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For a finite abelian group (G, +) the Harborth constant is defined as the smallest integer ℓ such that each squarefree sequence over G of length ℓ has a subsequence of length equal to the exponent of G whose terms sum to 0. The plus-minus weighted Harborth constant is defined in the same way except that the existence of a plus-minus weighted subsum equaling 0 is required, that is, when forming the sum one can chose a sign for each term. The inverse problem associated to these constants is the problem of determining the structure of squarefree sequences of maximal length that do not yet have such a zero-subsum. We solve the inverse problems associated to these constants for certain groups, in particular for groups that are the direct sum of a cyclic group and a group of order two. Moreover, we obtain some results for the plus-minus weighted Erdős-Ginzburg-Ziv constant.

Introduction

For a finite abelian group (G, +, 0) the Harborth constant of the group G, denoted g(G), is the smallest integer ℓ such that each squarefree sequence g 1 . . . g ℓ over G of length at least ℓ, equivalently each subset of G of cardinality at least ℓ, has a zero-sum subsequence of length equal to the exponent of the group, that is there is a subset I ⊆ {1, . . . , ℓ} with |I| = exp(G) such that i∈I g i = 0.

This constant was first considered by Harborth [START_REF] Harborth | Ein Extremalproblem für Gitterpunkte[END_REF] and is one of several wellinvestigated zero-sum constants of a finite abelian group. We refer to the survey article [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF] and the respective chapters of the monographs [START_REF] Geroldinger | Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory[END_REF][START_REF] Grynkiewicz | Structural Additive Theory[END_REF], for overviews of the subject. In Section 3 we recall the definition of several other such constants.

Given a subset W ⊆ Z of "weights" one can consider the analogous problem with weights W . That is, one seeks to determine the smallest integer ℓ, denoted g W (G), such that each squarefree sequence g 1 . . . g ℓ over G of length ℓ has a W -weighted zero-subsum of length equal to the exponent of the group whose terms sum to 0, that is there is a subset I ⊆ {1, . . . , ℓ} with |I| = exp(G) such that i∈I w i g i = 0 where w i ∈ W . In fact, there are several ways of considering "weights" in zero-sum problems. This one was introduced by Adhikari et al. [START_REF] Adhikari | Some zero-sum constants with weights[END_REF][START_REF] Adhikari | Contributions to zero-sum problems[END_REF][START_REF] Adhikari | Davenport constant with weights and some related questions[END_REF]; we refer to [START_REF] Zeng | Weighted Davenport's constant and the weighted EGZ Theorem[END_REF] (see also [START_REF] Grynkiewicz | Structural Additive Theory[END_REF]) for a more general notion of weights.

The interesting special case that W = {+1, -1} is called the plus-minus weighted problem; in this case we use the notation g ± (G).

The inverse problem associated to a zero-sum problem is the problem of determining the structure of sequences of maximum length not yet having the required property, that is in our case the problem of determining all squarefree sequences of length g(G) -1 that do not have a zero-sum subsequence of length exp(G); and likewise for the weighted problem.

In an earlier work [START_REF] Marchan | Some exact values of te Harborth constant and its plus-minus weighted analogue[END_REF] we determined the exact value of g(C 2 ⊕ C 2n ) and of g ± (C 2 ⊕ C 2n ) (we denote by C n a cyclic group of order n). In particular, it turned out that g(C 2 ⊕ C 2n ) = g ± (C 2 ⊕ C 2n ) = 2n + 2 for even n ≥ 4; we recall the complete result in Section 5. This equality is curious, as the respective conditions are quite different. In this paper we solve the inverse problems for g(C 2 ⊕ C 2n ) and g ± (C 2 ⊕ C 2n ) in general (see Section 5), which in particular leads to a better understanding of this phenomenon. It turns out that at least the structure of the sequences for the less restrictive condition without weights can be richer than in the plus-minus weighted case, and it just happens that the extremal length is still the same. Moreover, in Section 4 we extend the known characterization of all groups where g(G) = |G|+1 (see [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF]Lemma 10.1]), that is no squarefree zero-sum sequence of length exp(G) exists, to a characterization for all sets of weights W and all groups G where g W (G) = |G| + 1. This result allows us to determine g W (G) for cyclic groups and it also has direct implications for the inverse problem in some cases.

Finally, we also determine the closely related plus-minus weighted Erdős-Ginzburg-Ziv constant for C 2 ⊕ C 2n . We refer to Section 3 for the definition and to Section 6 for a discussion of earlier results and context.

Preliminaries

We recall definitions and some notation. By N and N 0 we denote the set of positive and non-negative integers, respectively. For reals a, b we denote by [a, b] = {x ∈ Z : a ≤ x ≤ b}. For a prime number p and a non-zero integer n we write p v ||n if p v | n yet p v+1 ∤ n, in other words the p-adic valuation of n is v.

We use additive notation for finite abelian groups. We denote by C n a cyclic group of order n. For (G, +, 0), a finite abelian group, there are uniquely determined

1 < n 1 | • • • | n r such that G ∼ = C n1 ⊕ • • • ⊕ C nr ,
and n r is called the exponent of G, denoted exp(G); the exponent of a group of order 1 is 1. By a basis of G we mean a family of elements (e 1 , . . . , e s ) of G such that each element of G can be written in a unique way as

s i=1 α i e i with α i ∈ [0, ord(e i ) -1].
A sequence over G is an element of F (G) the free abelian monoid over G. We use multiplicative notation for this monoid. Thus, for a sequence S ∈ F (G) there exist unique v g ∈ N 0 such that S = g∈G g vg . Alternatively, there exist up to ordering uniquely determined g 1 , . . . , g ℓ ∈ G such that S = g 1 . . . g ℓ .

