmit 

symbol vector   is preprocessed at the access point before being transmitted. For each 

802.11ac OFDM subcarrier, the received signal at the k
th
 receiver is given by: 

 

 
 

          ∑     
 
                                               (1) 

  

where    is an    
    matrix that refers to the MIMO channel matrix for the k

th
 

receiver,    is the noise vector composed of complex Gaussian noise (      
   

  
     

), and    is the BD precoding matrix (       intended to the k
th
 user 

resulting in a precoding matrix             The size of W is nT x L, with 

L=L1+L2+…+LK  



 

 

Fig. 1. Diagram of MU-MIMO system. 

 

 Block diagonalization [4], [6] is a transmit preprocessing technique for downlink 

MU-MIMO systems. BD decomposes the MU-MIMO downlink system into K parallel 

independent SU-MIMO downlink systems. The BD method consists first of perfectly 

suppressing the inter-user interference (IUI) (IUI =   ∑     
 
         in order to have 

parallel SU-MIMO systems. Then, a classic TxBF is applied to optimize the capacity 

for each user [9]. In this study, we set K = 2, but the results and algorithms can be 

generalized to any K number of users. Furthermore, we assume perfect knowledge of 

channel state information at the transmitter. 

 

2.2 Channel Model 

 

MU-MIMO performance is related to the propagation channel properties. In this study, 

the channel model specified for the 802.11ac standard within the TGac task group [8] 

is selected. This channel model takes into account realistic transmit and receive 

correlation contrary to an i.i.d Rayleigh channel. It is based on a cluster model [7] 

amended by the TGac task group for the IEEE 802.11ac standard. The TGac 

modifications concern the power angular spectrum to allow MU-MIMO operation and 

are summarized as follows [8]: 

 The defined TGn azimuth spread for each cluster remains the same for all 

users. 

 For each user, independent random offsets between +/-180° are introduced for 

the angle of arrival (AoA), the direct tap and the Non Line Of Sight NLOS 

taps. 

 For each user, independent random offsets between +/-30° are introduced for 

the angle of departure (AoD), the direct tap and the NLOS taps. 

In this study, a typical home network is evaluated by using the channel model 

TGac-B (15 ns RMS delay spread) for the 5.25 GHz frequency band. Rayleigh fading 

is exhibited for each one of the 9 uncorrelated taps, except for the Line Of Sight (LOS) 



tap which follows a Rice fading with a 0 dB Rician factor. This study focuses on the 

TGac-B NLOS channel model. Similar results are obtained with the TGac-B LOS 

channel model as the 0 dB Rician factor does not display significantly different results 

from the TGac-B NLOS channel model. For each 802.11ac OFDM subcarrier, the 

channel matrix is computed through a discrete Fourrier transformation (size: 56 

subcarriers) of the tap delay representation. For comparison, an i.i.d Rayleigh channel 

is also evaluated. 

We apply the common normalization   |     )       for each subcarrier 

which means an average propagation loss equal to 0 dB. 

3 Problem Statement 

3.1 Usual Definitions 

 

The MU-MIMO system is decomposed into K independent SU-MIMO systems by 

applying the BD algorithm. For each one of the 802.11ac OFDM subcarriers, the MU-

MIMO sum capacity is expressed as follows [4]: 

 

    ∑ ∑        
   

  
    

  
   
   

 
                            (2) 

 

where     is the power dedicated to the i
th
 antenna for the k

th
 user,    

  are the 

eigenvalues of the effective channel for the k
th

 user after applying the IUI cancellation 

[3] and   
  is the noise power. The subcarrier index is not mentioned throughout this 

paper in order to simplify the notations, but since     is related to H,     depends on 

each OFDM subcarrier. 

 For the corresponding SU-MIMO systems and for relevant comparisons with MU-

MIMO, the number of antennas    and    remains unchanged. The considered SU-

MIMO system applies a singular value decomposition and its capacity     is computed 

as detailed in [9] for each OFDM subcarrier. 

 

3.2 EIRP in Linear Precoding 

 

For any receiver location, i.e. for any H matrix, the transmit antenna array pattern is 

modified by the W precoding matrix. We have used a linear array of omnidirectional 0 

dBi gain antennas with a regular spacing  , typically   =      The transmitter antenna 

array, manifold      as a function of the   angle with the array axis, is defined as: 

 

      (                                                        ).                       (3)                             

 

In practice with real antennas, a 3D antenna pattern can be included in this 

processing. Since the used TGac channel model is only a 2D model, the antenna array 

pattern expression is simplified to a 2D problem. The average radiated power      in 



any direction    relative to the antenna array direction is expressed as a function of the 

input signals   = (        
): 

 

                                                                         (4) 

 

With x = Ws, the radiated power contribution of any subcarrier is simply expressed 

as a function of the transmit diagonal correlation matrix 

       ̅                                 
  as:  

 

             ̅̅ ̅̅                                                        (5) 

 

Considering all the subcarriers of the 802.11ac system, the total radiated power      

is expressed as: 

 

          ∑               ,                                             (6) 

 

and the EIRP is: 

 

                                                                      (7) 

 

In the particular case in which the total power     is equally shared among the spatial 

streams, we have     
    

   
 where     denotes the total number of spatial streams. 

