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The Solvency 2 advent and the best-estimate methodology in future cash-ows valuation lead insurers to focus particularly on their assumptions. In mortality, hypothesis are critical as insurers use best-estimate laws instead of standard mortality tables. Backtesting methods, i.e. ex-post modeling validation processes, are encouraged by regulators and rise an increasing interest among practitioners and academics. In this paper, we propose a statistical approach (both parametric and non-parametric models compliant) for mortality laws backtesting under model risk. Afterwards, a specication risk is introduced assuming that the mortality law is subject to random variations. Finally, the suitability of the proposed method will be assessed within this framework.

Introduction

The Solvency 2 directive (art. 83, Comparison against experience) imposes that undertakings develop processes to ensure that Best-Estimate calculations and underlying hypotheses are regularly compared against experience. In Life insurance and particularly in annuity computations, mortality models validation and backtesting is of key importance.

In this context, we consider the following simple question: How does an insurer verify that his mortality hypotheses are Best-Estimate ? More precisely, we derive testing methodologies to decide whether a given table is likely, according to observations. Indeed, the insurer wants to distinguish sampling variations from misspecication at any age. To do so, a reminder of mortality analysis and models is provided in a rst part. The derived statistical models are adequate foundations to develop and support testing processes that detects if prediction errors are the result of sampling variations or an unknown trend. According to these models, a rst set of tests with xed sample sizes are reviewed.

In a second part, the review will be extended to on-line backtesting, which relies on tests with random sample sizes. Indeed, if an insurer repeats xed tests on a growing set of data (every month for example), the rst type error probability converges to one if no corrections are taken on the signicance level. This problem is solved using sequential analysis and change-point detection algorithms. Finally, a numerical application is proposed to compare dierent approaches faced to a simulated misspecication.

Mortality models & assumptions

In mortality analysis, life time is considered as a positive random variable T . Considering suciently large groups of individuals, mortality risk is assumed mutualized and mathematical models are employed to describe the average behavior of a specic population. Writing S and h the survival and hazard functions respectively, the probability of death between age x and x + 1 (i.e. at age x) can be expressed as in equation 1 (see [START_REF] Planchet | Modélisation statistique des phénomènes de durée : Applications actuarielles[END_REF]):

q x = P (T ≤ x + 1|T > x) = 1 - S(x + 1) S(x) = 1 -exp - x+1 x h(u)du . (1)
If one wants to predict the number of deaths in a population for a xed period (without any other causes of population reduction), a minimal segmentation is needed to obtain homogeneity: a simple classier is age. Under these assumptions, the number of deaths D x at age x among a population of n x individuals can be modelled as a binomial random variable. In a portfolio with p dierent ages

x ∈ [x 1 , x p ], it comes:

∀x ∈ [x 1 , x p ], D x ∼ B(n x , q x ), (2) 
in case of annual projections. In the latter, mortality modeling will be summarized in an annual mortality table q = (q x 1 , ..., q x p ). Furthermore, we will consider observations in monthly requiring a mortality table transformation. If death rates are supposed constant during one year, monthly mortality rates can be derived as follows:

m q x = 1 -m p x = 1 -(1 -q x ) 1 12 ,
(3) where m q x being the desired rate. In the following, all mortality rates are monthly, and the subscript m is omitted. This simple assumption can be rened according to the mortality model implied in table generation. A second assumption in this work is that population renew identically every time-step during analysis.

As a convention in this document, single letters designate vectors over ages (for example, the previously dened q represent a set of p death probabilities), the subscript x is age-specic (q x is a real) and the upper-script represents dierent tables (q 0 = (q 0 x 1 , ..., q 0 x p ) is the table underlying observations for example).

