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Abstract

Many two-phase materials suffer from grain-growth due
to the energy cost which is associated with the interface
that separates both phases. While our understanding of
the driving forces and the dynamics of grain growth in
different materials is well advanced by now, current re-
search efforts address the question of how this process
may be slowed down, or, ideally, arrested. We use a
model system of two bubbles to explore how the pres-
ence of a finite surface elasticity may interfere with the
coarsening process and the final grain size distribution.
Combining experiments and modelling in the analysis of
the evolution of two bubbles, we show that clear rela-
tionships can be predicted between the surface tension,
the surface elasticity and the initial/final size ratio of
the bubbles. We rationalise these relationships by the
introduction of a modified Gibbs criterion. Besides their
general interest, the present results have direct implica-
tions for our understanding of foam stability.

1 Introduction

Materials consisting of grains separated by well-defined
interfaces are ubiquitous. Examples include polycrys-
talline solids [1], magnetic garnet films [2], two-
phase ferrofluidic mixtures [3], superconducting mag-
netic froths [4], foams [5, 6] or emulsions [7]. In such
systems, the positive energy associated with the inter-
faces is the driving force of a characteristic grain growth
or ”coarsening” process by which smaller grains tend to
disappear while larger grains grow, leading to a progres-
sive reduction of the overall interfacial energy and to
characteristic asymptotic grain size distributions.

While our understanding of the main mechanisms of
grain growth in these different systems has advanced sig-
nificantly, much effort is now dedicated to the question
of how this grain growth may be controlled or, ideally,

completely arrested. Since the historic work by the met-
allurgist S. C. Smith [8], liquid foams have served repeat-
edly as model systems for related questions. We return
here to this model system in order to tackle the question
of how grain growth may be arrested by the presence of
a surface elasticity [9, 10]. In this case, the interfaces
have a surface tension γ which depends on the interfa-
cial area A leading to an additional resistance to grain
growth. This resistance is characterised by a dilational
elastic surface modulus E defined as

E =
∂γ

∂ lnA
. (1)

In this context, a classical prediction for the growth
arrest was given by Gibbs [9]. It consists in considering
a single spherical bubble of radius R and of surface area
A = 4πR2 in a liquid at constant pressure pliq. In the
absence of a surface elasticity, the gas pressure pgas inside
the bubble exceeds that in the liquid, the corresponding
pressure drop being given by the Young-Laplace law:

∆p = pgas − pliq = 2γ/R. (2)

This pressure drop increases with decreasing bubble size
(∂∆p/∂R < 0), leading to an accelerated bubble dis-
solution. Gibbs showed that this evolution can be not
only slowed down but even fully arrested by the presence
of a sufficiently high surface elasticity. Indeed, Eqs. (1-
2) imply that ∂∆p/∂R = 2

R2 (2E − γ). Hence, when
E/γ ≥ 1/2, which is now known as the Gibbs criterion
[9], the bubble evolution is stopped (∂P∂R < 0). This crite-
rion has been verified by simulations more recently [10].

In the case of a single bubble, such a surface elastic-
ity arises naturally when working with stabilising agents
which are irreversibly adsorbed to the gas/liquid inter-
face. Systems which are very much en vogue for this
purpose consist of bubbles stabilised by nano- or micron-
sized particles [11, 12, 13] or special proteins [14]. In
this case, during the shrinking process, the agents are
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Figure 1: Experimental set-up and bubble volume evo-
lution. Top: Photographs of the bubbles at four dif-
ferent times (the distance between both needle axes is
about 7.5 mm. Bottom right: Setup. Two bubbles are
prepared in a nanoparticle dispersion and left to equi-
librate. A valve connects both bubbles. It is opened
at t0. Gas exchange between both bubbles occurs until
their volumes reach their final values. Bottom left: Evo-
lution of the bubble volumes (mm3) for three different
experiments. Arbitrary time shifts have been applied for
clarity. Experiment A (resp B and C) is represented by
squares (resp. circles and triangles). Filled symbols are
for the growing bubbles while open symbols stand for
the shrinking bubbles. The present study focuses on the
black data points corresponding to monotonically chang-
ing volumes and surface areas. The last such point is
marked in green and the corresponding time is called tf .
Points outside this range are represented in blue. Red
points for experiment A correspond to a regime of larger
surface elasticity, see Fig. 2b).

compacted at the interface, hence the surface tension γ
decreases which may lead to E/γ ≥ 1/2.

