
HAL Id: hal-01149392
https://hal.science/hal-01149392v1

Submitted on 22 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental complexity of a bi-objective hypergraph
transversal problem

Ricardo Andrade, Etienne E. Birmelé, Arnaud Mary, Thomas Picchetti,
Marie-France Sagot

To cite this version:
Ricardo Andrade, Etienne E. Birmelé, Arnaud Mary, Thomas Picchetti, Marie-France Sagot. Incre-
mental complexity of a bi-objective hypergraph transversal problem. Fundamentals of Computation
Theory (FCT2015), Aug 2015, Gdansk, Poland. pp.202-213, �10.1007/978-3-319-22177-9_16�. �hal-
01149392�

https://hal.science/hal-01149392v1
https://hal.archives-ouvertes.fr


Incremental complexity of a bi-objective

hypergraph transversal problem

Ricardo Andrade2, Etienne Birmelé1, Arnaud Mary2, Thomas Picchetti1, and
Marie-France Sagot2

1 MAP5, UMR CNRS 8145, Université Paris Descartes
2 Université de Lyon, F-69000, Lyon ; Université Lyon 1 ; CNRS, UMR5558,

Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France /
INRIA Grenoble Rhône-Alpes - ERABLE

Abstract. The hypergraph transversal problem has been intensively
studied, from both a theoretical and a practical point of view. In par-
ticular, its incremental complexity is known to be quasi-polynomial in
general and polynomial for bounded hypergraphs. Recent applications in
computational biology however require to solve a generalization of this
problem, that we call bi-objective transversal problem. The instance is
in this case composed of a pair of hypergraphs (A,B), and the aim is to
find minimal sets which hit all the hyperedges of A while intersecting a
minimal set of hyperedges of B. In this paper, we formalize this problem,
link it to a problem on monotone boolean ∧−∨ formulae of depth 3 and
study its incremental complexity.

1 Introduction

Let G(V,A) with A ⊆ 2V be a hypergraph on a finite set V . By abuse of
language, we may also from now on refer to the hypergraph more simply by A
only. A transversal of A is any set S ⊆ V intersecting all hyperedges of A. It is
straightforward to see that being a transversal is a monotone property on the
subsets of V , so that the collection of minimal transversals characterizes all of
them. This collection is called the dual or transversal hypergraph of A, and is
denoted by tr(A).

The problem of computing the transversal hypergraph of any A is equiva-
lent to enumerating maximal independent sets in hypergraphs [3] or to solving
the Boolean function dualization problem [8]. Furthermore, it has many applica-
tions, for instance in artificial intelligence [6]. This problem thus received much
attention in the last decades, both from a theoretical and a practical point of
view (see [8] for a review).

The first method was proposed by Berge [1], who considered the hyperedges
iteratively, updating the partial solutions obtained at each step. This algorithm
may however have to store a high number of partial solutions, and no final solu-
tion will be available until the algorithm stops. More recent work thus focused
on methods that build the minimal transversals iteratively, that is which study
the following problem [14]:



Problem 1. DUAL(A,X ) Given a hypergraphA and a set X of minimal transver-
sals of A, prove that tr(A) = X or find a new minimal transversal in tr(A) \ X .

The complexity of this problem remains an open question. However, Fredman
and Khachiyan [9] showed that it is quasi-polynomial by proposing two algo-

rithms of respective complexities NO(log2 N) and No(logN), where N = |A|+ |X |
is the size of the input. We define the dimension dim(A) of a hypergraph A as
the size of its largest hyperedge, and the degree of a vertex as the number of
hyperedges it belongs to. For hypergraphs of bounded dimension, the problem
is polynomial [5] and parallelizable [3]. It is also polynomial for hypergraphs
of bounded degree [7]. Moreover, the complexity class of the problem does not
change if multiple minimal transversals or partial minimal transversals are re-
quired [4].

