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Abstract The Solvency 2 advent and the best-estimate methodology in future
cash-�ows valuation lead insurers to focus particularly on their assumptions. In
mortality, hypothesis are critical as insurers use best-estimate laws instead of stan-
dard mortality tables. Backtesting methods, i.e. ex-post modeling validation pro-
cesses, are encouraged by regulators and rise an increasing interest among prac-
titioners and academics. In this paper, we propose a statistical approach (both
parametric and non-parametric models compliant) for mortality laws backtesting
under model risk. Afterwards, a speci�cation risk is introduced assuming that
the mortality law is subject to random variations. Finally, the suitability of the
proposed method will be assessed within this framework.

Keywords Solvency 2 · mortality · cusum · detection · SPRT

1 Introduction

The Solvency 2 directive (art. 83, Comparison against experience) imposes that
undertakings develop processes to ensure that Best-Estimate calculations and un-
derlying hypotheses are regularly compared against experience. In Life insurance
and particularly in annuity computations, mortality models validation and back-
testing is of key importance.

In this context, we consider the following simple question: How does an insurer
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verify that his mortality hypotheses are Best-Estimate ? More precisely, we de-
rive testing methodologies to decide whether a given table is likely, according to
observations. Indeed, the insurer wants to distinguish sampling variations from
misspeci�cation at any age. To do so, a reminder of mortality analysis and models
is provided in a �rst part. The derived statistical models are adequate foundations
to develop and support testing processes that detects if prediction errors are the
result of sampling variations or an unknown trend. According to these models, a
�rst set of tests with �xed sample sizes are reviewed.

In a second part, the review will be extended to on-line backtesting, which re-
lies on tests with random sample sizes. Indeed, if an insurer repeats �xed tests on
a growing set of data (every month for example), the �rst type error probability
converges to one if no corrections are taken on the signi�cance level. This problem
is solved using sequential analysis and change-point detection algorithms. Finally,
a numerical application is proposed to compare di�erent approaches faced to a
simulated misspeci�cation.

2 Mortality models & assumptions

In mortality analysis, life time is considered as a positive random variable T .
Considering su�ciently large groups of individuals, mortality risk is assumed mu-
tualized and mathematical models are employed to describe the average behavior
of a speci�c population. Writing S and h the survival and hazard functions re-
spectively, the probability of death between age x and x+ 1 (i.e. at age x) can be
expressed as in equation 1 (see Planchet and Thérond (2011)):

qx = P (T ≤ x+ 1|T > x) = 1− S(x+ 1)

S(x)
= 1− exp

(
−
∫ x+1

x

h(u)du

)
. (1)

If one wants to predict the number of deaths in a population for a �xed period
(without any other causes of population reduction), a minimal segmentation is
needed to obtain homogeneity: a simple classi�er is age. Under these assumptions,
the number of deaths Dx at age x among a population of nx individuals can
be modelled as a binomial random variable. In a portfolio with p di�erent ages
x ∈ [x1, xp], it comes:

∀x ∈ [x1, xp], Dx ∼ B(nx, qx), (2)

in case of annual projections. In the latter, mortality modeling will be summa-
rized in an annual mortality table q = (qx1 , ..., qxp). Furthermore, we will consider
observations in monthly requiring a mortality table transformation. If death rates
are supposed constant during one year, monthly mortality rates can be derived as
follows:

mqx = 1−mpx = 1− (1− qx)
1
12 , (3)

where mqx being the desired rate. In the following, all mortality rates are monthly,
and the subscript m is omitted. This simple assumption can be re�ned according
to the mortality model implied in table generation. A second assumption in this
work is that population renew identically every time-step during analysis.
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As a convention in this document, single letters designate vectors over ages (for
example, the previously de�ned q represent a set of p death probabilities), the
subscript x is age-speci�c (qx is a real) and the upper-script represents di�erent
tables (q0 = (q0x1

, ..., q0xp
) is the table underlying observations for example).