We denote the empty sequence, which is the neutral element of this monoid, simply by 1. Further, we denote by |S| = ℓ the length of S and by σ(S) = ℓ i=1 g i its sum. The set supp(S) = {g ∈ G : v g > 0} = {g 1 , . . . , g ℓ } is called the support of S, and the set Σ(S) = {σ(T ) : 1 = T | S} is called the set of (nonempty) subsums of S; we also use the notation Σ 0 (S) for Σ(S) ∪ {0}. We use the notation Σ(S) also for S a set, with the analogous definition.

A subsequence of S is a sequence T that divides S in the monoid of sequences, that is T = i∈I g i for some

I ⊆ [1, ℓ]. Moreover, we denote by T -1 S the sequence fulfilling (T -1 S)T = S, that is T -1 S = i∈[1,ℓ]\I g i .
The sequence S is called squarefree if v g ≤ 1 for each g ∈ G, that is all the g i are distinct. While there is a direct correspondence between squarefree sequences and sets, there are technical advantages in working with squarefree sequences in our context.

For W ⊆ Z, an element of the form ℓ i=1 w i g i with w i ∈ W is called a Wweighted sum of S and we denote by σ W (S) the set of all W -weighted sums of S. An element is called a W -weighted subsum of S if it is a W -weighted sum of a non-empty subsequence of S.

In this context W is called a set of weights. It is easy to see that for some fixed G, the set W is only relevant up to congruences modulo exp(G); one could thus assume that W ⊆ [0, exp(G) -1]. Moreover, the problems we consider are typically trivial or degenerate for 0 ∈ W and more generally for W containing a multiple of the exponent; we call such sets of weights trivial and often exclude them from our considerations.

The case W = {1}, corresponds to the problem without weights, which we sometimes refer to as the classical case. It should be noted though that σ {1} (S) is not σ(S) but {σ(S)}. Especially when used as a subscript, we use the symbol ± to denote the set of weights {+1, -1}, and we use the terminology plus-minus weighted to refer to this set of weights.

For subsets A, B ⊆ G we denote A + B = {a + b : a ∈ A, b ∈ B} the sum of the sets A and B. For g ∈ G, we write g + A instead of {g} + A; we also use this notation for sequences, so g + S = (g + g 1 ) . . . (g + g ℓ ) for S = g 1 . . . g ℓ . For k ∈ Z, we denote by k • A = {ka : a ∈ A} the dilation of A by k, not the k-fold sum of A with itself; sometimes we just write kA for aesthetic reasons. We recall that for A, B ⊆ G:

(2.1) If |A| + |B| ≥ |G| + 1, then A + B = G.
Since we make use of them frequently we collect some basic observations on the types of groups we study. Let G = C 2 ⊕ C 2n and let (e 1 , e 2 ) denote a basis of G such that ord e 1 = 2 and ord e 2 = 2n, that is each element of G has a unique representation in the form α 1 e 1 + α 2 e 2 with α 1 ∈ [0, 1] and

α 2 ∈ [0, 2n -1].
Then 2G is a cyclic group of order n, more precisely it is 2e 2 . Furthermore, G/2G is isomorphic to C 2 ⊕ C 2 , and the set of co-sets is given by {2G, e 1 + 2G, e 2 + 2G, (e 1 + e 2 ) + 2G}. If n is odd, then G = e 1 ⊕ ne 2 ⊕ 2e 2 , that is the group is isomorphic to C 2 ⊕ C 2 ⊕ C n and an alternative description for the co-sets is given by {2G, e 1 + 2G, ne 2 + 2G, (e 1 + ne 2 ) + 2G}.

Likewise, for G = C 2n = e , we have 2G = 2e and G/2G = {2G, e + 2G}. In particular, for A ⊆ C 2n we have |2A| ≥ ⌈|A|/2⌉.

For G = G 1 ⊕ G 2 , we sometimes consider the projection π : G → G 1 , that is the group homomorphism g = g 1 + g 2 → g 1 where g i ∈ G i . For any map ϕ : G → G ′ , where G ′ denotes an abelian group, there is a unique continuation of ϕ to a monoid homomorphism from F (G) to F (G ′ ), which we also denote by ϕ; explicitly, ϕ(g 1 . . . g ℓ ) = ϕ(g 1 ) . . . ϕ(g ℓ ). It is key to note that, even if ϕ is not injective, the length of the sequence is always preserved as the multiplicity of elements is taken into account. Here, it makes a difference if one considers squarefree sequences or sets.

Key definitions and technical results

We recall the definitions of all the zero-sum constants we need in a formal way. The case that is mainly relevant is the case that the set of weights W is a subset of [1, exp(G) -1]. However, as it is sometimes useful we state the definitions in greater generality. Definition 3.1. Let G be a finite abelian group. Let W ⊆ Z.

( We remark that all these definitions make sense. On the one hand, a sufficiently long sequence (for example, long enough so that some element appears exp(G) times) will admit the required subsequences. On the other hand, there are no squarefree sequences of length greater than |G|, then making the assertion vacuously true. The squarefree analogue of the (W -weighted) Davenport constant is called the (W -weighted) Olson constant, yet we do not consider it here. In case the set of weights W is trivial it is easy to see that

D W (G) = η W (G) = 1 and s W (G) = g W (G) = exp(G)
, and every (squarefree) sequence of length less by one than the respective constant does not have the required property.

In their study of the plus-minus weighted Erdős-Ginzburg-Ziv and Davenport constants Adhikari, Grynkiewicz, and Sun [START_REF] Adhikari | On weighted zero-sum sequences[END_REF] established the following useful result.

Theorem 3.2 ([3], Theorem 4.1.3).
Let G be a finite abelian group and let S ∈ F (G) be a sequence.

(1) If |S| > log 2 |G|, then S has a non-empty plus-minus weighted zero-subsum.

(2) If |S| > log 2 |G| + 1, then S has a non-empty plus-minus weighted zerosubsum whose length is even.

The following direct consequence is the form in which we apply the result; the condition on the length of S is merely a restatement and the condition on the length of the subsum can be obtained just by applying the result to a subsequence of that length.