From a statistical view, and whichever the method used to produce the table, it can be considered as a parameter in a parametric model (Y,P Q ) with Y the set of all possible observations and P Q a family of probability distribution on Y (see [START_REF] Gourieroux | Statistique et Modèles économétriques[END_REF] for detailed developments and notations). All previous assumptions can be summarized in the following model:

M B = (∀x ∈ [x 1 , x p ] , Y = N, P Q = B (n x , q x ) , q x ∈ Q x ) , (4) with ∀x ∈ [x 1 , x p ] , Q x = [0, 1].
If this model is well dened, and portfolio sizes are usually large, a Gaussian approximation is often used to simplify computations based on the central limit theorem. Even though this result is asymptotic (i.e. for large n x ), it's commonly used as the Gaussian law provides ease at use. Furthermore, we'll consider a xed and known variance-covariance matrix, essentially for simplicity. Finally, we consider the following statistical model:

M G = ∀x ∈ [x 1 , x p ] , Y = R, P Q = N µ x , σ 2 x , q x ∈ Q x , (5) 
with ∀x ∈ [x 1 , x p ], µ x = n x q x and σ 2 x = n x q x (1 -q x ) (in vectorial notations µ = µ x 1 , ..., µ x p and (Σ) x = σ 2
x a diagonal matrix). From now on, we consider that we observe at each date i, a set of deaths

d i = d i x 1 , ..., d i
x p from which we build the gross mortality rates based on N observations, q = qx 1 , ..., qx p where

∀x ∈ [x 1 , x p ], qN x = 1 N N i=1 d i x n x
(which is the maximum likelihood estimator in our model). Now that our framework for mortality models is dened, we shall present what our backtesting procedure is.

Mortality backtesting

Backtesting can be dened as an ex-post model validation method, including two dierent practices: validation and monitoring. The rst aims to validate a mortality table according to a xed amount of data, while the second allows for continuous treatment. This last aspect can be used to increase power in validation or detect shifts later on.

These problems are usually addressed through decision theory (see [START_REF] Gourieroux | Statistique et Modèles économétriques[END_REF] or [START_REF] Saporta | Probabilités, analyses de données et statistiques[END_REF] for detailed introductions). In our framework, it consists in testing the mean of a Gaussian vector with known variance and detecting any change-point or misspecication. One can nd alternative approaches based on dierent setups (see El [START_REF] El Karoui | Fast change detection on proportionnal two-population hazard rates[END_REF] for cox-like models and homogeneous Poisson processes).

Writing q γ the supposed mortality table and q 0 the real one (i.e. which generates the data), the null hypothesis is H 0 = {q γ = q 0 } against a composite alternative H 1 = {q γ = q 0 }. Then tests are dened as couples (ξ N , N ) with N the sample size (possibly random) and ξ N the associated decision function. All presented procedures are based on likelihood functions, derived from model M G but all classical signicance tests are applicable. Numerous other tests and change-point procedures can be found elsewhere, especially in change-point detection where the research is still very active in both Frequentist and Bayesian paradigms (see [START_REF] Lai | Sequential analysis: Some classical problems and new challenges[END_REF] , Tartakovsky andMoustakides (2010b) andTartakovsky andMoustakides (2010a)). On the other side, sequential alternatives are described in [START_REF] Wald | Sequential Analysis[END_REF], [START_REF] Ghosh | Handbook of Sequential Analysis[END_REF], [START_REF] Siegmund | Sequential analysis: Tests and Condence Intervals[END_REF] and [START_REF] Basseville | Detection of Abrupt Changes: Theory and Applications[END_REF].