From a statistical view, and whichever the method used to produce the table,
it can be considered as a parameter in a parametric model (Y,PQ) with Y the
set of all possible observations and PQ a family of probability distribution on Y
(see Gourieroux and Monfort (1996) for detailed developments and notations). All
previous assumptions can be summarized in the following model:

MB = (∀x ∈ [x1, xp] ,Y = N,PQ = B (nx, qx) , qx ∈ Qx) , (4)

with ∀x ∈ [x1, xp] , Qx = [0, 1]. If this model is well de�ned, and portfolio sizes are
usually large, a Gaussian approximation is often used to simplify computations
based on the central limit theorem. Even though this result is asymptotic (i.e. for
large nx), it's commonly used as the Gaussian law provides ease at use. Further-
more, we'll consider a �xed and known variance-covariance matrix, essentially for
simplicity. Finally, we consider the following statistical model:

MG =
(
∀x ∈ [x1, xp] ,Y = R,PQ = N

(
µx, σ

2
x

)
, qx ∈ Qx

)
, (5)

with ∀x ∈ [x1, xp], µx = nxqx and σ2
x = nxqx(1 − qx) (in vectorial notations

µ =
(
µx1 , ..., µxp

)
and (Σ)x = σ2

x a diagonal matrix). From now on, we consider

that we observe at each date i, a set of deaths di =
(
dix1

, ..., dixp

)
from which we

build the gross mortality rates based on N observations, q̂ =
(
q̂x1 , ..., q̂xp

)
where

∀x ∈ [x1, xp], q̂
N
x = 1

N

∑N
i=1 d

i
x

nx
(which is the maximum likelihood estimator in our

model). Now that our framework for mortality models is de�ned, we shall present
what our backtesting procedure is.

3 Mortality backtesting

Backtesting can be de�ned as an ex-post model validation method, including two
di�erent practices: validation and monitoring. The �rst aims to validate a mortality
table according to a �xed amount of data, while the second allows for continuous
treatment. This last aspect can be used to increase power in validation or detect
shifts later on.

These problems are usually addressed through decision theory (see Gourieroux
and Monfort (1996) or Saporta (2006) for detailed introductions). In our frame-
work, it consists in testing the mean of a Gaussian vector with known variance
and detecting any change-point or misspeci�cation. One can �nd alternative ap-
proaches based on di�erent setups (see El Karoui et al. (2013) for cox-like models
and homogeneous Poisson processes).

Writing qγ the supposed mortality table and q0 the real one (i.e. which generates
the data), the null hypothesis is H0 = {qγ = q0} against a composite alternative
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H1 = {qγ 6= q0}. Then tests are de�ned as couples (ξN , N) with N the sam-
ple size (possibly random) and ξN the associated decision function. All presented
procedures are based on likelihood functions, derived from model MG but all
classical signi�cance tests are applicable. Numerous other tests and change-point
procedures can be found elsewhere, especially in change-point detection where the
research is still very active in both Frequentist and Bayesian paradigms (see Lai
(2001), Tartakovsky and Moustakides (2010b) and Tartakovsky and Moustakides
(2010a)). On the other side, sequential alternatives are described in Wald (1947),
Ghosh and Sen (1991), Siegmund (1985) and Basseville and Nikiforov (1993).

3.1 Fixed sample tests

Based on the above discussion, we consider �xed sample size tests in this section. In
particular, Wald, Score and Likelihood ratio are easily applicable to the previous
model and their asymptotic properties (convergence and coverage) are of impor-
tance as undertakings usually possess large portfolios. Following Gourieroux and
Monfort (1996), we consider the multidimensional constraint g(q) = q − qγ which
resume the simple hypothesis H0. In the case of testing the mean of a Gaussian
vector, these three tests correspond to the following statistic:

ξ = N(q̂N − qγ)TΣ−1(q̂N − qγ), (6)

which is χ2-distributed under H0. The associated rejection region W is:

W = {ξ > χ2
1−α(p)}, (7)

p being the number of ages considered in the portfolio and χ2
1−α(p) the chi-square

quantile with p-degrees of freedom and 1− α level. By construction, �xed sample
size tests require prede�ned parameters: a signi�cance level α (or �rst term error
probability) and a prede�ned sample size N (equivalent to time for periodic ob-
servations). In practice, insurers have to de�ne when the test will be conducted:
immediately or later with more information ? This decision implies a trade o�
between fast reaction and power: statistical signi�cance increases with observa-
tion as mortality risk. Alternative tests can be found, based on the Standardized
Mortality Ratio for example, see Liddell (1984) for example.