Corollary 3.3. Let G be a finite abelian group and let S ∈ F (G) be a sequence.

(1) If |S| ≥ ⌊log 2 |G|⌋ + 1, then S has a non-empty plus-minus weighted zerosubsum of length at most

⌊log 2 |G|⌋ + 1. (2) If |S| ≥ ⌊log 2 |G|⌋ + 2,
then S has a non-empty plus-minus weighted zerosubsum whose length is even and at most ⌊log 2 |G|⌋ + 2.

We recall a lemma established in our earlier investigations on the plus-minus weighted Harborth constant.

Lemma 3.4 ([13], Lemma 3.4). Let G be a finite abelian group and let

S ∈ F (G). Then σ ± (S) = -σ(S) + 2 • Σ 0 (S). In particular, if |G| is odd, then |σ ± (S)| = |Σ 0 (S)| ≥ 1 + | supp(S) \ {0}|.
We end this preparatory section by recalling the definition of a further classical constant, the critical number, and a result on it that we need in a proof.

Let G be a finite abelian group |G| ≥ 3. The critical number cr(G) is the smallest positive integer ℓ such that for each squarefree sequence A ∈ F (G) that does not contain 0 with |A| ≥ ℓ one has Σ(A) = G.

The critical number was first studied by Erdős and Heilbronn in 1964 (see [START_REF] Erdős | On the addition of residue classes modulo p[END_REF]), meanwhile it is known, by the work of many authors, for all finite abelian groups. We refer to [START_REF] Freeze | Corrigendum to "The critical number of finite abelian groups[END_REF] for the full result and its history. We only recall the case we need, that is groups of even order (due to Diderich and Mann [START_REF] Diderrich | Combinatorial problems in finite abelian groups[END_REF], and later simplified by Griggs [START_REF] Griggs | Spanning subset sums for finite abelian groups[END_REF]).

Theorem 3.5. Let G be a finite abelian group of even order

|G| = 2. Then cr(G) = |G|/2, unless G is isomorphic to C 2 ⊕ C 2 , C 4 , C 6 , C 2 ⊕ C 4 , or C 8 where cr(G) = 1 + |G|/2.

A general bound for weighted Harborth constants

By the very definition |G| + 1 is an upper bound for g W (G); clearly there is no squarefree sequence over G of size |G| + 1 and hence the condition is vacuously true. Indeed, there are some groups where this bound is the actual value of g W (G). Note that this means that for such a G, when we restrict to considering squarefree sequences, then no W -weighted zero-sum of lengths exp(G) exists. We determine in full generality for which sets W and groups G this is the case. This also allows to formulate some inverse results, in particular we can solve the inverse problem for cyclic groups and arbitrary sets of weights.

We recall, and use in our proof below, that the answer for the classical version is known. Namely, • G is an elementary 2-group, or • G is a cyclic group of even order n and W ⊆ x + 2 q Z where x is odd and

2 q ||n. Proof. Since g W (G) ≤ g(G) ≤ |G| + 1 it follows that if g W (G) = |G| + 1 then also g(G) = |G| + 1.
Thus, by (4.1) the only groups for which g W (G) = |G| + 1 might hold are elementary 2-groups and cyclic groups of even order. For G an elementary 2-group the W -weighted version is just the classical one and thus indeed g W (G) = |G| + 1, in this case.

It remains to study the problem for cyclic groups of even order. Suppose G = e is a cyclic group of order n = 2 q n ′ with q a positive integer and n ′ an odd integer. We consider the two cases: W ⊆ x + 2 q Z for some odd x ∈ Z and W x + 2 q Z for each odd x ∈ Z.

Suppose W ⊆ x+2 q Z with x ∈ Z odd. In this case we need to show that 0 is not a W -weighted sum of size n, that is we need to show that n-1 i=0 w i (ie) = 0 for w i ∈ W or equivalently n-1 i=0 w i i ≡ 0 (mod n). To this end we consider n-1 i=0 w i i modulo 2 q . Since for each i we have w i ≡ x (mod 2 q ), we get that the sum is congruent to x n-1 i=0 i = x(n -1)n/2. Since both x and n -1 are odd, and 2 q ∤ n/2, it follows that the expression is non-zero modulo 2 q and thus modulo n.

Suppose W

x + 2 q Z for all x odd. In this case we need to show that 0 is a W -weighted sum of size n. If W contains an even element, say w = 2s ∈ W with s ∈ Z, then

n-1 i=0 w(ie) = w n(n -1) 2 e = s(n -1)(ne) = 0.
Now, suppose that all w ∈ W are odd. By our assumption on W there exist w 1 , w 2 ∈ W such that w 2w 1 / ∈ 2 q Z. Let w 1w 2 = 2 k r with r ∈ Z odd and k a positive integer. Note that by assumption k ≤ q -1 and thus 2 k+1 | n. We consider the W -weighted sum

w 2 n 2 k+1 e + n-1 i=0,i = n 2 k+1 w 1 (ie).
It equals

w 2 n 2 k+1 e -w 1 n 2 k+1 e + n-1 i=0 w 1 (ie) = (w 2 -w 1 ) n 2 k+1 e + w 1 (n -1)n 2 e. Now, since (w 2 -w 1 ) n 2 k+1 = r n 2 , this is (r + w 1 (n -1)
) n 2 e. Since r, w 1 and (n -1) are all odd, r + w 1 (n -1) is even, and the sum is indeed 0. This result allows one to determine g W (C n ) for every set of weights W . 

g W (C n ) = n + 1 for W ⊆ x + 2 q Z where x is odd and 2 q ||n with q ≥ 1 n otherwise . Proof. Since g W (C n ) is clearly at least exp(C n ) = n,
g ± (C n ) = n + 1 for n ≡ 2 (mod 4) n otherwise .
Proof. By Corollary 4.2 we get that g ± (C n ) = n + 1 if and only if for 2 q ||n where q ≥ 1 we have {-1, 1} ⊆ x + 2 q Z for some odd x. The latter is equivalent to 2 q | 1 -(-1), that is q = 1 and so n ≡ 2 (mod 4).