Many irreversibly adsorbed systems have been used to
stabilise foams, which have indeed proven to stop coars-
ening, with a surprisingly good agreement with the Gibbs
criterion [15, 16, 14, 17, 18]. However, many questions
remain as to how the behaviour of a single bubble can be
related to that of a complex foam which contains bub-
bles of different sizes since some of them will shrink
and others will grow. Moreoever, the coarsening process
can be slowed down or arrested for other reasons, the
bubble surfaces might become impermeable to gas ar-
resting the diffusion process or the shear viscoelasticity
of the bubbles might stop rearrangements which would

hinder coarsening. Thus, it is not clear at this stage how
to provide a reliable criterion for the coarsening to stop
in a foam, and to predict the final bubble size distribu-
tion [10].

In order to understand the mechanisms of the arrest
of coarsening it is necessary to carry out model experi-
ments which allow to discriminate between the different
processes. Very recently studies were carried out on a
single bubble in a pressure-controlled solution [19]. The
pressure of the solution controls the concentration of the
dissolved gas and hence its partial pressure, and is used
to explore the stability to coarsening of isolated bubbles.
The authors [19] propose a model taking into account the
energy dissipation due to the buckling of the interface in
contradiction with the Gibbs criterion.

To get one step closer to foams, we propose, in this
article, a two bubble experiment, where the bubbles are
connected by a tube. This allows to incorporate a first
degree of polydispersity (the size difference between both
bubbles). Moreover, in this experiment, the coarsening
is driven by the pressure difference between the two bub-
bles as in foams [20], rather than by the liquid/bubble
pressure difference as in a single bubble experiment. In
the following we thus compare successfully a simple two
bubble experiment presented in the next section with a
model developped in the third section. In a last section,
we show that the Gibbs criterion can be recovered theo-
retically in specific conditions.

2 Two bubble experiments

The set-up we are interested in is schematised in FIG. 1.
A small bubble (1) and a big bubble (2) are connected by
a tube. More precisely, two syringes are immersed in the
same solution and their outlets are positioned at the same
altitude. The gaz is pushed through the syringes manu-
ally to generate a bubble at the syringe outlet (FIG. 1,
bottom right). Both syringe outlets are connected by
a tube which is initially closed by a valve. The bubble
evolution is recorded with a video camera (FIG. 1, top).
The pictures are then treated by the software included in
the Tracker device (Teclis, France) to extract the volume,
surface area, surface tension, apex altitude and apex ra-
dius of curvature of each bubble as a function of time.
The experimental setup was tested with bubbles made
in a solution sodium dodecyl sulphate (SDS) at 10 mM
purchased from Sigma Aldrich. The transfer of gas from
the smaller to the larger bubble occurs very rapidly once
the tubes are connected indicating that the resistance of
the tubing is small.

The bubbles are created in an aqueous dispersion of
silica nanoparticles (Ludox, TMA from Sigma Aldrich)
with a 25 nm diameter. The dispersions are stable as
the silica particles are negatively charged at the pH used,
which is close to 7. In order to make the particle surface
active, a positively charged surfactant, cetyl trimethyl
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ammonium bromide (CTAB), is added [21]. The sur-
factant adsorbs onto the surface of the particles and
makes them partially hydrophobic. The CTAB is also
purchased from Sigma and used without further purifi-
cation. The samples are prepared in Milli-Q water (con-
ductivity 18.2 MΩ.cm−1) with 1 mM of NaBr to promote
adsorption (in line with previous experiments [21]). The
experiments are carried out with 1 wt% silica particles
and 10−4 M CTAB. In this system the surface elastic-
ity is constant at sufficiently large bubble shrinkage and
should be high enough to fulfill the Gibbs criterion [21].
We varied the initial size of the bubbles, which impacts
the final state, as we will show in the following. We
discuss here in details three experiments with different
initial bubble sizes.