3.2 On-line backtesting

In this part, dynamic methods are investigated. The two main related theories are
sequential analysis (see Wald (1947)) and change-point detection (Lai (2001) and
Basseville and Nikiforov (1993) for detailed presentations and Tartakovsky and
Moustakides (2010b) for a more recent review on bayesian technics). Indeed, a
simple repetition of previous �xed sample size tests leads to important �rst type
error probability increases. In the following, α is the probability to reject the null
hypothesis when it's true and β the probability to keep the null hypothesis when
the alternative is true (respectively the �rst and second type errors).
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3.2.1 Sequential Probability Ratio Test (SPRT)

The sequential probability ratio test (SPRT) was �rst introduced as a test be-
tween two simple hypotheses. Constructed on the likelihood ratio ΛN with N -
observations:

ΛN (x) =
N∏
i=1

L(D = di, qγ)

L(D = di, q0)
(8)

where pn is the joint probability (or density) of the sample, the Sequential Prob-
ability Ratio Test consists in the following (with A,B two thresholds):

reject H0, ifΛN ≥ A
accept H0, ifΛN ≤ B

continue, otherwise
(9)

In other terms, the test stops the �rst time the likelihood ratio leaves the interval
[B,A]. The corresponding number of observations is called the sample size N and
is thus a random variable. Optimality and closure properties are discussed in Wald
(1947). Furthermore, the following approximations for A, B, α and β holds (even
if the independance assumption is dropped):

A ' 1− β
α

,

B ' β

1− α.
(10)

These expressions are only approximate due to possible overshoot over boundaries
(Λn is never equal to A or B exactly when the test stops). In case of composite
hypotheses, the situation is much more complex and the initial Likelihood Ratio
Λn must be adapted. Wald (1947) proposed two di�erent solutions. The �rst is
a weighted sequential probability ratio test (WSPRT), obtained specifying prior
distribution functions under H0 and H1 for the parameter to be tested. Indeed, in
the case of a simple hypothese against a composite one, Wald proposes to consider
the parameter as a random variable itself (and thus consider a speci�c law, v such
as
∫
Q1
v(s)ds = 1). Thus, he requires that the second type error probability β is

controlled:

β =

∫
Q1

β(q)w(q)dq (11)

which is combersome as we would prefer to have ∀q ∈ Q1, β(q) ≤ β (and no
methods have been found to insure that constraint). The likelihood ratio becomes
(the tilde notation will be reserved to probability mixture):

Λ̃N (x) =

∏N
i=1 L(D = di, qγ)∫

Q1

∏N
i=1 L(D = di, q)v(q)dq

(12)

The second is based on the generalized sequential probability ratio test (GSPRT),
using estimators (usually Maximum Likelihood estimators) in place of priors (the
hat notation will be used for likelihood estimators):

Λ̂N (x) =
N∏
i=1

L(D = di, qγ)

L(D = di, q̂)
(13)
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According to Wald (1947), this last version is more di�cult to study as the like-
lihood ratio is no longer a probability distribution (in particular, approximations
on error probabilities are not applicable). More recently, Lai (1998) proposed a
dynamic boundary for the GSPRT, considering estimators variability.