We end this section by pointing out the inverse results that the above mentioned direct results yield as immediate consequences.

Remark 4.4. Let G be a finite abelian group and let W ⊆ Z be a non-trivial set of weights such that g W (G) = |G| + 1. Then, the only squarefree sequence of length g W (G) -1 is the sequence containing each element of G, and this sequence thus cannot have a W -weighted subsum of length exp(G).

The above remark covers the case of cyclic groups for which g W (G) = |G| + 1, the case g W (G) = |G| is covered by the following remark. 

The inverse problems for C 2 ⊕ C 2n

We solve the inverse problem associated to g(C 2 ⊕ C 2n ) and g ± (C 2 ⊕ C 2n ). We recall the direct results from our earlier article [START_REF] Marchan | Some exact values of te Harborth constant and its plus-minus weighted analogue[END_REF].

Theorem 5.1. Let n ∈ N. For n ≥ 3 we have

g ± (C 2 ⊕ C 2n ) = 2n + 2. Moreover, g ± (C 2 ⊕ C 4 ) = g ± (C 2 ⊕ C 2 ) = 5. Theorem 5.2. Let n ∈ N. We have g(C 2 ⊕ C 2n ) =
2n + 3 for n odd 2n + 2 for n even .

For n = 1, that is for C 2 ⊕ C 2 , from Remarks 4.4 and 4.5 it follows that both with and without weights the only extremal example is the squarefree sequence containing each element once. Whence we can assume n ≥ 2. We begin with the special case C 2 ⊕ C 4 for the weighted problem. Then, we discuss the general case of the weighted problem. Finally, we turn to the problem without weights, distinguishing cases according to the parity of n. (2) S 0 = hg 0 and S 1 = hg 1 with pairwise distinct h, g 0 , g 1 and g 0 + g 1 ∈ {e 2 , 3e 2 }.

Proof. Assume that the first statement holds. By Theorem 5.1 we have that |S| = 4 and we have that 0 / ∈ σ ± (S). Let (e 1 , e 2 ) be a basis with ord e 1 = 2 and ord e 2 = 4. Clearly, we have S = S 0 (e 1 + S 1 ) where S 0 , S 1 ∈ F ( e 2 ) are squarefree sequences, and

|S 0 | + |S 1 | = 4. If {|S 0 |, |S 1 |} = {1, 3}, we are done. If |S 0 | = 4, then g ± (C 4 ) = 4 (see Corollary 4.3), implies that 0 / ∈ σ ± (S 0 ) = σ ± (S), a contradiction. And, if |S 1 | = 4, then as σ ± (e 1 + S 1 ) = e 1 |S 1 | + σ ± (S 1 ) = σ ± (S 1
), we get a contradiction in the same way.

Thus, it remains to consider the case

|S 0 | = |S 1 | = 2. We consider | supp(S 0 S 1 )|. If | supp(S 0 S 1 )| = 2, then S 0 = S 1 and σ(S 0 ) -σ(e 1 + S 1 ) = e 1 |S 1 | = 0 is an element of σ ± (S), a contradiction. If | supp(S 0 S 1 )| = 4, then g ± (C 4 ) = 4 shows 0 ∈ σ ± (S 0 S 1 ), observing that σ ± (S 0 S 1 ) = σ ± (S 0 (e 1 + S 1 )) = σ ± (S)
, we get a contradiction. Thus, | supp(S 0 S 1 )| = 3, that is S 0 = hg 0 and S 1 = hg 1 with pairwise distinct h, g 0 , g 1 . It remains to show that g 0 + g 1 ∈ {e 2 , 3e 2 }. Assume not, that is assume g 0 + g 1 ∈ {0, 2e 2 }.

If g 0 + g 1 = 0, then {g 0 , g 1 } = {e 2 , 3e 2 } and h ∈ {0, 2e 2 }. Thus σ(S) = 2e 1 + (g 0 + g 1 ) + 2h = 0, a contradiction.

If g 0 + g 1 = 2e 2 , then {g 0 , g 1 } = {0, 2e 2 } and h ∈ {e 2 , 3e 2 }. Again, σ(S) = 2e 1 + (g 0 + g 1 ) + 2h = 0, contradiction. This completes the argument for the first part.

Reciprocally, suppose S is as given in the second part. We have to show that 0 / ∈ σ ± (S). If |S 0 | and |S 1 | are odd, then σ(S) ∈ e 1 + e 2 and thus by Lemma 3.4 and the fact that 2G = e 2 we have σ ± (S) ⊆ e 1 + e 2 , which shows 0 / ∈ σ ± (S). If S is of the other form, then σ(S) = 2e 1 + 2h + g 0 + g 1 ∈ e 2 + 2G, by the assumption on g 0 +g 1 . Then, by Lemma 3.4 σ ± (S) ⊆ e 2 +2G whence 0 / ∈ σ ± (S). In the proof, we give a less explicit yet more conceptual characterization of the sequences, too. We start with a lemma. Lemma 5.5. Let n ≥ 3 and let G = C 2 ⊕ C 2n . Let S ∈ F (G) be a squarefree sequence with |S| = 2n + 1 that does not have a plus-minus weighted subsum of length 2n. Then, for each g | S we have that 2

• Σ 0 (g -1 S) = 2G. Proof. Let G = C 2 ⊕ C 2n = e 1 ⊕ e 2
with ord e 1 = 2 and ord e 2 = 2n, and let π 2 denote the projection on e 2 . We note that 2G = 2e 2 . Moreover, since 2h = 2π 2 (h) for each h ∈ G, we have 2 Thus, we now suppose | supp(π 2 (g -1 S))| ≤ n. (We deal with the special cases later.) Since |π 2 (g -1 S)| = 2n and the multiplicity of each element is at most 2, we get that π 2 (g -1 S) = A 2 for some squarefree sequence A ∈ F ( e 2 ). More precisely, g -1 S = A(e 1 + A).