FIG. 1 (bottom, left) displays the evolution of the vol-
umes V1 (open symbols) and V2 (filled symbols) of the
small and big bubbles respectively (different symbols cor-
respond to three different data set). Initially, the bubbles
are not connected, yet the volumes V1 and V2 decrease
weakly with time (see FIG. 1, bottom left). This in-
dicates a slow dissolution of the bubbles into the bath.
Then, at some time t0 (note that for each experiment,
the times have been shifted arbitrarily for clarity), the
valve is opened and the gas is free to flow from one bub-
ble to the other. The smaller bubble then shrinks while
the bigger one grows, the dynamics of exchange being set
by the surface viscosity. This coarsening behaviour stops
after typically 20 to 30 s (at a time we call tf ) and the
bubbles reach a stable final volume - apart from the drift
due to slow dissolution. Note that the bubbles are still
connected by a tube at this time. This shows that the
coarsening has stopped.

The evolution of the measured surface tensions are
plotted in FIG. 2a. At time t = 0, when the bubbles
are put in contact, the surface tensions of both bubbles
are roughly equal (γ1 = γ2 ≈ 60 mN/m for all three
experiments, see FIG. 2a, in line with [21]) and station-
ary, which indicates that, at that time, each bubble has
reached equilibrium.

FIG. 2a shows that the surface tension γ1 (open, dot-
ted symbols) of the smaller bubbles decreases with time
once the valve between the two bubbles has been opened.
If E, defined by equation (1), is constant, then this equa-
tion can be integrated, leading to:

γ1(t) = γ0 + E ln(A1(t)/A0
1). (3)

γ1 is thus plotted versus ln(A1/A
0
1) in FIG. 2b. The vari-

ation is rather linear, showing that the elasticity E, can
be considered as both reproducible and almost indepen-
dent of the surface area. It is equal to E0 = 35 mN/m.
Note that for experiment A, the slope becomes larger
(E ' 80 mN/m) for small surface areas A1 correspond-
ing to tensions below 30 mN/m. This probably re-
sults from the particles starting to be in contact with
each other. This led us to define an effective elasticity
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Figure 2: Evolution of the bubbles in time. The colour
and symbol code is the same as in Fig. 1. (a) Surface ten-
sions (mN/m) extracted from bubble shapes and sizes.
(b) Surface tension γ1 of the small bubbles as a function
of the logarithm of their surface areas A1. Two straight
lines are plotted as guides for the eye. The first one
is an estimate of the surface elasticity E0 at large A1.
The second one is the chord of the curve obtained for
experiment A. It gives an estimate of the effective sur-
face elasticity EA

eff . (c) Evolution of the polydispersity
index x defined by Eqs. 6 and 7 for all three experi-
ments. (d) Final polydispersity index xf . The curves
represent Eq. (10) with the parameters given in Table 1
while dashed curves are obtained with zero gravity. Pa-
rameter x0 is measured at the first black point. The data
points correspond to the value of xf measured at time tf
(green points). For experiment A, the purple square cor-
responds to E = E0 while the green square corresponds
to E = EA

eff , as
in (b).

EAeff = 43 mN/m, which is the value of E defined by
Eq. (3) evaluated at the final time considered for experi-
ment A (green point in FIG 2). In the following, we will
use E0 for experiments B and C and both E0 and EA

eff

for experiment A.

By contrast, the surface tension of the bigger bubbles
is almost constant during the three experiments (filled
symbols in FIG. 2a), which suggests that particle adsorp-
tion takes place on much shorter timescales than those
of the experiment so that the surface elasticity of these
bubbles can be neglected.

In other words, the difference between the behaviour
of the surface tension γ of the smaller bubbles (which
shrink) and the bigger bubbles (which expand) reveal an
assymetry between (slow) desorption and (fast) adsorp-
tion.
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3 Two bubble coarsening model

We will now propose a model to describe the above ob-
servations. Building on the experimental observations
concerning the asymmetry between adsorption and des-
orption, we propose to write the surface tensions of both
bubbles with different expressions. The surface tension
γ1 is given by Eq. (3) where E is taken as either E0 or
EAeff . The surface tension of the big bubble can be con-
sidered as constant:

γ2(t) = γ0. (4)