The performance of the algorithms in practice was also studied in several
publications. Khachiyan et al. [14] introduced an algorithm of the same worst-
case complexity than the one of Fredman and Khachiyan but with a better
performance in practice. More recently, Toda [16] and Murakami and Uno [15]
compared the existing algorithms and proposed new ones which can deal with
large scale hypergraphs.

Determining the transversal of a hypergraph has also several already studied
or potential applications in computational biology. It was for example proposed
for elaborating knock-out strategies in metabolic networks [11], the hyperedges
representing metabolic pathways whose activity should be suppressed. One may
also consider the vertices as genes and a hyperedge as the set of mutated genes in
a tumoral tissue. The transversal hypergraph then lists the collection of minimal
mutation sets covering all the tumors. The mutation scenarios would be described
by sets of genes, rather than by a single ranking of the genes based on the p-value
of a statistical over-representation test.

However, due to the complexity of cellular mechanisms, in both previous
cases it appears there actually are two types of hyperedges, some of them having
to be intersected while some others should be avoided. Indeed, if one wants to
knock-out a given set of metabolic pathways, one needs to maintain the biomass
production of the cell in order to avoid cellular death. Hädicke and Klamt [12]
introduced thus the notion of constrained minimal cut sets corresponding to
vertex sets hitting all target pathways while avoiding at least n pathways among
a prescribed set. An adaptation of the Berge algorithm was proposed and was
compared to binary integer programming on real data sets [13].

Coming back to the tumoral mutation example, a similar bi-objective prob-
lem appears. Mutations may indeed not be related to cancer, and the goal is to
discriminate driver mutations from so-called back-seat mutations. Bertrand et
al. [2] show that this is equivalent to the minimal set cover and used a greedy
approximation algorithm to solve it. An alternative way to deal with the problem
would be to use other mutation data on similar but non tumoral tissues, and to
look for mutation collections covering all tumors while covering as few healthy
samples as possible.



We therefore propose to consider a bi-objective generalization of the hyper-
graph transversal problem, in which two distinct hypergraphs represent, respec-
tively, the sets of nodes to hit and those to avoid, and to search for the minimal
sets of vertices fulfilling both criteria.

2 The bi-objective transversal problem

2.1 The problem

We consider two hypergraphs on the same set of vertices V . The first hypergraph
A will be denoted as the red hypergraph and represents the sets of vertices that
have to be intersected. The second hypergraph B will be denoted as the blue
hypergraph and represents the sets of vertices which should not be intersected
if possible. We will represent such an instance as a tripartite graph, as shown in
Figure 1.

For any S ⊂ V , we define

AS = {A ∈ A;S ∩ A 6= ∅}

and

BS = {B ∈ B;S ∩B 6= ∅}

In particular, for x ∈ V , Ax and Bx denote the sets of red and blue hyperedges
that contain x.

The problem then becomes:

Problem 2. Bi-objective hypergraph transversal problem Given a hyper-
graph G = (V,H) and a partition H = A ∪ B of its hyperedges, enumerate the
sets S ⊂ V such that:

1. AS = A and S is minimal for this property;
2. there exists no S′ verifying condition 1 and such that BS′ is a strict subset

of BS.

Such sets are called bi-objective minimal transversals of the couple (A,B). The
collection of bi-objective minimal transversals of (A,B) is denoted by btr(A,B).

A first approach for this problem would be to enumerate all minimal transver-
sals for A and then to check for the minimality condition with respect to B. How-
ever, such a procedure may spend an exponential time on enumerating minimal
transversals of A which will be ruled out in the second step. Indeed, consider
a hypergraph A on a vertex set V such that A has an exponential number of
minimal transversals. Let S be one of them. Consider the hypergraph B having
V \S as unique hyperedge. S is then the unique bi-objective minimal transversal
of (A,B).