As mentioned before, the main di�culty in the WSPRT design is the choice of
an appropriate prior for the parameter q on Q1. An existing solution is the fre-
quency functions method, based on the likelihood ratio of a sequence of statistics.
Using Cox's factorization theorem (in annex), one can reduce composite hypothe-
ses to simple ones using an invariance reduction principle (see Hall et al. (1965)
for further developments and Jackson and Bradley (1961) for a detailed applica-
tion of this theorem). Applying this method to the gaussian case, Jackson and
Bradley (1961) derived χ2 (and T 2, in case of unknown variance-covariance ma-
trix) sequential probability ratio test, based on homonym statistics. From now
on, we apply their result to the previous backtesting problem even though they
considered alternative hypotheses of the form: H0 = {‖qγ − q0‖ ≤ λ0} against
H1 = {‖qγ − q0‖ ≥ λ1} with 0 ≤ λ0 < λ1 implying an indi�erence region (De-
pending whether acceptance is needed, one can set λ0 = 0, which is the case in
the following):

lnΛχ
2

N = −N λ21
2

+ ln 0F1

(
p

2
,
Nλ21χ

2
N

4

)
. (14)

where 0F1 is the generalized hyper-geometric function and χ2
N = N(q̂−qγ)TΣ−1(q̂−

qγ) (for numerical evaluation, we use the gsl package). This result is the ratio be-
tween two non-central χ2 distributions with p-degrees of freedom and respective
non-centrality parameter λ21. The choice of λ1 should be motivated by the ap-
plication, and in our setup we have decided to select λ1 = 10%‖qγ‖. The choice
of A and B is based on Wald's previous approximation which still holds in this
case. Unfortunately, there are no practical results to compute the expected sample
sizes in this case (but they're are available under i.i.d assumption). One simpli-
�cation suggested in Jackson and Bradley (1961) is to compute every time step
independent statistics using only innovations: the Wald's approximation will hold
in despite of a potentially substantial loss of power. No results are available on the
GSPRT, thus we will not use it.

3.2.2 Quickest detection algorithms

Backtesting can also be interpreted as a change-point detection problem. In this
theory, the classical setup is a sequence of random variables distributed under
a known distribution f0, that possibly switches to an alternative and unknown
distribution f1 at an unknown time ν ∈ N (random in Bayesian frameworks and
considered equal to ∞ when no changes occur). The objective for change-point
detection algorithm τ (de�ned as a stopping time) is to raise an alarm as quickly
as possible when the change occurs, without raising too frequent false alarms.
According to Tartakovsky, 4 approaches can be found in the literature: Bayesian
(the time of change is random with a speci�c prior), Generalized Bayesian (im-
proper priors), Multi-cycle procedures and Minimax. Change-point detection is a
vast domain and we will focus on frequentist algorithms. Lorden (1971) gave a
minimax criterion to compare algorithms in this setup, the essential supremum
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average detection delay (Notations from Tartakovski, ν is the time of change, τ is
the time where the alarm is raised):

ESADD = sup
0≤ν<∞

ess supEν
[
(τ − ν + 1)+|Fν

]
. (15)

subject to a constraint of maximal false alarm frequency E0 (τ) ≥ λ. In other
terms, we want our process to raised the alarm as quicly as possible when the
change as occured, without raising a false alarm before time λ (in average) when
there is no change (ν = 0). As a solution to this problem, Page (1954) introduced
the Cusum algorithm:

τ = inf{n,Λn − min
1≤j≤n

Λj ≥ A} = inf{n, max
1≤j≤n

Λnj ≥ A}, (16)

where Λkj being the likelihood ratio based on observations j up to k. A recur-
sive version of this algorithm can be found in Lorden (1971) and Basseville and
Nikiforov (1993). In his work, Page also pointed out the connection between the
Cusum algorithm and Wald's SPRT: the Cusum test can be seen as a set of paral-
lel open-ended SPRTs, a new one starting every period (or observation). Writing
Nk the sample size of a one-sided open-ended SPRT applied to q̂k, q̂k+1, ..., the
Cusum stopping time is N? = min1≤k≤nNk.

