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Many two-phase materials suffer from grain-growth due to the energy cost which is associated
with the interface that separates both phases. While our understanding of the driving forces and
the dynamics of grain growth in different materials is well advanced by now, current research efforts
address the question of how this process may be slowed down, or, ideally, arrested. We use a model
system of two bubbles to explore how the presence of a finite surface elasticity may interfere with the
coarsening process and the final grain size distribution. Combining experiments and modelling in the
analysis of the evolution of two bubbles, we show that clear relationships can be predicted between
the surface tension, the surface elasticity and the initial/final bubble polydispersity. Besides their
general interest, the present results have direct implications for our understanding of foam stability.

I. INTRODUCTION

Materials consisting of grains separated by well-defined
interfaces are ubiquitous. Examples include polycrys-
talline solids [1], magnetic garnet films [2], two-
phase ferrofluidic mixtures [3], superconducting mag-
netic froths [4], foams [5, 6] or emulsions [7]. In such
systems, the positive energy associated with the inter-
faces is the driving force of a characteristic grain growth
or ”coarsening” process by which smaller grains tend to
disappear while larger grains grow, leading to a progres-
sive reduction of the overall interfacial energy and to
characteristic asymptotic grain size distributions.

While our understanding of the main mechanisms of
grain growth in these different systems has advanced sig-
nificantly, much effort is now dedicated to the question
of how this grain growth may be controlled or, ideally,
completely arrested. Since the historic work by the met-
allurgist S. C. Smith [8], liquid foams have served repeat-
edly as model systems for related questions. We return
here to this model system in order to tackle the question
of how grain growth may be arrested by the presence of
a surface elasticity [9, 10]. In this case, the interfaces
have a surface tension γ which depends on the interfa-
cial area A leading to an additional resistance to grain
growth. This resistance is characterised by a dilational
elastic surface modulus E defined as

E =
∂γ

∂ lnA
. (1)

In this context, a classical prediction for the growth ar-
rest was given by Gibbs [9]. It consists in considering a
single spherical bubble of radius R and of surface area
A = 4πR2 in a liquid at constant pressure pliq. In the
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FIG. 1: Experimental set-up and bubble volume evolution.
Top: Photographs of the bubbles at four different times (the
scale bar is 1 cm). Bottom right: Setup. Two bubbles are pre-
pared in a nanoparticle dispersion and left to equilibrate. A
valve connects both bubbles. It is opened at t0. Gas exchange
between both bubbles occurs until their volumes reach their
final values. Bottom left: Evolution of the bubble volumes
(mm3) for three different experiments. Arbitrary time shifts
have been applied for clarity. Experiment A (resp B and C)
is represented by squares (resp. circles and triangles). Filled
symbols are for the growing bubbles while open symbols stand
for the shrinking bubbles. The present study focuses on the
black data points corresponding to monotonically changing
volumes and surface areas. The last such point is marked in
green and the corresponding time is called tf . Points outside
this range are represented in blue. Red points for experi-
ment A correspond to a regime of larger surface elasticity, see
Fig. 2b).
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absence of a surface elasticity, the gas pressure pgas inside
the bubble exceeds that in the liquid, the corresponding
pressure drop being given by the Young-Laplace law:

∆p = pgas − pliq = 2γ/R. (2)

This pressure drop increases with decreasing bubble size
(∂∆p/∂R < 0), leading to an accelerated bubble dis-
solution. Gibbs showed that this evolution can be not
only slowed down but even fully arrested by the presence
of a sufficiently high surface elasticity. Indeed, Eqs. (1-
2) imply that ∂∆p/∂R = 2

R2 (2E − γ). Hence, when
E/γ ≥ 1/2, which is now known as the Gibbs criterion
[9], the bubble evolution is stopped. This criterion has
been verified by simulations more recently [10].

In the case of a single bubble, such a surface elastic-
ity arises naturally when working with stabilising agents
which are irreversibly adsorbed to the gas/liquid inter-
face. Systems which are very much “en vogue” for this
purpose consist of bubbles stabilised by nano- or micron-
sized particles [11–13] or special proteins [14]. In this
case, during the shrinking process, the agents are com-
pacted at the interface, hence the surface tension γ de-
creases which may lead to E/γ ≥ 1/2.