As the dual hypergraph problem corresponds to the special case B = ∅, we
propose to adopt the same strategy of an incremental search of the solutions.
We therefore introduce the following problem:



u v w x

A1 A2 A3

B1 B2 B3

Fig. 1. Tripartite representation of an instance of the problem. The circled vertices are
the vertices of the hypergraphs. The squared (resp. diamond) vertices represent the
hyperedges of A (resp. B). Consider the sets S = {u, v} and T = {u, w}. Both are
minimal transversals for A. However S is not a solution for the bi-objective problem
as BT is a strict subset of BS .

Problem 3. BIDUAL(A,B,X ) Given hypergraphs A and B on the same ver-
tices and a set X of bi-objective minimal transversals of (A,B), prove that
btr(A) = X or find a new minimal transversal in btr(A) \ X .

2.2 A new enumeration problem

For B ⊆ B, we denote by SB the set such that SB = {x ∈ V (B) | Bx ⊆ B}. In
other words, SB is the set of vertices belonging to no blue hyperedges except for
those in B.

For instance, in Figure 1, SB1
= {u,w}, SB2

= ∅ and S{B2,B3} = {x}.
We define a predicate f : 2B → {0, 1} with

f(B) =

{

1 if SB is a transversal of A

0 otherwise
(1)

and introduce a new enumeration problem:

Problem 4. Minimal B-sets enumeration problem Enumerate all minimal
B ⊆ B such that f(B) = 1.

In Figure 1, B1 is the only solution to the above problem.
The sets to be enumerated in Problems 2 and 4 are then linked through the

following result.

Lemma 1. 1. Let S be a solution to Problem 2. We then have that BS is a

solution to Problem 4.



2. Let B be a solution to Problem 4. We then have that every minimal hitting

set S of A included in SB is a solution to Problem 2 and BS = B.

Proof. The first item is a direct consequence of the definition of a solution to
Problem 2.

For the second item, consider S′ a minimal hitting set for A with BS′ ⊂ BS ⊂
B. Then f(BS′) = 1. By minimality of B, BS′ = BS = B. ⊓⊔

Let us then consider the algorithm which enumerates the solutions of Prob-
lem 4 and which, each time a new solution B is found, enumerates all minimal
sets S covering A and included in SB.

By the first item of Lemma 1, every solution of Problem 2 is enumerated by
this algorithm.

By the second item, all the sets enumerated by the algorithm are solutions
to Problem 2 and none of them is enumerated twice. Indeed, if that were the
case, meaning that two solutions for Problem 4, say B and B′, lead to a same
solution S to Problem 2. The second item then implies that B = BS = B′.

Moreover, given a set B ∈ B, the enumeration of all minimal sets covering A
and included in SB is the transversal hypergraph problem, and can therefore be
solved in quasi-polynomial time, and even in polynomial time if A is of bounded
dimension or if A is of bounded degree.

A natural question is therefore the complexity class of Problem 4. The answer
to this question is already partially known. Indeed, consider a set B of hyperedges
of B, and for each hyperedge bi of B, the boolean variable ci indicating if bi ∈ B.
Then, for any vertex x, x ∈ SB if and only if

∧

bi∈Bx
ci = 1. A hyperedge a of A

is then hit by SB if and only if
∨

x∈a

∧

bi∈Bx
ci = 1. Finally,

f(B) =
∧

a∈A

∨

x∈a

∧

bi∈Bx

ci

Our enumeration problem is therefore the enumeration of all minimal truth
assignments satisfying a monotone boolean function of depth 3. The situation
is illustrated by Figure 2. Conversely, for any monotone formula of type

∧∨∧

,
one can easily construct an equivalent instance of Problem 4: simply represent it
as a tree of depth 3, merge leaves that are labeled with the same literal, remove
the root, and the result is a tripartite graph as in Figure 1.

The associated incremental problem is then the following, introduced in [10]:

Problem 5. GEN(S) Consider a monotone boolean function of depth 3 in the
shape

∧∨∧

. Given a set S of minimal solutions, determine if S is the set of all
minimal solutions or find a new one.