• Σ 0 (g -1 S) = 2 • Σ 0 (π 2 (g -1 S)).
We note that for even n, we have σ(e 1 + A) = σ(A) and thus choosing positive weight for the elements of A and negative weight for those in e 1 + A, we get a plus-minus weighted zero-sum of length 2n, a contradiction. We assume n is odd. As mentioned in Section 2

|2 • supp(A)| ≥ n 2 = n + 1 2 . Note that 2•supp(A) = 2•supp(e 1 +A). Thus, |2•supp(A)|+|2•supp(e 1 +A)| ≥ n+1, hence by (2.1), 2•supp(A)+2•supp(e 1 +A) = 2e 2 . Since 2•supp(A)+2•supp(e 1 + A) ⊆ 2 • Σ 0 (π 2 (g -1 S
)), the claim follows. It remains to consider the case that n = 3 or n = 4 and

| supp(π 2 (g -1 S))| = n+1. If 0 / ∈ supp(π 2 (g -1 S
)) we can complete the argument as above; thus assume 0 ∈ supp(π 2 (g -1 S)). If n = 3 and supp(π 2 (g -1 S)) contains no element of order 6, we see directly that Σ(supp(π 2 (g -1 S))) = e 2 . Thus we can assume, for n = 3 and n = 4, that supp(π 2 (g -1 S)) contains an element of order 2n, and without loss we can assume that it is e 2 . We show that |Σ(supp(π 2 (g -1 S)))| > | supp(π 2 (g -1 S))|. Assume not. Clearly, supp(π 2 (g -1 S)) ⊆ Σ(supp(π 2 (g -1 S))), so supp(π 2 (g -1 S)) = Σ(supp(π 2 (g -1 S))). Let a ∈ supp(π 2 (g -1 S)) \ {e 2 }. Then, a + e 2 ∈ Σ(supp(π 2 (g -1 S))) and hence a + e 2 ∈ supp(π 2 (g -1 S)). Consequently, if ke 2 ∈ supp(π 2 (g -1 S)) for some k ∈ [2, 2n], then (k + 1)e 2 ∈ supp(π 2 (g -1 S)). Since supp(π 2 (g -1 S)) \ {0, e 2 } = ∅ it follows that (2n -1)e 2 = -e 2 ∈ supp(π 2 (g -1 S)). Since supp(π 2 (g -1 S)) \ {0, e 2 , -e 2 } = ∅ it follows, using the argument for both e 2 and -e 2 , that supp(π 2 (g -1 S)) = e 2 . This is a contradiction. Thus, we get

|Σ(supp(π 2 (g -1 S)))| > | supp(π 2 (g -1 S))|. Now, we can write π 2 (g -1 S) = T 1 T 2 with squarefree T i such that supp(T 1 ) = supp(π 2 (g -1 S)). We have Σ(π 2 (g -1 S)) ⊃ Σ(T 1 ) + Σ(T 2 ). As |Σ(T 1 )| > |T 1 | and |Σ(T 2 )| ≥ |T 2 |, we get |Σ(T 1 )| + |Σ(T 2 )| > |T 1 | + |T 2 | = 2n. Thus, by (2.1), we get Σ(T 1 ) + Σ(T 2 ) = e 2 .
Proof of Theorem 5.4. We start by reformulating the second condition. Recall that for each basis (e 1 , e 2 ) with ord e 1 = 2 and ord e 2 = 2n we have 2G = 2e 2 and G/2G is isomorphic to C 2 2 , more specifically G/2G = {2G, e 1 + 2G, e 2 + 2G, e 1 + e 2 + 2G}. Thus, S 0 (e 1 + S 1 )(e 2 + S 2 )(e 1 + e 2 + S 3 ) is a decomposition of S into subsequences containing elements from one co-set only. Consequently, the second condition can be expressed as saying: S is a squarefree sequence of length 2n + 1 whose support is contained in the union of three (of the four) co-sets modulo 2G, and each of these three co-sets contains an odd number of elements of S.

Let S ∈ F (G) be squarefree with |S| = g ± (G) -1 = 2n + 1. Suppose S has no plus-minus weighted zero-subsum of length 2n. This is the case if and only if for each g|S we have 0 / ∈ σ ± (g -1 S). Let g|S. By Lemma 3.4 we have that σ ± (g -1 S) = -σ(g -1 S) + 2 • Σ 0 (g -1 S), and by Lemma 5.5, we have 2 • Σ 0 (g -1 S) = 2G. Thus σ ± (g -1 S) = -σ(g -1 S) + 2G. Hence, 0 ∈ σ ± (g -1 S) if and only if σ(g -1 S) ∈ 2G. Thus, for each g | S we have σ(g -1 S) / ∈ 2G. Conversely, if for g | S we have σ(g -1 S) / ∈ 2G then, again as σ ± (g -1 S) = -σ(g -1 S) + 2 • Σ 0 (g -1 S), we have 0 / ∈ σ ± (g -1 S). Thus, if for each g | S we have σ(g -1 S) / ∈ 2G, then S has no plus-minus weighted zero-subsum of length 2n. Thus, we are reduced to characterizing those sequences S such that for each g | S we have σ(g -1 S) / ∈ 2G. This is most naturally done by passing to the quotient group G/2G.

Let ϕ : G → G/2G denote the natural epimorphism, and let R = ϕ(S). Then σ(g -1 S) / ∈ 2G if and only if σ(ϕ(g) -1 R) = 0 G/2G . Now, R is a sequence of length 2n + 1 over G/2G and we need to characterize when there is no h | R such that σ(h -1 R) = 0. We note that this condition can be expressed as σ(R) / ∈ supp(R). Assume R contains exactly three distinct elements, h 1 , h 2 , h 3 , each with odd multiplicity. Then σ(R) = h 1 + h 2 + h 3 , as the order of each element divides 2, and indeed

h 1 + h 2 + h 3 is the fourth element of G/2G, that is σ(R) / ∈ supp(R). Assume σ(R) / ∈ supp(R). We get supp(R) = G/2G and thus | supp(R)| ≤ 3.
Since |R| is odd, the number of distinct elements occurring with odd multiplicity is odd, that is it is 1 or 3. Assume that h 1 is the unique element occurring in R with odd multiplicity. Then, as above, σ(R) = h 1 . Thus, σ(R) ∈ supp(R), a contradiction.