Thus,      can be simplified as: 

 

     
  

   
        ̅̅ ̅̅          .                                          (8) 

 

3.3 Optimization Problems 

 

The capacity optimization process consists of finding the optimal value of the Tx 

power     compatible with the EIRP constraint. Considering the spatial streams, two 

power allocation schemes are evaluated: equal power allocation and unequal power 

allocation. For practical reasons, such as the computation time, this paper focused on 

the case where each subcarrier has the same allocated total Tx power. Furthermore, an 

unequal subcarrier power allocation may not have a favorable impact on the peak-to-

average power ratio of the OFDM signal. The general optimization problem is thus 

expressed for each subcarrier as: 

 

{
      

∑ ∑        
   

  
    

  
   
   

 
   

                 
                                        (9) 

To find the optimal solution of such a convex problem, the optimization is 

performed using a Matlab-based modelling for convex optimization namely CVX 



[10]. A simpler optimization problem consists of solving the case with equally 

distributed powers, i.e.     
    

   
. This optimization problem has only one variable   . 

The problem is simplified by seeking the maximum antenna array gain 
    

    
 and then 

scaling the power according to the EIRP limit. The case K=1 uses the same 

optimization method for computing the SU-MIMO capacity for both equal and 

unequal power allocation under EIRP constraint. 

 

3.4 Evaluated Systems and SNR Considerations 

 

802.11ac MU-MIMO systems based on BD schemes are evaluated. The results are 

presented in Section 4 and are compared to SU-MIMO systems relying on the same 

antennas and total power or EIRP constraint. Three capacity optimization techniques 

are evaluated and compared. The first one is the usual MIMO system (denoted basic), 

with a constant Tx power     equally shared among the spatial streams. BD-basic and 

SU-basic denote the corresponding studied systems. For this case, the average signal 

to noise ratio SNR is defined as     
     

  
 . This is the common SNR definition 

adopted in most of the published MIMO capacity studies. 

The second optimization considers a 23 dBm EIRP constraint and a total Tx power 

equally shared among the spatial streams. This optimization is labelled eirp-equal. A 

dynamic power scaling is applied, as detailed above, as a function of each channel 

matrix snapshot H. SUeirp-equal and BDeirp-equal denote respectively the 

corresponding SU and MU systems applying this technique. 

The third one (eirp-unequal) considers a 23 dBm EIRP constraint and a total Tx 

power unequally and dynamically shared among the spatial streams. SUeirp-unequal 

and BDeirp-unequal denote the corresponding systems applying this technique. 

For eirp-equal and eirp-unequal systems, the common SNR definition is biased as 

     is no more constant, and depends on each channel matrix computation. We 

subsequently define the average SNReirp under EIRP constraint as SNReirp = 
     

  
  for 

eirp-equal and eirp-unequal systems.  

Note that the maximum antenna array gain is      Since     
     

  
  for a basic 

system, it implies that its corresponding SNReirp value is upper bounded by 
       

  
 . 

4 Simulation Results and Analysis 

4.1 Simulation Process and Parameters 

 

The simulated system is composed of one access point equipped with multiple 

antennas (linear array of 0 dBi omnidirectionnal and vertically polarized antennas), 

and two receivers. Each receiver has two 0 dBi omnidirectionnal antennas. By default, 

the antenna spacing is set to 0.5λ. A Matlab source code [11] was used to compute the 

different 802.11ac TGac-B channel samples over a 20 MHz bandwidth. To have 



representative results, 100 couples of users (K = 2) are randomly drawn around the 

access point following the IEEE TGac recommendations [9]. For each drawing, we 

use a simulation length equal to 55 coherence times of the MIMO channel to simulate 

the fading. By setting the ―Fading Number of Iterations‖ in the Matlab channel model 

to 512, 488 interpolated channel samples are collected for each couple of users to 

simulate 10 fading periods. 

All the results are compared to an i.i.d Rayleigh channel and presented in terms of 

the MU-MIMO to SU-MIMO capacity ratio. 