This problem was shown in [10] to be coNP-complete. More precisely, the
reduction in [10] shows that in order to determine if a DNF formula d is a
tautology, it suffices to define a monotone formula d̃ by replacing in d every
negative litteral xi with a new variable yi, and ask whether the monotone formula



c1 c1 ∧ c2 c1 c2 ∧ c3

c1 ∨ (c2 ∧ c3) c1 ∨ (c1 ∧ c2) (c1 ∧ c2) ∨ c1 ∨ (c2 ∧ c3)

(c1 ∨ (c2 ∧ c3)) ∧ (c1 ∨ (c1 ∧ c2)) ∧ ((c1 ∧ c2) ∨ c1 ∨ (c2 ∧ c3))

c1 c2 c3

Fig. 2. Representation of the instance of Figure 1 in terms of a monotone boolean
function. The formula of depth 3 is not true for the truth assignment c1 = c2 = c3 = 0,
indicating that it is not possible to hit all hyperedges of A avoiding every hyperedge of
B. However, the truth assignment c1 = 1, c2 = c3 = 0 satisfies the formula, indicating
that there exists a solution hitting only the the first blue (diamond) hyperedge.

f0 = d̃∨ [(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn)] has other prime implicants than
the terms in d̃.

By distributivity f0 ≡ f1 = (x1 ∨ y2 ∨ d̃) ∧ (x1 ∨ y2 ∨ d̃) ∧ · · · ∧ (x1 ∨ y2 ∨ d̃)
which is in the shape

∧∨∧

, hence the coNP-completeness of GEN .

Since in the instance of Problem 4 associated to f1 the hypergraphs A and
B have maximum degree 1 and 3 (if d is in 3-DNF), this reduction implies that
the corresponding decision problem is coNP-complete even with these degree
constraints.

However, the question remains open if the dimension of A or B is bounded
that is if the red (square) or the blue (diamond) vertices in Figure 2 are of
bounded degree.

When only one hypergraph is considered, bounding the degree or the di-
mension reduces the complexity of the transversal enumeration from quasi-
polynomial to polynomial. In the following, we prove in Section 3 that bounding
the dimension of B or the degree of the vertices is not enough in the bi-objective
case as then 3 − SAT can be reduced to both BIDUAL and GEN . However,
we show in Section 4 that both problems become polynomial if the dimension of
A is bounded.



3 Bounding the dimension or degree of B

3.1 Results for B of bounded dimension

Theorem 1. 3−SAT can be reduced to BIDUAL, even in the case of a bounded

value for dim(B).

Proof. Let us consider a 3-SAT instance with boolean variables {x1, . . . , xn} and
clauses C1, . . . , Cm. We can consider, without loss of generality, that there exists
no i such that all clauses contain either xi or xi.

x1 x2 x3 x4 x1 x2 x3 x4
y1 y2 y3 y4

A1 A2 A3

B1 B2 B3 B4 B′

1 B′

2 B′

3 B′

4

Fig. 3. Instance for the reduction of 3-SAT to BIDUAL. The considered clauses are
C1 = x1 ∨ x2 ∨ x4, C2 = x1 ∨ x3 ∨ x4 and C3 = x2 ∨ x3 ∨ x4.

Construct the following hypergraph (see Figure 3):

1. Consider 3n vertices V = {x1, x1, . . . , xn, xn, y1, . . . , yn}.
2. For every 1 ≤ j ≤ m, define a red hyperedge Aj including the xi’s and xi’s

defining Cj as well as {y1, . . . , yn}.
3. For every 1 ≤ i ≤ n, define a blue hyperedge Bi = {xi, yi} and a blue

hyperedge B′
i = {xi, yi}. Observe that B is of dimension 2.

For every 1 ≤ i ≤ n, consider Si = {yi}. It covers all the red hyperedges as
well as Bi and B′

i. As neither xi nor xi is contained in all the clauses, it is a
minimal solution to the bi-objective problem.