Fixed sample tests

Based on the above discussion, we consider xed sample size tests in this section. In particular, Wald, Score and Likelihood ratio are easily applicable to the previous model and their asymptotic properties (convergence and coverage) are of importance as undertakings usually possess large portfolios. Following [START_REF] Gourieroux | Statistique et Modèles économétriques[END_REF], we consider the multidimensional constraint g(q) = q -q γ which resume the simple hypothesis H 0 . In the case of testing the mean of a Gaussian vector, these three tests correspond to the following statistic:

ξ = N (q N -q γ ) T Σ -1 (q N -q γ ), (6) 
which is χ 2 -distributed under H 0 . The associated rejection region W is:

W = {ξ > χ 2 1-α (p)}, (7) 
p being the number of ages considered in the portfolio and χ 2 1-α (p) the chi-square quantile with p-degrees of freedom and 1 -α level. By construction, xed sample size tests require predened parameters: a signicance level α (or rst term error probability) and a predened sample size N (equivalent to time for periodic observations). In practice, insurers have to dene when the test will be conducted: immediately or later with more information ? This decision implies a trade o between fast reaction and power: statistical signicance increases with observation as mortality risk. Alternative tests can be found, based on the Standardized Mortality Ratio for example, see [START_REF] Liddell | Simple exact analysis of the standardised mortality ratio[END_REF] for example.

On-line backtesting

In this part, dynamic methods are investigated. The two main related theories are sequential analysis (see [START_REF] Wald | Sequential Analysis[END_REF]) and change-point detection [START_REF] Lai | Sequential analysis: Some classical problems and new challenges[END_REF] and [START_REF] Basseville | Detection of Abrupt Changes: Theory and Applications[END_REF] for detailed presentations and [START_REF] Tartakovsky | State-of-the-art in bayesian change-point detection[END_REF] for a more recent review on bayesian technics). Indeed, a simple repetition of previous xed sample size tests leads to important rst type error probability increases. In the following, α is the probability to reject the null hypothesis when it's true and β the probability to keep the null hypothesis when the alternative is true (respectively the rst and second type errors).

Sequential Probability Ratio Test (SPRT)

The sequential probability ratio test (SPRT) was rst introduced as a test between two simple hypotheses. Constructed on the likelihood ratio Λ N with Nobservations:

Λ N (x) = N i=1 L(D = d i , q γ ) L(D = d i , q 0 ) (8)
where p n is the joint probability (or density) of the sample, the Sequential Probability Ratio Test consists in the following (with A,B two thresholds):

   reject H 0 , if Λ N ≥ A accept H 0 , if Λ N ≤ B continue, otherwise (9) 
In other terms, the test stops the rst time the likelihood ratio leaves the interval [B, A]. The corresponding number of observations is called the sample size N and is thus a random variable. Optimality and closure properties are discussed in [START_REF] Wald | Sequential Analysis[END_REF]. Furthermore, the following approximations for A, B, α and β holds (even if the independance assumption is dropped):

A 1 -β α , B β 1 -α . ( 10 
)
These expressions are only approximate due to possible overshoot over boundaries (Λ n is never equal to A or B exactly when the test stops). In case of composite hypotheses, the situation is much more complex and the initial Likelihood Ratio Λ n must be adapted. [START_REF] Wald | Sequential Analysis[END_REF] proposed two dierent solutions. The rst is a weighted sequential probability ratio test (WSPRT), obtained specifying prior distribution functions under H 0 and H 1 for the parameter to be tested. Indeed, in the case of a simple hypothese against a composite one, Wald proposes to consider the parameter as a random variable itself (and thus consider a specic law, v such as Q 1 v(s)ds = 1). Thus, he requires that the second type error probability β is controlled:

β = Q 1 β(q)w(q)dq (11) 
which is combersome as we would prefer to have ∀q ∈ Q 1 , β(q) ≤ β (and no methods have been found to insure that constraint). The likelihood ratio becomes (the tilde notation will be reserved to probability mixture):

ΛN (x) = N i=1 L(D = d i , q γ ) Q 1 N i=1 L(D = d i , q)v(q)dq (12) 
The second is based on the generalized sequential probability ratio test (GSPRT), using estimators (usually Maximum Likelihood estimators) in place of priors (the hat notation will be used for likelihood estimators):

ΛN (x) = N i=1 L(D = d i , q γ ) L(D = d i , q) (13) 
According to [START_REF] Wald | Sequential Analysis[END_REF], this last version is more dicult to study as the likelihood ratio is no longer a probability distribution (in particular, approximations on error probabilities are not applicable). More recently, Lai (1998) proposed a dynamic boundary for the GSPRT, considering estimators variability.