Many irreversibly adsorbed systems have been used to
stabilize foams, which have indeed proven to stop coars-
ening, with a surprisingly good agreement with the Gibbs
criterion [14–18]. However, many questions remain as to
how the behaviour of a single bubble can be related to
that of a complex foam which contains bubbles of differ-
ent sizes – since some of them will shrink and others will
grow. Moreoever, the coarsening process can be slowed
down or arrested for other reasons, the bubble surfaces
might become impermeable to gas arresting the diffu-
sion process or the shear viscoelasticity of the bubbles
might stop rearrangements which would hinder coarsen-
ing. Thus, it is not clear at this stage how to provide
a reliable criterion for the coarsening to stop in a foam,
and to predict the final bubble size distribution [10].

In order to understand the mechanisms of the arrest
of coarsening it is necessary to carry out model experi-
ments which allow to discriminate between the different
processes. Very recently studies were carried out on a
single bubble in a pressure-controlled solution [19]. The
pressure of the solution controls the concentration of the
dissolved gas and hence its partial pressure, and is used
to explore the stability to coarsening of isolated bubbles.
The authors [19] propose a model taking into account the
energy dissipation due to the buckling of the interface in
contradiction with the Gibbs’s criterion.

To get one step closer to foams, we propose, in this
article, a two bubble experiment, where the bubbles are
connected by a tube. This allows to incorporate a first
degree of polydispersity (the size difference between both
bubbles). Moreover, in this experiment, the coarsening
is driven by the pressure difference between the two bub-
bles as in foams [20], rather than by the liquid/bubble
pressure difference as in a single bubble experiment. In
the following we thus compare successfully a simple two

bubble experiment presented in the next section with a
model developped in the third section. In a last section,
we show that the Gibbs’s criterion can be recovered the-
oretically in specific conditions.

II. TWO BUBBLE EXPERIMENTS

The set-up we are interested in is schematised in
FIG. 1. A small bubble (1) and a big bubble (2) are
connected by a tube. More precisely, two syringes are
immersed in the same solution and their outlets are po-
sitioned at the same altitude. The gaz is pushed through
the syringes manually to generate a bubble at the syringe
outlet (FIG. 1, bottom right). Both syringe outlets are
connected by a tube which is initially closed by a valve.
The bubble evolution is recorded with a video camera
(FIG. 1, top). The pictures are then treated by the soft-
ware included in the Tracker device (Teclis, France) to
extract the volume, surface area, surface tension, apex
altitude and apex radius of curvature of each bubble as
a function of time.

The bubbles are created in an aqueous dispersion of
silica nanoparticles (Ludox, TMA from Sigma Aldrich)
with a 25 nm diameter. The dispersions are stable as the
silica particles are negatively charged at the pH used,
which is close to 7. In order to make the particle surface
active, a positively charged surfactant, cetyl trimethyl
ammonium bromide (CTAB), is added [21]. The surfac-
tant adsorbs onto the surface of the particles and makes
them partially hydrophobic. The CTAB is also purchased
from Sigma and used without further purification. The
samples are prepared in Milli-Q water (conductivity 18.2
MΩ.cm−1) with 1 mM of NaBr to promote adsorption (in
line with previous experiments [21]). The experiments
are carried out with 1 wt% silica particles and 10−4 M
CTAB. In this system the surface elasticity is constant
at sufficiently large bubble shrinkage [21] and should be
high enough to fullfill the Gibbs criterion. [21]. We var-
ied the initial size of the bubbles, which impacts the final
state, as we will show in the following. We discuss here
in details three experiments with different initial bubble
sizes.

FIG. 1 (bottom, left) displays the evolution of the vol-
umes V1 (open symbols) and V2 (filled symbols) of the
small and big bubbles respectively (different symbols cor-
respond to three different data set). Initially, the bubbles
are not connected, yet the volumes V1 and V2 decrease
weakly with time (see FIG. 1, bottom left). This in-
dicates a slow dissolution of the bubbles into the bath.
Then, at some time t0 (note that for each experiment,
the times have been shifted arbitrarily for clarity), the
valve is opened and the gas is free to flow from one bub-
ble to the other. The smaller bubble then shrinks while
the bigger one grows. This coarsening behaviour stops
after typically 20 to 30 s (at a time we call tf ) and the
bubbles reach a stable final volume - apart from the drift
due to slow dissolution. Note that the bubbles are still
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connected by a tube at this time. This shows that the
coarsening has stopped.