Consider the problem BIDUAL(A,B,X ) for X = {{y1}, . . . , {yn}}.
Suppose that there exists a minimal bi-objective transversal S in btr(A,B) \

X . For any 1 ≤ i ≤ n, S cannot contain both vertices xi and xi. Indeed, it would



then cover Bi and B′
i, implying BSi

⊂ BS . As at least one clause contains neither
xi nor xi, this inclusion would be strict and contradict the minimality of S with
respect to the second bi-objective criterion.

The former implies that S corresponds to a truth assignment of the boolean
variables xi. The fact that it covers A is then equivalent to the fact that all
clauses are satisfied. Deciding if there is such S is therefore NP-Complete, i.e.
deciding whether btr(A,B) = X is coNP-complete. ⊓⊔

Remark 1. The same reduction is an alternative proof to [10] of the coNP-
hardness of GEN by considering S =

⋃

1≤i≤n(Bi, B
′
i). A same reasoning can

then be applied to show that finding a new solution would be equivalent to
finding a truth assignment satisfying all clauses.

3.2 Results for vertices of bounded degree

The reduction of the former paragraph can be slightly adapted to prove that
both BIDUAL and GEN remain hard if the degree of the vertices is bounded
rather than the dimension of B. This is a strong difference with the traditional
transversal problem as DUAL becomes polynomial in this case.

Theorem 2. 3 − SAT can be reduced to BIDUAL and GEN in the case of a

bounded degree of the vertices of V .

Proof. The reduction is similar to the one used to prove Theorem 1. Two modi-
fications are done:

1. The vertices of the hypergraph are split: each yi is substituted by m vertices
yji , 1 ≤ j ≤ m, yji belonging to the hyperedges Bi, B

′
i and Aj . Similarly, each

xi (resp. xi) is split in as many vertices as the number of red hyperedges it
belongs to, and each of them belongs to Bi (resp. B′

i) and one of the copies.

2. For each 1 ≤ i ≤ n, a new blue hyperedge B′′
i is created, containing all xj

i

and xj
i .

Figure 4 gives an example of this reduction.
It is easy to see that each vertex of V is of degree exactly 3. Moreover, for each

i, Si = {y1i , . . . , y
m
i } is a solution to the bi-objective problem and BSi

= {Bi, B
′
i}.

Consider then the problem BIDUAL(A,B,X ) where X is the set of all those
solutions.

Let S be a new solution of the bi-objective problem. The set S cannot, for
any indices i, j, k, contain both yki and a vertex of index j. Indeed, BS would then
contain Bi, B

′
i and one set among Bj , B

′
j and B′′

j , and therefore also contain
BSi

as a proper subset. S thus contains no vertex y.

The same argument holds if S contains both xk
i and xl

i for some indices
i, k, l. Indeed, BS then contains Bi, B

′
i and B′′

i and consequently contains BSi

as a proper subset.
For every index i, S therefore contains either only vertices of the form xk

i

or only vertices of the form xk
i . As S covers all the red hyperedges, assigning a



x1

1 x2

1
. . . x1

. . .y1

1 y2

1 y3

1
. . .

A1 A2 A3

B1
B2

B3
B4

B′

1 B′

2

B′

3 B′

4

B′′

1 B′′

2
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4

Fig. 4. Reduction of 3-SAT to BIDUAL. The considered clauses are C1 = x1∨x2∨x4,
C2 = x1 ∨ x3 ∨ x4 and C3 = x2 ∨ x3 ∨ x4. For readability reasons, only the vertices
corresponding to the index i = 1 are represented in the intermediate layer.

value to the variable xi in the clauses according to this criterion yields a truth
assignment satisfying all the clauses.

The reduction from 3 − SAT to GEN can be done with exactly the same
arguments, considering as already known the set S of solutions of the form
{Bi, B

′
i}.

⊓⊔

4 Bounding the dimension of A

We show in this section that one can reduce Problem 2 to the transversal hyper-
graph problem in a hypergraph of bounded dimension whenever A is of bounded
dimension.