Equivalently to the SPRT, two solutions are presented to deal with composite
hypotheses:

� the Weighted Cusum Λ̃ :

Λ̃kj =

∫
q1∈Θ

L(q̂j , ..., q̂k|q1)
L(q̂j , ..., q̂k|q0)dF (q1), (17)

� the Generalized Likelihood Ratio (GLR) Λ̂:

Λ̂kj =
supq1∈Θ1

L(q̂j , ..., q̂k|q1)
L(q̂j , ..., q̂k|q0) . (18)

Considering previous alternative hypotheses and following Basseville and Nikiforov
(1993), two χ2-Cusum algorithms are available. The �rst is a direct application
(case 3 p.218) of least favorable priors in case of invariant distributions:

ln Λ̃kj = −(k − j + 1)
λ21
2

+ ln 0F1

[
p

2
,
(k − j + 1)λ21(χ

k
j )

2

4

]
, (19)

with (χkj )
2 = (k − j + 1)

(
q̂kj − qγ

)T
Σ−1

(
q̂kj − qγ

)
. Asymptotic �rst-order opti-

mality has been proven for the χ2-Cusum algorithm in multidimensional case (see
p.268 in Basseville and Nikiforov (1993)). Introducing ∆0 = Eθ0 (N

?) the mean-
time between false alarms and ∆1 = Eθ1 (N

?) the average delay for detection, it
comes:

∆0 ≥ A, (20)

from Lorden's theorem (see theorem in annex). Furthermore, the χ2-Cusum algo-
rithm is �rst-order optimal in that case.
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4 Numerical applications

In this section, we propose a simple numerical illustration to ensure tests e�ciency
in the context of mortality backtesting. Tests will �rst be tested under null hypoth-
esis and then in case of mortality table misspeci�ed. This case will be simulated
in a practical method, using a white noise on mortality rates logits. After unbias-
ing, the table we consider as the real mortality tables q0 is randomly distributed
around the given mortality table qγ , but equal in mean.

4.1 Misspeci�cation on mortality tables

Speci�cation risk occurs when the given mortality table doesn't �t the real mor-
tality distribution. In this case, if q0 is the real mortality law, qγ the model and ε
the error term it comes:

q0 = f(qγ , ε), (21)

where f is an unknown and unobservable function and ε a random variable. In
this application, our methodology consists in choosing a speci�c function f and a
probability distribution for the error term to produce speci�cation risk. The error
term is a controlled Gaussian white noise applied to the pre-de�ned mortality law
logits:

∀x ∈ [x1, xp], logit(q
0
x) = logit(qγx) + εx, (22)

with ε ∼ Np(0, σId). In other words, the real mortality law is randomly distributed
around the pre-de�ned law qγ but equal in average (E(q0) = qγ). Thus, the func-
tion f is the following:

∀x ∈ [x1, xp], q
0
x =

eεxqγx
1 + qγx(eεx − 1)

− E
(

eεxqγx
1 + qγx(eεx − 1)

− qγ
)
. (23)

Finally, an illustration is given of multiple q0 randomly distributed around qγ (see
�gure 1).

Now that speci�cation risk is simulated, the second objective is to �nd a business
interpretation of σ. Indeed, if it's quantitatively de�ned in previous equations,
what impact does-it have on real indicators ? For instance, the volatility implied
on the remaining life expectancy of a 65-years old male e65 is measured as follows:

e65 =
1

S(65)

120∑
j=66

S(j), (24)

with S(x) =
∏x−1
i=1 (1− qi) the discrete survival function. Considering e65 as a

function of ε, here is a measure of the deviation of e65:

δ =
q95%(e65)− E(e65)

E(e65)
. (25)

The following table 1 shows correspondence between remaining life expectancy
volatility δ and σ.
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Fig. 1 Example of di�erent levels of speci�cation risk (0, 5%, 10%).

Table 1 Correspondence between σ and δ for a 65 years old person and N = 106.