As mentioned before, the main diculty in the WSPRT design is the choice of an appropriate prior for the parameter q on Q 1 . An existing solution is the frequency functions method, based on the likelihood ratio of a sequence of statistics. Using Cox's factorization theorem (in annex), one can reduce composite hypotheses to simple ones using an invariance reduction principle (see [START_REF] Hall | The relationship between suciency and invariance with applications in sequential analysis[END_REF] for further developments and [START_REF] Jackson | Sequential chi-2 and t-2 tests[END_REF] for a detailed application of this theorem). Applying this method to the gaussian case, [START_REF] Jackson | Sequential chi-2 and t-2 tests[END_REF] derived χ 2 (and T 2 , in case of unknown variance-covariance matrix) sequential probability ratio test, based on homonym statistics. From now on, we apply their result to the previous backtesting problem even though they considered alternative hypotheses of the form: H 0 = { q γ -q 0 ≤ λ 0 } against H 1 = { q γ -q 0 ≥ λ 1 } with 0 ≤ λ 0 < λ 1 implying an indierence region (Depending whether acceptance is needed, one can set λ 0 = 0, which is the case in the following):

ln Λ χ 2 N = -N λ 2 1 2 + ln 0 F 1 p 2 , N λ 2 1 χ 2 N 4 . ( 14 
)
where 0 F 1 is the generalized hyper-geometric function and χ 2 N = N (q-q γ ) T Σ -1 (qq γ ) (for numerical evaluation, we use the gsl package). This result is the ratio between two non-central χ 2 distributions with p-degrees of freedom and respective non-centrality parameter λ 2 1 . The choice of λ 1 should be motivated by the application, and in our setup we have decided to select λ 1 = 10% q γ . The choice of A and B is based on Wald's previous approximation which still holds in this case. Unfortunately, there are no practical results to compute the expected sample sizes in this case (but they're are available under i.i.d assumption). One simplication suggested in [START_REF] Jackson | Sequential chi-2 and t-2 tests[END_REF] is to compute every time step independent statistics using only innovations: the Wald's approximation will hold in despite of a potentially substantial loss of power. No results are available on the GSPRT, thus we will not use it.

Quickest detection algorithms

Backtesting can also be interpreted as a change-point detection problem. In this theory, the classical setup is a sequence of random variables distributed under a known distribution f 0 , that possibly switches to an alternative and unknown distribution f 1 at an unknown time ν ∈ N (random in Bayesian frameworks and considered equal to ∞ when no changes occur). The objective for change-point detection algorithm τ (dened as a stopping time) is to raise an alarm as quickly as possible when the change occurs, without raising too frequent false alarms. According to Tartakovsky, 4 approaches can be found in the literature: Bayesian (the time of change is random with a specic prior), Generalized Bayesian (improper priors), Multi-cycle procedures and Minimax. Change-point detection is a vast domain and we will focus on frequentist algorithms. [START_REF] Lorden | Procedures for reacting to a change in distribution[END_REF] gave a minimax criterion to compare algorithms in this setup, the essential supremum average detection delay (Notations from Tartakovski, ν is the time of change, τ is the time where the alarm is raised):

ESADD = sup 0≤ν<∞ ess sup E ν (τ -ν + 1) + |F ν . ( 15 
)
subject to a constraint of maximal false alarm frequency E 0 (τ ) ≥ λ. In other terms, we want our process to raised the alarm as quicly as possible when the change as occured, without raising a false alarm before time λ (in average) when there is no change (ν = 0). As a solution to this problem, [START_REF] Page | Continuous inspection schemes[END_REF] introduced the Cusum algorithm:

τ = inf{n, Λ n -min 1≤j≤n Λ j ≥ A} = inf{n, max 1≤j≤n Λ n j ≥ A} , (16) 
where Λ k j being the likelihood ratio based on observations j up to k. A recursive version of this algorithm can be found in [START_REF] Lorden | Procedures for reacting to a change in distribution[END_REF] and [START_REF] Basseville | Detection of Abrupt Changes: Theory and Applications[END_REF]. In his work, Page also pointed out the connection between the Cusum algorithm and Wald's SPRT: the Cusum test can be seen as a set of parallel open-ended SPRTs, a new one starting every period (or observation). Writing N k the sample size of a one-sided open-ended SPRT applied to qk , qk+1 , ..., the Cusum stopping time is N = min 1≤k≤n N k .

Equivalently to the SPRT, two solutions are presented to deal with composite hypotheses:

the Weighted Cusum Λ :

Λk j = q 1 ∈Θ L(q j , ..., qk |q 1 ) L(q j , ..., qk |q 0 ) dF (q 1 ), (17) 
the Generalized Likelihood Ratio (GLR) Λ:

Λk j =
sup q 1 ∈Θ 1 L(q j , ..., qk |q 1 ) L(q j , ..., qk |q 0 ) .

(

) 18 
Considering previous alternative hypotheses and following [START_REF] Basseville | Detection of Abrupt Changes: Theory and Applications[END_REF], two χ 2 -Cusum algorithms are available. The rst is a direct application (case 3 p.218) of least favorable priors in case of invariant distributions:

ln Λk j = -(k -j + 1) λ 2 1 2 + ln 0 F 1 p 2 , (k -j + 1)λ 2 1 (χ k j ) 2 4 , (19) 
with (χ k j ) 2 = (k -j + 1) qk j -q γ T Σ -1 qk j -q γ . Asymptotic rst-order optimality has been proven for the χ 2 -Cusum algorithm in multidimensional case (see p.268 in [START_REF] Basseville | Detection of Abrupt Changes: Theory and Applications[END_REF]). Introducing ∆ 0 = E θ 0 (N ) the meantime between false alarms and ∆ 1 = E θ 1 (N ) the average delay for detection, it comes:

∆ 0 ≥ A, (20 
) from Lorden's theorem (see theorem in annex). Furthermore, the χ 2 -Cusum algorithm is rst-order optimal in that case.

Numerical applications

In this section, we propose a simple numerical illustration to ensure tests eciency in the context of mortality backtesting. Tests will rst be tested under null hypothesis and then in case of mortality table misspecied. This case will be simulated in a practical method, using a white noise on mortality rates logits. After unbiasing, the table we consider as the real mortality tables q 0 is randomly distributed around the given mortality table q γ , but equal in mean.

Misspecication on mortality tables

Specication risk occurs when the given mortality table doesn't t the real mortality distribution. In this case, if q 0 is the real mortality law, q γ the model and the error term it comes:

q 0 = f (q γ , ), (21) 
where f is an unknown and unobservable function and a random variable. In this application, our methodology consists in choosing a specic function f and a probability distribution for the error term to produce specication risk. The error term is a controlled Gaussian white noise applied to the pre-dened mortality law logits:

∀x ∈ [x 1 , x p ], logit(q 0 x ) = logit(q γ x ) + x , (22) 
with ∼ N p (0, σId). In other words, the real mortality law is randomly distributed around the pre-dened law q γ but equal in average (E(q 0 ) = q γ ). Thus, the function f is the following:

∀x ∈ [x 1 , x p ], q 0 x = e x q γ x 1 + q γ
x (e x -1)

-E e x q γ x 1 + q γ x (e x -1)

-q γ . (23) 
Finally, an illustration is given of multiple q 0 randomly distributed around q γ (see gure 1). Now that specication risk is simulated, the second objective is to nd a business interpretation of σ. Indeed, if it's quantitatively dened in previous equations, what impact does-it have on real indicators ? For instance, the volatility implied on the remaining life expectancy of a 65-years old male e 65 is measured as follows:

e 65 = 1 S(65) 120 j=66 S(j), (24) with S(x) = x-1 i=1 (1 -q i ) the discrete survival function. Considering e 65 as a function of , here is a measure of the deviation of e 65 : δ = q 95% (e 65 ) -E(e 65 ) E(e 65 ) .