Thus, we have that there is no h | R such that σ(h -1 R) = 0 if and only if | supp(R)| = 3 and each element occurs with odd multiplicity. This completes the argument.

Next, we consider the problem without weights, distinguishing between even and odd n.

Theorem 5.6. Let n ≥ 3 be even and let G = C 2 ⊕ C 2n . The following statements are equivalent:

• The squarefree sequence S ∈ F (G) of length g(G) -1 does not have a zero-sum subsequence of length exp(G). • There exists a basis (e 1 , e 2 ) with ord e 1 = 2 and ord e 2 = 2n such that

S = S 0 (e 1 + S 1 )
where S 0 , S 1 ∈ F ( e 2 ) are squarefree sequences with

|S 0 | + |S 1 | = 2n + 1, and σ(S 0 S 1 ) / ∈ supp(S j ) where j ∈ {0, 1} is such that |S j | is odd.
Proof. Assume that the first statement holds. Clearly, we can write S as S = S 0 (e 1 +S 1 ) where S 0 , S 1 ∈ F ( e 2 ) are squarefree sequences with

|S 0 |+|S 1 | = 2n+1. Of course exactly one of |S 0 | and |S 1 | is odd. Let g = je 1 + g ′ with g | S j where j is chosen such that |S j | is odd. Now, σ(T ) = σ(T 0 T 1 ) = σ(S 0 S 1 ) -g ′ .
Since this is not 0 by assumption, it follows that σ(S 0 S 1 ) / ∈ supp(S j ). Assume that the second statement holds. Suppose that T | S is a zero-sum subsequence of length 2n. We can write T = T 0 (e 1 + T 1 ) with

T i | S i . Since σ(T ) = |T 1 |e 1 +σ(T 0 T 1 ), it follows that |T 1 | is even. Thus T -1 S = g where g = je 1 +g ′ with g | S j where j is such that |S j | is odd. Now, 0 = σ(T ) = σ(T 0 T 1 ) = σ(S 0 S 1 ) -g ′ , a contradiction to σ(S 0 S 1 ) /
∈ supp(S j ). Thus, there is no T | S that is a zero-sum subsequence of length 2n.

Theorem 5.7. Let n ≥ 3 be odd and let G = C 2 ⊕ C 2n . The following statements are equivalent:

• The squarefree sequence S ∈ F (G) of length g(G) -1 does not have a zero-sum subsequence of length exp(G). • There exists a basis (e 1 , e 2 ) with ord e 1 = 2 and ord e 2 = 2n such that

S = h + (S 0 (e 1 + S 1 )(ne 2 + S 2 )(e 1 + ne 2 + S 3 ))
where h ∈ G, and S 0 , S 1 , S 2 , S 3 ∈ F ( 2e 2 ) are squarefree sequences of length (n + 1)/2 such that each S i contains exactly one of g and -g for g ∈ 2e 2 \ {0}, and σ(S 0 S 1 S 2 S 3 ) = 0.

To show this result we make use of the technical result established in our earlier investigations on the Harborth constant.

Proposition 5.8 ([13], Proposition 5.4). Let n ∈ N. Let π : C 2 ⊕C 2 ⊕C n → C 2 ⊕C 2 denote the projection. Let S ∈ F (C 2 ⊕ C 2 ⊕ C n ) be a squarefree sequence of length 2n + 2. If σ(π 1 (S)) = 0, then S has a zero-sum subsequence of length 2n. Proof of Theorem 5.7. As n is odd, we get that G ∼ = C 2 ⊕ C 2 ⊕ C n .
Moreover, for (e 1 , e 2 ) a basis with ord e 1 = 2 and ord e 2 = 2n, we have that (e 1 , ne 2 , 2e 2 ) is a basis, too. We use the notation f 1 = e 1 , f 2 = ne 2 , and e = 2e 2 , and we denote by π 1 and π 2 the projection from G to f 1 , f 2 and to e , respectively.

We consider a squarefree sequence S ∈ F (G) of length g(G)-1 that does not have a zero-sum subsequence of length exp(G). Let (e 1 , e 2 ) be a basis with ord e 1 = 2 and ord e 2 = 2n. By Proposition 5.8 we know that σ(π 1 (S)) = 0. Let h ∈ G such that (2n + 2)h = σ(S). Note that such an h exists, since σ(S) ∈ e and 2 is invertible modulo n. We see that σ(-h + S) = 0. Note that -h + S has a zero-sum subsequence of length 2n if and only if S has a zero-sum subsequence of length 2n.

Since |h + S| = |S| = 2n + 2 and σ(-h + S) = 0, it follows that -h + S has a zero-sum subsequence of length 2n if and only if -h + S has a zero-sum subsequence of length 2. We can write -h + S = S 0 (f

1 + S 1 )(f 2 + S 2 )(f 1 + f 2 + S 3 )
where each S i is a squarefree sequence over e . Since σ(-h + S) = 0, it follows that σ(S 0 S 1 S 2 S 3 ) = 0.