σ e δ
0% 16.21 0.00000
5% 16.34 0.00708
10% 16.48 0.01556
20% 16.75 0.03051
30% 17.00 0.04770
40% 17.23 0.06508

4.2 Data simulation and portfolio structure

The test methodology consists in setting �rst qγ (in our example, it has been
adjusted on the French regulatory mortality table TH00-02). Then, for each sim-
ulation, a noise is simulated and applied to obtain q0. From that, deaths are
generated every month and tests conducted. The portfolio population is based on
the French Insee demographic structure (table RP2009) and includes people be-
tween 18 and 62 years-old (see �gure 2) for a total of 106 individuals (in France,
large companies deal with such portfolios).

Numerical results are available in Table 2 to Table 4, and should be read as fol-
lows: R is the rejection rate, E(N) is the observed expected sample size and V (N),
sample size variance (conditionnaly to rejection). These indicators measure respec-
tively, the power of the test, the test reactivity and �nally the variability in test
rejection time. In particular, the regular χ2 test (cf. �xed sample size test) is con-
ducted only once at the 12-th month, thus E(N) = 12 and V (N) = 0 (�xed sample
size test should be conducted only once, otherwise the �rst type error increases).

In Tables 2, 3 and 4, tests are driven under H0 for two di�erent levels of α (1
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Fig. 2 Population repartition over ages in proportions.

and 5%). We observe that χ2, χ2-SPRT are controlled in terms of �rst-type error
probabilities (in each test setups), when the χ2-Cusum rejects a lot more (cf. Ta-
bles 2 and 3). This is due to the fact that quickest detection algorithms are'nt tests
as �xed sample or SPRT are. The critical point for this algorithm is the false alarm
frequency, which is su�ciently large here (31 months for α = 5%). Nevertheless,
when α is small enough, the false alarm frequency increases quickly (11 months
for α = 1%). On 12 months setups, Cusum's rejection rate is closer to α, which is
clearly a good result.

Table 2 Tests results: α = 5%, β = 0%, σ = 0%, 1000 simulations, 60 months

R E(N) V (N)
χ2 0.05 12.00 0

χ2-SPRT 0.03 8.81 10.31
χ2-CUSUM 0.40 30.98 9.80

Table 3 Tests results: α = 1%, β = 0%, σ = 0%, 1000 simulations, 60 months

R E(N) V (N)
χ2 0.02 12.00 0

χ2-SPRT 0.01 11.00 15.25
χ2-CUSUM 0.10 10.89 14.11

Table 4 Tests results: α = 5%, β = 0%, σ = 0%, 1000 simulations, 12 months

R E(N) V (N)
χ2 0.04 12.00 0

χ2-SPRT 0.02 7.15 6.87
χ2-CUSUM 0.06 7.05 6.16
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In case of positive volatility (i.e. H1 is true), all the tests rejection rates are
quickly increasing (see Tables 5, 6 and 7). Cusum power and reactivity is always
better than the simple SPRT while the �xed sample size test achieve the best
power. However, the interest in this paper is to �nd tests or algorithms that can
monitor death on a continuous basis, avoiding the company to choose when to
do the backtest. According to our numerical results, the sequential probability
ratio test provides both advantages: a controlled �rst type error probability and
possibility to detect changes at any time.