We can now write the pressure in each bubble. The
latter must include the effect of gravity. In the experi-
ment, the syringe outlets are positioned at the same al-
titude. As a consequence, the average altitude of the
big bubble is higher than that of the small one, which
increases the pressure difference between them and ac-
celerates the coarsening process. Correspondingly, we
take into account both the Laplace pressure and the hy-
drostatic pressure in writing the pressure pi(t) in bubble
i as1:

pi(t) = 2γi(t)/Ri(t)− 4ρgRi(t)/3. (5)

where the reference pressure is that of the liquid near
the needle outlets and where Ri is the radius of bubble
i in the spherical approximation, defined from its actual
volume: 4π

3 R
3
i = Vi.

Let us now introduce the effective average radius R0

and the polydispersity factor x through 2R3
0 = R3

1 + R3
2

and 2x = (R3
2 −R3

1)/R3
0, which yields:

R1 = (1− x)1/3R0 (6)

R2 = (1 + x)1/3R0, (7)

where x = 0 if the bubbles have the exact same size while
x → 1 in the limit where the smaller bubble shrinks
entirely and disappears. In the three experiments pre-
sented, the initial value x0 of the polydispersity fac-
tor is varied in the range accessible in the experiment
(x0 = 0.01 − 0.3, FIG. 2c). For simplicity, we assume
that all of the gas leaving bubble 1 is transferred to bub-
ble 2 entirely, which is reasonable as the volume varia-
tion after the opening of the valve is much larger than
that due to the bubble dissolution into the solution (see
FIG. 1). Moreover, the gas is considered as incompress-
ible because the pressure difference between the two bub-
bles p1 − p2 ' 120 Pa for a bubble radius of 1 mm is

1Eq. (5) for the gas pressure in the bubble was obtained in the
following way. The shape of a bubble of fixed volume Vi = 4π

3
R3
i

attached to an outlet of radius rout < Ri was solved numerically
in the presence of gravity g. Then, the first order term in g was
retained from the limit of zero gravity (ρgR2

i /γi → 0). Finally,
the outlet radius was taken to the zero limit (rout → 0). This
procedure sets the coefficients in Eq. (5) unambiguously. The same
limit was also obtained analytically, see Supplementary Material
freely available as [????].

much smaller than the pressure itself p1 ' p2 ' 105 Pa.
As a result of these assumptions, the total volume re-
mains constant, i.e. R0(t) = R0. Using A1 = 4π R1

2 as
an approximation of the small bubble surface area, and
Eqs. (3), (4), (5), (6) and (7), the pressure in each bubble
can be written as:

p1 =
2γ0 + 4

3E ln
(

1−x
1−x0

)
R0 (1− x)1/3

− 4

3
ρgR0 (1− x)1/3. (8)

p2 =
2γ0

R0 (1 + x)1/3
− 4

3
ρgR0 (1 + x)1/3 (9)

At equilibrium, both pressures are equal, hence Eqs. (8)
and (9) yield a prediction, in implicit form, for the final
polydispersity xf as a function of two control parame-
ters, namely the initial polydispersity x0 and the surface
elasticity E:

E

γ0

ln
(

1−x0

1−xf

)
(1− xf )

1
3

=
3

2

[
1

(1− xf )
1
3

− 1

(1 + xf )
1
3

]

+
R2

0

`2cap

[
(1 + xf )

1
3 − (1− xf )

1
3

]
. (10)

Here the capillary length is defined as `cap =
√
γ0/(ρg).

The prediction for the final polydispersity xf is plotted
in FIG. 3a for various initial polydispersities x0 for R0 =
`cap.

In this case, Eq. (10) predicts that if the initial poly-
dispersity x0 is rigorously zero (black line in FIG. 3a),
no coarsening occurs (xf = 0) whenever E/γ0 ≥ 5/3. If
E/γ0 ≤ 5/3, the situation is metastable and any pertur-
bation will lead to disproportionation. This prediction
looks like a modified Gibbs criterion: if the bubbles are
initially monodisperse, a high enough surface elasticity
prevents coarsening. We will come back to this obser-
vation later on to discuss why we find a criterion of 5/3
instead of 1/2. By contrast, coarsening is expected as
soon as E/γ0 < 5/3 although it should stop after a finite
change in bubble volume, i.e. for some final polydisper-
sity xf strictly between 0 and 1.