The evolution of the measured surface tensions are
plotted in FIG. 2a. At time t = 0, when the bubbles
are put in contact, the surface tensions of both bubbles
are roughly equal (γ1 = γ2 ≈ 60 mN/m for all three
experiments, see FIG. 2a, in line with [21]) and con-
stant which indicates that, at that time, each bubble has
reached equilibrium.
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FIG. 2: Evolution of the bubbles in time. The color and sym-
bol code is the same as in Fig. 1. (a) Surface tensions (mN/m)
extracted from bubble shapes and sizes. (b) Surface tension
γ1 of the small bubbles as a function of the logarithm of their
surface areas A1. Two straight lines are plotted as guides for
the eye. The first one is an estimate of the surface elasticity
E0 at large A1. The second one is the chord of the curve ob-
tained for experiment A. It gives an estimate of the effective
surface elasticity EA

eff . (c) Evolution of the polydispersity in-
dex x defined by Eq.s 6 and 7 for all three experiments. (d)
Final polydispersity index xf . The curves represent Eq. (10)
with the parameters given in Table I. Parameter x0 is mea-
sured at the first black point. The data points correspond
to the value of xf measured at time tf (green points). For
experiment A, the values on either end of the bar correspond
to both elasticity values shown in (b).

FIG. 2a shows that the surface tension γ1 (open, dotted
symbols) of the smaller bubbles decreases with time once
the valve between the two bubbles has been opened. If E,
defined by equation (1), is constant, then this equation
can be integrated, leading to:

γ1(t) = γ0 + E ln(A1(t)/A0
1). (3)

γ1 is thus plotted versus ln(A1/A
0
1) in FIG. 2b. The vari-

ation is rather linear, showing that the elasticity E, can
be considered as both reproducible and almost indepen-
dent of the surface area. It is equal to E0 = 35 mN/m.
Note that for experiment A, the slope is larger (E '
80 mN/m) for small surface areas A1 corresponding to
tensions below 30 mN/m. This probably results from the
particles starting to be in contact with each other. This

led us to define an effective elasticity EA
eff = 43 mN/m,

which is the value of E defined by Eq. (3) evaluated at
the final time considered for experiment A (green point in
FIG 2). In the following, we will use E0 for experiments
B and C and both E0 and EA

eff for experiment A.
By contrast, the surface tension of the bigger bubbles

is almost constant during the three experiments (filled
symbols in FIG. 2a), which suggests that particle adsorp-
tion takes place on much shorter timescales than those
of the experiment so that the surface elasticity of these
bubbles can be neglected. The difference between the
behaviour of the surface tension of the smaller and the
bigger bubbles is due to an assymetry between adsorp-
tion and desorption. In fact, the big bubbles expand
whereas the small bubbles shrink so that fast adsorption
and slow desorption lead to different variations of γ with
the surface area in each situation.

III. TWO BUBBLE COARSENING MODEL

We will now propose a model to describe the above
observations. Building on the experimental observations
concerning the asymmetry between adsorption and des-
orption, we propose to write the surface tensions of both
bubbles with different expressions. The surface tension
γ1 is given by Eq. (3) where E is taken as either E0 or
EA

eff . The surface tension of the big bubble can be con-
sidered as constant:

γ2(t) = γ0. (4)

We can now write the pressure in each bubble. The lat-
ter must include the effect of gravity. In the experiment,
the syringe outlets are positioned at the same altitude.
As a consequence, the apex of the big bubble is higher
than that of the small one, which increases the pressure
difference between them and accelerates the coarsening
process. Correspondingly, we take into account both the
Laplace pressure and the hydrostatic pressure in writing
the pressure pi(t) in bubble i as

pi(t) = 2γi(t)/Ri(t)− 2ρgRi(t). (5)

Let us now introduce the effective average radius R0

and the polydispersity factor x through 2R3
0 = R3

1 + R3
2

and 2x = (R3
2 −R3

1)/R3
0, which yields:

R1 = (1− x)1/3R0 (6)

R2 = (1 + x)1/3R0, (7)

where x = 0 if the bubbles have the exact same size while
x → 1 in the limit where the smaller bubble shrinks
entirely and disappears. In the three experiments pre-
sented, the initial value x0 of the polydispersity factor is
varied in the range accessible in the experiment (FIG. 2c).
For simplicity, we assume that all of the gas leaving bub-
ble 1 is transferred to bubble 2 entirely, which is rea-
sonable as the volume variation after the opening of the
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valve is much larger than that due to the bubble disso-
lution into the solution (see FIG. 1). Moreover, the gas
is considered as incompressible because the pressure dif-
ference between the two bubbles is much smaller than
the pressure itself. As a result of these assumptions, the
total volume remains constant, i.e. R0(t) = R0. Using
A1 = 4π R1

2 as an approximation of the small bubble
surface area, and Eqs. (3), (4), (5), (6) and (7), the pres-
sure in each bubble can be written as:

p1 =
2γ0 + 4

3E ln
(

1−x
1−x0

)
R0 (1− x)1/3

− 2ρgR0 (1− x)1/3. (8)

p2 =
2γ0

R0 (1 + x)1/3
− 2ρgR0 (1 + x)1/3 (9)