As mentioned above, if S does not have a zero-sum subsequence of length 2n, then -h+S does not have a zero-sum subsequence of length 2 and consequently each S i does not contain a zero-sum subsequence of length 2. That is, for g ∈ e \ {0} we have that S i contains at most one of g and -g. This implies in particular that |S i | ≤ (n + 1)/2. Since |h + S| = |S| = 2n + 2, it follows that in fact |S i | = (n + 1)/2. This shows that S is of the claimed form. Now, suppose S is as given in the second statement. By Theorem 5.2 we know that g(G) -1 = 2n + 2 = |S| and we need to show that S has no zero-sum subsequence of length 2n. Suppose S has a zero-sum subsequence T of length 2n, then -h + T is a zero-sum subsequence of -h + S, and the latter is a zero-sum sequence itself. Therefore, we get -h + S has a zero-sum subsequence of length 2. This is only possible if for some i ∈ [0, 3] the sequence S i has a zero-sum subsequence of length 2. And, this is possible only when S i contains g and -g for some non-zero g or when it contains 0 with multiplicity at least 2. Both properties contradict our assumptions, which shows that S has no zero-sum subsequence of length 2n and completes the proof.

We recall that for G = C 2 ⊕ C 2n with even n ∈ N we have, perhaps surprisingly, that g(G) = g ± (G) (see Theorems 5.1 and 5.2) even though the condition imposed in the definition of the latter constant is quite more restrictive. Now, having established the inverse results we actually see the more restrictive nature of the latter condition in the results, too. To further illustrate this we include some explicit examples.

Example 5.9. Let n ∈ N be even, and let G = C 2 ⊕C 2n = e 1 ⊕ e 2 where (e 1 , e 2 ) is a basis with ord e 1 = 2 and ord e 2 = 2n. The following squarefree sequences in F (G) of length g(G) -1 = g ± (G) -1 = 2n + 1 do not have zero-sum subsequences of length exp(G) but do have plus-minus weighted zero-subsums of length exp(G).

(1) (αe

2 ) 2n-1 i=0 (e 1 + ie 2 ) with α ∈ [0, 2n -1]. (2) (e 1 + αe 2 ) 2n-1 i=0 (ie 2 ) with α ∈ [0, 2n -1].
To see the existence of a plus-minus weighted zero-sum of length exp(G) it suffices to note that the sequences have n elements from the class e 1 + 2G and 2G, respectively; since n is even Theorem 5.4 allows to conclude.

To see the non-existence of zero-sum subsequences of length exp(G) we can use Theorem 5.6: since

2n-1 i=0 (ie 2 ) = n(2n+ 1)e 2 = ne 2 , we have σ((αe 2 ) 2n-1 i=0 ie 2 ) = (α + n)e 2 /
∈ {αe 2 }.

The exact value of s

± (C 2 ⊕ C 2n )
In this section we determine s ± (C 2 ⊕ C 2n ) for n ∈ N. Namely, we show that it is equal to 2n + 2 + ⌊log 2 n⌋. Before we give the result we discuss how this ties up with earlier results and conjectures. In the proof we use our result on g ± (C 2 ⊕ C 2n ), too. We recall two results of Adhikari, Grynkiewicz, and Sun [START_REF] Adhikari | On weighted zero-sum sequences[END_REF] Theorem 6.1

([3], Theorem 1.3.). Let G = C n1 ⊕ C n2 ⊕ • • • ⊕ C nr with 1 < n 1 | n 2 | . . . | n r . Then (1) r i ⌊log 2 n i ⌋ + 1 ≤ D ± (G) ≤ ⌊log 2 |G|⌋ + 1. (2) s ± (G) ≥ n r + D ± (G) -1 ≥ exp(G) + r i ⌊log 2 n i ⌋. In particular this shows that D ± (C 2 ⊕ C 2n ) = ⌊log 2 2n⌋ + 2 and thus s ± (C 2 ⊕ C 2n ) = exp(C 2 ⊕ C 2n ) -1 + D ± (C 2 ⊕ C 2n )
; note that the plus-minus weighted Davenport constant for this type of group is determined by the result we just recalled. Thus, equality holds in the inequality s ± (G) ≥ n r + D ± (G) -1 for this group. It was shown in [START_REF] Adhikari | Contributions to zero-sum problems[END_REF] 

that s ± (C n ) = n -1 + D ± (C n ) = n + ⌊log 2 n⌋
, and thus it is known that for cyclic groups this equality also holds. Indeed, for cyclic groups this equality holds for every set of weights; we refer to [START_REF] Zeng | Weighted Davenport's constant and the weighted EGZ Theorem[END_REF] for an even more general result.

However, it is known by [1, Theorem 3] that for odd n ∈ N one has s ± (C 2 n ) = 2n-1 while as just recalled D ± (C 2 n ) ≤ ⌊log 2 n 2 ⌋+ 1 and thus equality does not hold for sufficiently large n; we refer to [START_REF] Marchan | Remarks on the plus-minus weighted Davenport constant[END_REF] for a more detailed investigation of D ± (C 2 n ). For even n the situation is more subtle and we refer to [START_REF] Adhikari | On weighted zero-sum sequences[END_REF] for bounds on s ± (C 2 n ) in that case.

In another direction we recall the inequality s(G) ≥ η(G) + exp(G) -1 and the conjecture that equality always holds (see [START_REF] Gao | Zero-sum problems in finite abelian groups: a survey[END_REF]Conjecture 6.5]). The inequality s ± (G) ≥ η ± (G) + exp(G) -1 is also true (this is even true for any set of weights, which can be seen by adding exp(G) -1 times the 0 element to a sequences without weighted zero-subsum of length at most exp(G)), but it is known that equality does not always hold. Namely, Moriya [START_REF] Moriya | On weighted zero sum subsequences of short length[END_REF] showed that for n > 7 odd it does not hold for C 2 n ; this is done by using the results recalled above and noting that if

D ± (G) ≤ exp(G) then D ± (G) = η ± (G).
Our result also can be used to show that in our case it is true that s ± (C 2 ⊕C 2n ) = η ± (C 2 ⊕ C 2n ) + exp(G) -1. The value of η ± (C 2 ⊕ C 2n ) was determined by Moriya [START_REF] Moriya | On weighted zero sum subsequences of short length[END_REF].