If the initial bubbles have slightly different volumes
(x0 > 0), the criterion is less sharp (coloured lines in
FIG. 3a): the larger the surface elasticity, the smaller
the final polydispersity xf . Note that this is in qualita-
tive agreement with what we observe in the experiment:
the coarsening is observed at the beginning but stops
definitely at a finite polydispersity (i.e., the size of the
smaller bubble remains finite).

Let us now draw a quantitative comparison between
the experiment and the model given by Eq. (10). The
initial and final values of the bubble volumes V1 and V2,
the corresponding initial and final polydispersity factors
x0 and xf are given in Table 1 for all three experiments,
together with the value of the initial surface tension γ0.
In all experiments, the initial surface tension γ0 is close
to 60 mN/m and the corresponding capillary length is
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Figure 3: Final polydispersity xf of the bubble volumes:
expected effect of surface elasticity, adsorption and grav-
ity for irreversibly adsorbed surfactants. The final vol-
ume of the big (resp. small) bubble is proportional to
1+xf (resp. 1−xf ). Black curves correspond to initially
identical bubbles (initial polydispersity factor x0 = 0)
while coloured curves correspond to x0 = 0.03, 0.1 and
0.3. (a) Prediction of Eq. (10). Further adsorption onto
the big (growing) bubble is assumed to be present. Grav-
ity is taken into account and the ratio of the average bub-
ble radius R0 to the capillary length `cap =

√
γ0/(ρg) is

taken equal to 1.0. (b) Prediction of Eq. (12). The effect
of gravity on the pressure is neglected and it is assumed
that there is no further adsorption onto the big (growing)
bubble.

given by `cap = 2.45 mm. The value of R0/`cap, where
R0 is the effective average radius, is also available in
Table 1. The surface elasticity values E = 35 mN/m
and Eeff = 43 mN/m (see FIG. 2b) yield the respective
values 0.58 and 0.71 of the ratio E/γ0. In Figure 2d, the
values of xf extracted from each experiment (see Table
1) are compared to the theory and agree remarkably
well. For experiment A, theory and experiments are
compatible within the error bar due to E. Note that
with the present situation R0/`cap ≈ 0.40, gravity has
very little influence on xf .

4 Back to Gibbs criterion

Let us now go back to the (two-bubble) criterion we
found and see how it compares to Gibbs (one bubble)
prediction. Our calculation predicts no coarsening if (i)
the bubbles are initially totally monodisperse and (ii)
E/γ0 ≥ 5/3. This criterion is similar but not identi-
cal to Gibbs criterion, which predicts no coarsening if
E/γ0 ≥ 1/2. This is because we took into account grav-
ity and we supposed a fast adsorption during the growth
of the big bubble.

If we now neglect the effect of gravity and adsorption

Exp V 0
1 V 0

2 x0 γ0
R0
`cap

V f1 V f2 xf

A 2.8 5.1 0.29 60.35 0.40 1.0 6.9 0.75
B 3.5 3.6 0.014 60.15 0.38 1.1 6.2 0.72
C 4.5 4.7 0.022 60.3 0.42 1.5 7.6 0.66

Table 1: Different parameters measured for experiements
A, B and C: initial volumes of the small and big bub-
bles (V1 and V2 respectively, expressed in mm3), corre-
sponding initial and final polydispersities (x0 and xf ),
initial surface tension γ0 (mN/m), average effective bub-
ble radius R0 made dimensionless by the capillary length
`cap = 2.45 mm.

(implying that both bubbles have the same elasticity),
the hydrostatic pressure has to be removed from Eq. (5),
and Eq. (4) needs to be replaced by

γ2(t) = γ0 + E ln(A2(t)/A0
2). (11)

where A0
2 is the initial area of the bubble 2 and A2(t) its

evolution with time.
Under such circumstances, Eq. (10) is modified

(`cap →∞) and the condition p1 = p2 now reads:

E

γ0

 ln
(

1−x0

1−xf

)
(1− xf )1/3

−
ln
(

1+x0

1+xf

)
(1 + xf )1/3


=

3

2

[
1

(1− xf )1/3
− 1

(1 + xf )1/3

]
. (12)

This modifies the prediction for the final volume of the
two bubbles (as shown in FIG. 3b). The result is qualita-
tively the same, however (i) the Gibbs criterion becomes
E/γ0 ≥ 1/2 for x0 = 0 and (ii) for E/γ0 < 1/2, the fi-
nal polydispersity factor xf increases more sharply with
a decreasing surface elasticity. Thus, we recover Gibbs
prediction in the absence of gravity and with initially
monodisperse bubbles provided the surface elasticity is
identitical for shrinking or growing bubbles.