At equilibrium, both pressures are equal, hence Eqs. (8)
and (9) yield a prediction, in implicit form, for the final
polydispersity xf as a function of two control parame-
ters, namely the initial polydispersity x0 and the surface
elasticity E:

2E

3γ0

ln
(

1−x0

1−xf

)
(1− xf )

1
3

=

[
1

(1− xf )
1
3

− 1

(1 + xf )
1
3

]

+
R2

0

`2cap

[
(1 + xf )

1
3 − (1− xf )

1
3

]
. (10)

Here the capillary length is defined as `cap =
√
γ0/(ρg).

The prediction for the final polydispersity xf is plotted
in FIG. 3a for various initial polydispersities x0 for R0 =
`cap.

In this case, Eq. (10) predicts that if the initial poly-
dispersity x0 is rigorously zero (black line in FIG. 3a),
no coarsening occurs (xf = 0) whenever E/γ0 ≥ 2. This
prediction looks like a modified Gibbs’s criterion: if the
bubbles are initially monodisperse, a high enough surface
elasticity prevents coarsening. We will come back to this
observation later on to discuss why we find a criterion of
2 instead of 1/2. By contrast, coarsening is expected as
soon as E/γ0 < 2 although it should stop after a finite
change in bubble volume, i.e. for some final polydisper-
sity xf strictly between 0 and 1.

If the initial bubbles have slightly different volumes
(x0 > 0), the criterion is less sharp (coloured lines in
FIG. 3a): the larger the surface elasticity, the smaller
the final polydispersity xf . Note that this is in qualita-
tive agreement with what we observe in the experiment:
the coarsening is observed at the beginning but stops
definitely at a finite polydispersity (i.e., the size of the
smaller bubble remains finite).

Let us now draw a quantitative comparison between
the experiment and the model given by Eq. (10). The
initial and final values of the bubble volumes V1 and V2,
the corresponding initial and final polydispersity factors
x0 and xf are given in Table I for all three experiments,
together with the value of the initial surface tension γ0.
In all experiments, the initial surface tension γ0 is close
to 60 mN/m and the corresponding capillary length is
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FIG. 3: Final polydispersity xf of the bubble volumes: ex-
pected effect of surface elasticity, adsorption and gravity for
irreversibly adsorbed surfactants. The final volume of the big
(resp. small) bubble is proportional to 1 + xf (resp. 1 − xf ).
Black curves correspond to initially identical bubbles (initial
polydispersity factor x0 = 0) while coloured curves corre-
spond to x0 = 0.03, 0.1 and 0.3. (a) Prediction of Eq. (10).
Further adsorption onto the big (growing) bubble is assumed
to be present. Gravity is taken into account and the ra-
tio of the average bubble radius R0 to the capillary length
`cap =

√
γ0/(ρg) is taken equal to 1.0. (b) Prediction of

Eq. (12). The effect of gravity on the pressure is neglected
and it is assumed that there is no further adsorption onto the
big (growing) bubble.

Exp V 0
1 V 0

2 x0 γ0
R0
`cap

V f
1 V f

2 xf

A 2.8 5.1 0.29 60.35 0.40 1.0 6.9 0.75

B 3.5 3.6 0.014 60.15 0.38 1.1 6.2 0.72

C 4.5 4.7 0.022 60.3 0.42 1.5 7.6 0.66

TABLE I: Different parameters measured for experiements
A, B and C: initial volumes of the small and big bubbles
(V1 and V2 respectively, expressed in mm3), corresponding
initial and final polydispersites (x0 and xf ), initial surface
tension γ0 (mN/m), average effective bubble radius R0 made
dimensionless by the capillary length `cap = 2.45 mm.

given by `cap = 2.45 mm. The value of R0/`cap, where
R0 is the effective average radius, is also available in
Table I. The surface elasticity values E = 35 mN/m
and Eeff = 43 mN/m (see FIG. 2b) yield the respective
values 0.58 and 0.71 of the ratio E/γ0. In Figure 2d, the
values of xf extracted from each experiment (see Table
I) are compared to the theory and agree remarkably
well. For experiment A, theory and experiments are
compatible within the error bar due to E.
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IV. BACK TO GIBBS’S CRITERION

Let us now go back to the criterion we found and its
comparison to Gibbs’s prediction. Our calculation pre-
dicts no coarsening if (i) the bubbles are initially totally
monodisperse and (ii) E/γ0 ≥ 2. This criterion is sim-
ilar but not identical to Gibbs’ criterion, which predicts
no coarsening if E/γ0 ≥ 1/2. This is because we took
into account gravity and we supposed a fast adsorption
during the growth of the big bubble.