(25)

The following table 1 shows correspondence between remaining life expectancy volatility δ and σ. The test methodology consists in setting rst q γ (in our example, it has been adjusted on the French regulatory mortality table TH00-02). Then, for each simulation, a noise is simulated and applied to obtain q 0 . From that, deaths are generated every month and tests conducted. The portfolio population is based on the French Insee demographic structure (table RP2009) and includes people between 18 and 62 years-old (see gure 2) for a total of 10 6 individuals (in France, large companies deal with such portfolios). Numerical results are available in Table 2 to Table 4, and should be read as follows: R is the rejection rate, E(N ) is the observed expected sample size and V (N ), sample size variance (conditionnaly to rejection). These indicators measure respectively, the power of the test, the test reactivity and nally the variability in test rejection time. In particular, the regular χ 2 test (cf. xed sample size test) is conducted only once at the 12-th month, thus E(N ) = 12 and V (N ) = 0 (xed sample size test should be conducted only once, otherwise the rst type error increases).

In Tables 2, 3 and4 and 5%). We observe that χ 2 , χ 2 -SPRT are controlled in terms of rst-type error probabilities (in each test setups), when the χ 2 -Cusum rejects a lot more (cf. Tables 2 and 3). This is due to the fact that quickest detection algorithms are'nt tests as xed sample or SPRT are. The critical point for this algorithm is the false alarm frequency, which is suciently large here (31 months for α = 5%). Nevertheless, when α is small enough, the false alarm frequency increases quickly (11 months for α = 1%). On 12 months setups, Cusum's rejection rate is closer to α, which is clearly a good result. In case of positive volatility (i.e. H 1 is true), all the tests rejection rates are quickly increasing (see Tables 5, 6 and7). Cusum power and reactivity is always better than the simple SPRT while the xed sample size test achieve the best power. However, the interest in this paper is to nd tests or algorithms that can monitor death on a continuous basis, avoiding the company to choose when to do the backtest. According to our numerical results, the sequential probability ratio test provides both advantages: a controlled rst type error probability and possibility to detect changes at any time. 

Conclusion

In conclusion of this work, we have presented how statistical modelling, through xed sample size tests, sequential analysis and change-point detection algorithms can ensure an eective mortality backtesting. Far from being exhaustive, our approach provides fast and simple methods to follow continuously, with controlled rst-type error probability and with an acceptable power mortality risk. Indeed, empirical results shows a superior power for xed sample size tests but they don't provide a suitable practical framework. The sequential probability ratio test is shown to be the most interesting approach for actuaries, keeping a constraint on rst type error probability and sample size correlated to the distance between hypothesis and observations. Furthermore, change-point detection algorithms can also be applied to detect shifts in mortality trends. Indeed, we assume that the mortality table is wrong from the start, but both sequential probability ratio test and cusum algorithm allows for later changes. Finally, we believe that sequential analysis and change-point detection processes can be applied to more complex situations, including disability and multiple other causes. We have to insist that the presented procedures lead to a symmetric appreciation of the tested mortality assumptions. This could and should lead to dierent consequences depending on whether this lead to an overestimation or underestimation of the predicted risks. Using such techniques enable to get a quantitative appreciation in order to accompany an expert's judgement on the reliability of the mortality assumption.
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 1 Fig. 1 Example of dierent levels of specication risk (0, 5%, 10%).
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 2 Fig. 2 Population repartition over ages in proportions.