Theorem 3. GEN can be solved in polynomial time if A is of bounded dimen-

sion. As a consequence, Problem 2 can be solved in incremental polynomial time.

When the dimension of A is bounded, given a set B ∈ B, the enumeration of
all minimal sets covering A and included in SB corresponds to the enumeration
of minimal transversals of a hypergraph of bounded dimension, and therefore can
be done in incremental polynomial time. To show that Problem 2 is polynomial,
it is sufficient to show that Problem 4 is polynomial. Actually we will show that
Problem 4 can be also reduced to the enumeration of all minimal transversals of
a hypergraph of bounded dimension.



Definition 1. For A ∈ A, let us denote by HA the hypergraph such that:

– V (HA) =
⋃

x∈A

Bx

– E(HA) = {Bx | x ∈ A}

The following proposition gives a characterisation of the subsets B of B for
which SB covers a given hyperedge A ∈ A. Given A ∈ A, by construction of the
hypergraph HA, SB intersects HA if and only if B contains a hyperedge of HA.

For our purpose, we need to reformulate this simple fact. The formulation
given in Lemma 2 can be seen as a direct consequence of the following observa-
tion. A subset of vertices X of a hypergraph H contains a hyperedge if and only
if X is a transversal of the hypergraph tr(H). Indeed, by the duality property
between a hypergraph and its transversasl hypergraph (see [1]), the minimal
transversals of tr(H) are exactly the minimal hyperedges of H. Thus, a subset of
vertices contains a hyperedge of H if and only if it contains a minimal transversal
of tr(H), i.e. if it is a transversal of tr(H).

Lemma 2. Let B ⊆ B and A ∈ A. We then have that SB ∩ A 6= ∅ if and only

if B is a transversal of tr(HA).

Proof. (⇒) Assume that there exists x ∈ SB ∩ A. Then by definition of SB,
Bx ⊆ B. Let t ∈ tr(HA). Since Bx is a hyperedge of HA, t must intersect Bx and
then t ∩B 6= ∅. We conclude that B is a transversal of tr(HA).

(⇐) Assume now that B is a transversal of tr(HA) and that SB ∩ A = ∅. By
definition of SB, for all x ∈ A, there exists bx ∈ Bx such that bx /∈ B. Let t ⊆ B
be the set formed by all bx for all x ∈ A i.e. t :=

⋃

x∈A

Bx \B. Since for all x ∈ A,

Bx \ B 6= ∅, t is a transversal of HA and then contains a minimal transversal t′

of HA. However by construction of t, we have t′ ∩B = ∅, contradicting the fact
that B is a transversal of tr(HA). ⊓⊔

Now since we require that SB covers all hyperedges of A, B must be a
transversal of HA for every A ∈ A.

Proposition 1. min
⊆

{B ⊆ B | f(B) = 1} = tr(
⋃

A∈A

tr(HA)).

Proof. Let H =
⋃

A∈A

tr(HA).

f(B) = 1 ⇐⇒ ∀A ∈ A, SB ∩ A 6= ∅ by definition

⇐⇒ ∀A ∈ A, B is a transversal of tr(HA) by Lemma 2

⇐⇒ B is a transversal of H

Thus, the set {B ⊆ B | f(B) = 1} is exactly the set of transversals of H.
Therefore, min

⊆
{B ⊆ B | f(B) = 1} = tr(

⋃

A∈A

tr(HA)). ⊓⊔



If dim(A) = C is bounded, for all A ∈ A, HA has at most C hyperedges and
then each minimal transversal t of HA is of size at most C. Then

⋃

A∈A

tr(HA))

is a hypergraph of dimension at most C having at most |A||B|C hyperedges. We
can then construct it in polynomial time and enumerate its minimal transversals
in incremental polynomial time using the result for the dualization problem [5].

This implies that if A is of bounded dimension, min
⊆

{B ⊆ B | f(B) = 1} can

be enumerated in incremental polynomial time, thus proving Theorem 3.
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