If we now neglect the effect of gravity and adsorption
(implying that both bubbles have the same elasticity),
the hydrostatic pressure has to be removed from Eq. (4)
and Eq. (5) needs to be replaced by

γ2(t) = γ0 + E ln(A2(t)/A0
2). (11)

where A0
2 is the initial area of the bubble 2 and A2(t) its

evolution with time.
Under such circumstances, Eq. (10) is modified and the

condition p1 = p2 now reads:

2E

3γ0

 ln
(

1−x0

1−xf

)
(1− xf )1/3

−
ln
(

1+x0

1+xf

)
(1 + xf )1/3


=

[
1

(1− xf )1/3
− 1

(1 + xf )1/3

]
. (12)

This modifies the prediction for the final volume of the
two bubbles (as shown in FIG. 3b). The result is qualita-
tively the same, however (i) the Gibbs criterion becomes
E/γ0 ≥ 1/2 for x0 = 0 and (ii) for E/γ0 < 1/2, the fi-
nal polydispersity factor xf increases more sharply with
a decreasing surface elasticity. Thus, we recover Gibbs’s
prediction in the absence of gravity and with initially
monodisperse bubbles provided the surface elasticity is
identitical for shrinking or growing bubbles.

More generally, taking Eq. (10) with x0 = 0 in the limit
xf → 0, we obtain a new version of the Gibbs criterion:

E

γ0
≥ kads

(
1 +

R2
0

`2cap

)
. (13)

where kads = 1/2 when no adsorption takes place, as in
Eq. (12), and kads = 1 for fast adsorption as in Eq. (10).

V. CONCLUSION

This comparison between a model and a simple experi-
ment performed on two interconnected bubbles allows to
rationalise why the Gibbs criterion describes foams qual-
itatively well even if the threshold of E/γ0 ≥ 1/2 is not
always recovered experimentally. We indeed show in this
Letter that the Gibbs criterion describes well the case of
two bubbles stabilised by agents which are irreversibly
adsorbed to the interface from the beginning, in the ab-
sence of gravity i.e., for small bubbles (where R0 � `cap),

and for initially monodisperse bubbles. In this case, the
coarsening does not even start if E/γ0 ≥ 1/2. If the bub-
bles are initially polydisperse, the criterion is somewhat
relaxed: the coarsening starts, but it stops before the
small bubble can disappear. In the presence of gravity or
in the presence of fast adsorption, the classical threshold
value 1/2 for the Gibbs criterion increases and the total
arrest of the coarsening is predicted by a new version of
Gibbs criterion, given by Eq. (13). We have shown that
when all these different effects are taken into account,
the experiments are well captured by the theoretical de-
scription. Coarsening indeed stops experimentally after
a finite time and bubbles reach a finite volume.

In order to generalise the present study and describe
foam coarsening completely, additional steps still need
to be taken because it may differ from the present two-
bubble situation for at least two reasons. (i) When a
given bubble swells or shrinks, its various facets may ex-
pand or shrink, depending on the dynamics of the neigh-
bouring bubbles. This leads to different local surface
tensions on a given bubble. (ii) In the two bubble ex-
periment, the contribution of Gibbs elasticity and film
permeability are decorrelated, which allows us to inves-
tigate the dominant mechanism in the arrest of foam
coarsening. The permeability should be included in a full
foam coarsening model. More generally, the fact that the
coarsening behaviour of two bubbles is very different from
that of a single bubble, as we have shown, suggests that
coarsening in 3D foams may display complex collective
behaviours.

We believe that the physical understanding we have
gained from the two-bubble system can be translated
directly to other systems which undergo grain growth.
Most realistic systems are likely to have a more complex
elastic behaviour than the one considered here. Already
in the case of bubbles one may think about more complex
scenarios, for example when considering soluble surfac-
tants with slow desorption/adsorption. In this case, the
coarsening would not be stopped, but the overall coars-
ening dynamics would be affected.

In more general terms, our work on bubbles may pro-
vide insight and inspiration to advance our understand-
ing and control of other systems (emulsions, alloys, ...)
which undergo grain growth. It puts in evidence the im-
portance of a finite interfacial elasticity, which, in differ-
ent systems may be created by different means. It also
points towards a range of subtleties which have to be
taken into account, including the initial polydispersity,
(a)symmetry in the elastic response or additional effects
such as gravity.
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