Table 5 Tests results: α = 5%, β = 0%, σ = 10%, 1000 simulations, 60 months

R E(N) V (N)
χ2 0.92 12.00 0

χ2-SPRT 1.00 9.65 27.71
χ2-CUSUM 1.00 8.95 16.11

Table 6 Tests results: α = 5%, β = 0%, σ = 20%, 1000 simulations, 60 months

R E(N) V (N)
χ2 1.00 12.00 0

χ2-SPRT 1.00 3.69 0.87
χ2-CUSUM 1.00 3.69 0.86

Table 7 Tests results: α = 5%, β = 0%, σ = 10%, 1000 simulations, 12 months

R E(N) V (N)
χ2 0.93 12.00 0

χ2-SPRT 0.82 7.79 5.52
χ2-CUSUM 0.86 7.60 4.99

5 Conclusion

In conclusion of this work, we have presented how statistical modelling, through
�xed sample size tests, sequential analysis and change-point detection algorithms
can ensure an e�ective mortality backtesting. Far from being exhaustive, our ap-
proach provides fast and simple methods to follow continuously, with controlled
�rst-type error probability and with an acceptable power mortality risk. Indeed,
empirical results shows a superior power for �xed sample size tests but they don't
provide a suitable practical framework. The sequential probability ratio test is
shown to be the most interesting approach for actuaries, keeping a constraint on
�rst type error probability and sample size correlated to the distance between
hypothesis and observations. Furthermore, change-point detection algorithms can
also be applied to detect shifts in mortality trends. Indeed, we assume that the
mortality table is wrong from the start, but both sequential probability ratio test
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and cusum algorithm allows for later changes. Finally, we believe that sequential
analysis and change-point detection processes can be applied to more complex
situations, including disability and multiple other causes. We have to insist that
the presented procedures lead to a symmetric appreciation of the tested mortal-
ity assumptions. This could and should lead to di�erent consequences depending
on whether this lead to an overestimation or underestimation of the predicted
risks. Using such techniques enable to get a quantitative appreciation in order to
accompany an expert's judgement on the reliability of the mortality assumption.
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A Cox's theorem

Cox's theorem is a powerful tool in sequential analysis. Usually, tests are based on likelihood
functions, using observations from the process of interest (here, the number of deaths). Mul-
tiple ideas have been developped to take into account vectorial processes, and one is to apply
the test directly on statistics (χ2 or Hotelling-T 2 for example) instead of raw observations.
The theorem permits factorization in such a way that the sample probability density func-
tion (used for likelihood) reduces to the probability ratio for the statistic (in the following,
l(u1, ..., um, t1) disappears in a probability ratio).

Theorem 1 Let x = [x1, ..., xn] be random variables whose probability density function (p.d.f.)
depends on unknown parameters θ1, ..., θp. The xi themselves may be vectors. Suppose that:

� (i) t1, ..., tn are a functionally independent jointly su�cient set of estimators for θ1, ..., θp,
� (ii) the distribution of t1 involves θ1 but not θ2,...,θp,
� (iii) u1, ..., um are functions of x functionally independent of each other and t1, ..., tp,
� (iv) there exists a set S of transformations of x = [x1, ..., xn] into x∗ = [x∗1, ..., x

∗
n] such

that
� (a) t1, u1, ..., um are unchanged by all transformations in S,
� (b) the transformation of t2, ..., tp into t∗2, ..., t

∗
p is one-to-one,

� (c) if T1, ..., Tp and T ∗2 , ..., T
∗
p are two set of values of t2, ..., tp each having non-zero

probability density under at least one of the distributions of x, then there exists a
transformation in S such that if t2 = T2, ..., tp = Tp, then t∗2 = T ∗2 , ..., t

∗
p = T ∗p .

Then the joint p.d.f. of t1, u1, ..., um factorizes into

g(t1, θ1)l(u1, ..., um, t1), (26)

where g is the p.d.f. of t1 and l doesn't involve θ1.

B Lorden's theorem

Quickest detection algorithms are stochastic processes, from which we expect some simple
properties. Under H0, the process shouldn't give to frequent false alarm (i.e. ∆0(τ) might be
the biggest possible). Under H1, on the contrary, we wish that the process reacts as quickly as
possible, and thus minimize ∆1(τ). The detailed computations of ∆0 and ∆1 aren't simple,
but Lorden's theorem gives very useful boundaries for practical setups.

Theorem 2 Let N be a stopping time (or equivalently a sample size) with respect to y1, y2, ...
such that

P0(N <∞) ≤ α. (27)
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For k = 1, 2, ..., let Nk be the stopping time obtained by applying N to yk, yk+1, ... De�ne the
extended stopping time τ = min(k,Nk), then:

∆0(τ) ≥
1

α
,

∆1(τ) ≤ E1(N).

(28)
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