 

4.2 Results for Equal Power Allocation 

 

Figures 2 and 3 display the simulation results in terms of the MU-MIMO to SU-

MIMO capacity ratio for basic and eirp-equal systems. Average values, 10% and 

90% quantiles (q10 and q90) are represented to estimate the confidence intervals. 

SNReirp is set to 20 dB for eirp-equal and SNR for basic is also set to 20 dB.     varies 

from 4 to 10 Tx antennas. 

These figures show that the MU to SU-MIMO capacity ratio increases with the 

number of transmit antennas for TGac-B and Rayleigh channels. The ratio changes 

from 1.2 to 1.77 for the eirp-equal system in a residential environment,  which 

represents more than 50% of capacity gain. Note that the gain without the EIRP 

constraint is around 45%. It has been shown in previous studies that increasing the 

number of transmit antennas favorably impacts the capacity gain on an i.i.d Rayleigh 

channel under SNR constraint [4], [6]. We have been able to prove that this result holds 

even under the EIRP constraint and with correlated channels as in TGac models. The 

difference between the the 10% and 90% quantiles reduces as the number of antennas 

increases. This shows that fading has less impact on the capacity values which become 

less scattered. 

 

Fig. 2. MU to SU capacity ratio for an IEEE TGac-B channel (residential). 
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Fig. 3. MU to SU capacity ratio for an i.i.d Rayleigh channel. 

The basic and eirp-equal comparisons are biased. In fact, a system relying on a 

total Tx power does not satisfy a constant EIRP constraint since it may have an 

increasing EIRP as    increases. Intuitively, we could expect that for a basic system, 

the MU-MIMO to SU-MIMO capacity ratio increases more rapidly in function of 

   than for an eirp-equal system, but simulations prove the opposite. In fact SU-

MIMO takes advantage of the power    when the system is not under EIRP constraint. 

For instance in our simulated case (K = 2) where    =4 for MU-MIMO and NSS=2 

for each one of the single users, the EIRP reached by the MU-MIMO system 

(        is expressed as        
    

   
    

 

         ̅̅ ̅̅             and is upper 

bounded by   
    

 
. Similarly, for the same value of     , the single user EIRP is upper 

bounded by   
    

 
. This means that for a system under the same EIRP constraint, the 

allocated power tends to be lower for SU-MIMO than for MU-MIMO. For the basic 

system, the allocated power is the same for SU-MIMO and MU-MIMO. Fig.4 shows 

the average capacity value for MU and SU. It is well observed that the SU capacity 

increases rapidly with   . 

 

4.3 Impact of Power Allocation Strategy 

To check whether the MU-MIMO capacity always outperforms the SU-MIMO, we 

have evaluated the probability when the MU-MIMO capacity is lower than the SU-

MIMO capacity. This is illustrated in Fig.5 for eirp-equal and eirp-unequal schemes 

versus the number of transmit antennas. 

Fig.5 shows that there are some channel snapshots for which the MU-MIMO is 

less efficient than SU-MIMO in terms of capacity, particularly when     is equal to 4. 

The probability reaches 20% for equal power repartition between spatial streams. 
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However, the unequal power repartition decreases this probability by 6%. We also 

observe that the MU-MIMO capacity gain for unequal repartition is slightly greater 

than the one observed for a fair power distribution. Nevertheless, the gain is not 

significant: we have around 3% of capacity gain by contrast to high computational 

complexity. The probability is almost          for      and is equal to 0 for 

    . These results can be explained by examining the overall system: for     , 

the MU-MIMO system is composed of 4 antennas in the transmit and the receive 

sides with 4 spatial streams. This gives no diversity possibilities. The number of 

spatial streams becomes strictly less than the number of Tx antennas since    

increases. As a result, the system takes benefit from the transmit diversity and thus 

shows probabilities which tend to 0. 

 
Fig. 4.  Capacity value achieved by the basic and eirp-equal systems

 

Fig. 5.                  versus the number of transmit antennas 
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Conclusion 

In this paper, we have formulated an optimization problem for 802.11ac MU-MIMO 

systems, considering multiple spatial streams for each user and taking into account the 

EIRP constraint. Then we have derived numerical results for a typical home network 

environment and correlated 802.11ac channel models. Two transmit power allocation 

methods have been evaluated: equal and unequal repartition based under the same 

EIRP constraint. We have compared these two strategies with the more common MU-

MIMO under the total Tx power constraint. We have shown that MU-MIMO 

precoding takes benefit from the EIRP constraint. In particular, we have shown that 

under EIRP constraint, it is recommended to have a transmit antenna number greater 

than the total number of spatial streams to guarantee a MU-MIMO capacity gain over 

SU-MIMO. 

In further work, MU-MIMO measurements will be performed to validate these results 

with real propagation channels. 
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