Table 1

 1 Correspondence between σ and δ for a 65 years old person and N = 10 6 .

		δ
	0%	16.21 0.00000
	5%	16.34 0.00708
	10% 16.48 0.01556
	20% 16.75 0.03051
	30% 17.00 0.04770
	40% 17.23 0.06508
	4.2 Data simulation and portfolio structure

σ e

Table 2

 2 Tests results: α = 5%, β = 0%, σ = 0%, 1000 simulations, 60 months

		R	E(N )	V (N )
	χ 2	0.05	12.00	0
	χ 2 -SPRT	0.03	8.81	10.31
	χ 2 -CUSUM 0.40	30.98	9.80

Table 3

 3 Tests results: α = 1%, β = 0%, σ = 0%, 1000 simulations, 60 months

		R	E(N )	V (N )
	χ 2	0.02	12.00	0
	χ 2 -SPRT	0.01	11.00	15.25
	χ 2 -CUSUM 0.10	10.89	14.11

Table 4

 4 Tests results: α = 5%, β = 0%, σ = 0%, 1000 simulations, 12 months

		R	E(N )	V (N )
	χ 2	0.04	12.00	0
	χ 2 -SPRT	0.02	7.15	6.87
	χ 2 -CUSUM 0.06	7.05	6.16

Table 5

 5 Tests results: α = 5%, β = 0%, σ = 10%, 1000 simulations, 60 months

		R	E(N )	V (N )
	χ 2	0.92	12.00	0
	χ 2 -SPRT	1.00	9.65	27.71
	χ 2 -CUSUM 1.00	8.95	16.11

Table 6

 6 Tests results: α = 5%, β = 0%, σ = 20%, 1000 simulations, 60 months

		R	E(N )	V (N )
	χ 2	1.00	12.00	0
	χ 2 -SPRT	1.00	3.69	0.87
	χ 2 -CUSUM 1.00	3.69	0.86

Table 7

 7 Tests results: α = 5%, β = 0%, σ = 10%, 1000 simulations, 12 months

		R	E(N )	V (N )
	χ 2	0.93	12.00	0
	χ 2 -SPRT	0.82	7.79	5.52
	χ 2 -CUSUM 0.86	7.60	4.99
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A Cox's theorem

Cox's theorem is a powerful tool in sequential analysis. Usually, tests are based on likelihood functions, using observations from the process of interest (here, the number of deaths). Multiple ideas have been developped to take into account vectorial processes, and one is to apply the test directly on statistics (χ 2 or Hotelling-T 2 for example) instead of raw observations. The theorem permits factorization in such a way that the sample probability density function (used for likelihood) reduces to the probability ratio for the statistic (in the following, l(u 1 , ..., um, t 1 ) disappears in a probability ratio).

Theorem 1 Let x = [x 1 , ..., xn] be random variables whose probability density function (p.d.f.) depends on unknown parameters θ 1 , ..., θp. The x i themselves may be vectors. Suppose that:

(i) where g is the p.d.f. of t 1 and l doesn't involve θ 1 .

B Lorden's theorem

Quickest detection algorithms are stochastic processes, from which we expect some simple properties. Under H 0 , the process shouldn't give to frequent false alarm (i.e. ∆ 0 (τ ) might be the biggest possible). Under H 1 , on the contrary, we wish that the process reacts as quickly as possible, and thus minimize ∆ 1 (τ ). The detailed computations of ∆ 0 and ∆ 1 aren't simple, but Lorden's theorem gives very useful boundaries for practical setups.

Theorem 2 Let N be a stopping time (or equivalently a sample size) with respect to y 1 , y 2 , ... such that

Mortality: a statistical approach to detect model misspecication 13 For k = 1, 2, ..., let N k be the stopping time obtained by applying N to y k , y k+1 , ... Dene the extended stopping time τ = min(k, N k ), then:

(28)