More generally, taking Eq. (10) with x0 = 0 in the limit
xf → 0, we obtain a new version of the Gibbs criterion:

E

γ0
≥ kads

(
1 +

2

3

R2
0

`2cap

)
. (13)

where kads = 1/2 when no adsorption takes place, as in
Eq. (12), and kads = 1 for fast adsorption as in Eq. (10),
and where `cap →∞ in the zero gravity limit.

5 Conclusion

This comparison between a model and a simple experi-
ment performed on two interconnected bubbles allows to
rationalise why the Gibbs criterion describes foams qual-
itatively well even if the threshold of E/γ0 ≥ 1/2 is not
always recovered experimentally. We indeed show in this
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Letter that the Gibbs criterion describes well the case of
two bubbles stabilised by agents which are irreversibly
adsorbed to the interface from the beginning, in the ab-
sence of gravity i.e., for small bubbles (where R0 � `cap),
and for initially monodisperse bubbles. In this case, the
coarsening does not even start if E/γ0 ≥ 1/2. If the bub-
bles are initially polydisperse, the criterion is somewhat
relaxed: the coarsening starts, but it stops before the
small bubble can disappear. In the presence of gravity or
in the presence of fast adsorption, the classical threshold
value 1/2 for the Gibbs criterion increases and the total
arrest of the coarsening is predicted by a new version of
Gibbs criterion, given by Eq. (13). We have shown that
when all these different effects are taken into account,
the experiments are well captured by the theoretical de-
scription. Coarsening indeed stops experimentally after
a finite time and bubbles reach a finite volume.

This result is different from the one obtained by Tac-
coen et al, which is that their results are in contradic-
tion with an elastic description of the bubble shape. In
our experiment, the coarsening is actually stopped be-
fore the crumpling of the bubbles, which may explain
this discrepancy.

In order to generalise the present study and describe
foam coarsening completely, additional steps still need
to be taken because it may differ from the present two-
bubble situation for at least two reasons. (i) When a
given bubble swells or shrinks, its various facets may ex-
pand or shrink, depending on the dynamics of the neigh-
bouring bubbles. This leads to different local surface
tensions on a given bubble. (ii) In the two bubble ex-
periment, the contribution of Gibbs elasticity and film
permeability are decorrelated, which allows us to inves-
tigate the dominant mechanism in the arrest of foam
coarsening. The permeability should be included in a
full foam coarsening model. More generally, the fact that
the coarsening behaviour of two bubbles is very different
from that of a single bubble, as we have shown, suggests
that coarsening in 3D foams may display complex collec-
tive behaviours.

We believe that the physical understanding we have
gained from the two-bubble system can be translated
directly to other systems which undergo grain growth.
Most realistic systems are likely to have a more complex
elastic behaviour than the one considered here. Already
in the case of bubbles one may think about more complex
scenarios, for example when considering soluble surfac-
tants with slow desorption/adsorption. In this case, the
coarsening would not be stopped, but the overall coars-
ening dynamics would be affected.

In more general terms, our work on bubbles may pro-
vide insight and inspiration to advance our understand-
ing and control of other systems (emulsions, alloys, ...)
which undergo grain growth. It puts in evidence the
importance of a finite interfacial elasticity, which, in dif-
ferent systems may be created by different means. For

example, in the case of emulsions, this is achieved by the
addition of insoluble, interfacially active species (parti-
cles, polymers or proteins), while in the case of alloys
a similar effect is obtained by the addition of appropri-
ate dopant atoms [22]. It also points towards a range of
subtleties which have to be taken into account, includ-
ing the initial polydispersity, (a)symmetry in the elastic
response or additional effects such as gravity.
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