Theorem 6.2 ([15], Theorem 3). Let l, n ∈ N with 2 l n ≥ 4. Then η ± (C 2 l ⊕C 2 l n ) = D ± (C 2 l ⊕ C 2 l n ) = ⌊log 2 n⌋ + 2l + 1.
We also recall that Moriya [START_REF] Moriya | On weighted zero sum subsequences of short length[END_REF]Theorem 6] determined s ± (C 2 ⊕ C 4 ) = 7. We now state and prove our result.

Theorem 6.3. Let G = C 2 ⊕ C 2n with n ≥ 2. Then s ± (G) = 2n + ⌊log 2 2n⌋ + 1.
We recall from above that 2n + ⌊log 2 2n⌋ + 1 = D ± (G) + exp(G) -1 = η ± (G) + exp(G) -1. Moreover, we note that for n = 1 it is well-known and not hard to see that s ± (C 2 2 ) = 5 and η ± (C 2 2 ) = 4. Thus, also in this case s

± (G) = η ± (G) + exp(G) -1.
Proof. By the second part of Theorem 6.1 we have that s ± (G) ≥ exp(G)+D ± (G)-1. Thus, by the just recalled facts, we only need to show that s ± (G) ≤ exp(G) + D ± (G)-1. We recall from the first part of Theorem 6.1 that D ± (G) = ⌊log 2 |G|⌋+1.

Let S ∈ F (G) with |S| = exp(G) + D ± (G) -1 = exp(G) + ⌊log 2 |G|⌋. We need to show that S has a plus-minus weighted zero-subsum of length equal to exp(G). Assume for a contradiction that S does not have such a subsum.

We introduce the following auxiliary sequence. Let M | S be a subsequence of maximal length such that |M | is even and M has a plus-minus weighted zero-subsum of length m for each even m ≤ |M |. Note that this definition certainly makes sense as the empty sequence fulfills the condition. If we can show that |M | ≥ exp(G), we have proved our claim.

We start by showing that |M | > 0. We note that by Theorem 5.1 |S| ≥ g ± (G) = 2n + 2. We infer that S is not squarefree, as otherwise by definition of g ± (G) it would have a plus-minus weighted zero-subsum of length equal to exp(G) contrary to our assumption. Thus, there exists some g ∈ G with g 2 | S and g 2 has a plus-minus weighted zero-subsum of length 2 and 0, showing that |M | ≥ |g 2 | = 2.

We assert that M -1 S can not have a plus-minus weighted zero-subsum of even length less than or equal to |M | + 2. Suppose there is a sequence N | M Since we now know that M -1 S does not have a plus-minus weighted zero-subsum of length 2, we get that M -1 S is squarefree and consequently |M -1 S| < g ± (G) = 2n + 2 (compare with the argument just above).

Consequently, |M | ≥ |S| -(2n + 1) = ⌊log 2 |G|⌋ -1. Next we show that in fact |M | ≥ ⌊log 2 |G|⌋. Assume not. Then |M -1 S| = 2n + 1. Let H denote a cyclic subgroup of G of order 2n, and let e ∈ G be an element of order 2 such that G = e ⊕ H. Let M -1 S = T 0 (e + T e ) such that T 0 , T e are sequences in H; note that both are squarefree. Let T x denote the longer of the two. We have |T x | ≥ n + 1. Since |T x | ≥ ⌊log 2 |H|⌋ + 2, as ⌊log 2 (2n)⌋ ≤ n -1 for n ≥ 3, it follows by Corollary 3.3 that T x has a plus-minus weighted zero-subsum whose length is even and at most ⌊log 2 |H|⌋ + 2. Note that this yields the existence of plus-minus weighted zero-subsum of the same length of M -1 S; this is obvious if x = 0 and follows from the fact that the length is even and e is of order 2 in case x = e. Now, ⌊log 2 |H|⌋ + 2 = ⌊log 2 |G|⌋ + 1 = |M | + 2, contradicting the assertion that M -1 S does not have a plus-minus weighted zero-subsum whose length is even and at most |M | + 2.

Thus, we established that |M | ≥ ⌊log 2 |G|⌋. To finish the argument we assume |M | ≤ exp(G) -2. Then |M -1 S| ≥ ⌊log 2 |G|⌋ + 2. Again by Corollary 3.3, we get a plus-minus weighted zero-subsum whose length is even and at most ⌊log 2 |G|⌋ + 2 and thus at most |M | + 2 (note that our bound on |M | is now by 1 better than the first time we used this type of argument). This contradiction completes the argument.

  (4.1) g(G) = |G| + 1 if and only if G is an elementary 2-group or a cyclic group of even order (see [8, Lemma 10.1]).

Theorem 4 . 1 .

 41 Let G be a finite abelian group and let W ⊆ Z be a non-trivial set of weights. Then g W (G) = |G| + 1 if and only if

Corollary 4 . 2 .

 42 Let n ∈ N and let W ⊆ Z be a non-trivial set of weights. Then

  the result is a direct consequence of Theorem 4.1. Specializing to the plus-minus weighted problem we recover [13, Corollary 4.1]. Corollary 4.3. Let n ∈ N. Then

Remark 4 . 5 .

 45 Let G be a cyclic group and let W ⊆ Z be a non-trivial set of weights. If g W (G) = |G|, then each squarefree sequence over G of length g W (G)-1 = |G|-1 of course cannot have any W -weighted subsum of length exp(G) = |G|.

Theorem 5 . 3 .

 53 Let G = C 2 ⊕ C 4 . The following statements are equivalent: • The squarefree sequence S ∈ F (G) of length g ± (G) -1 does not have a plus-minus weighted subsum of length exp(G). • There exists a basis (e 1 , e 2 ) with ord e 1 = 2 and ord e 2 = 4 such that S = S 0 (e 1 + S 1 ) where S 0 , S 1 ∈ F ( e 2 ) are squarefree sequences and one of the following holds: (1) {|S 0 |, |S 1 |} = {1, 3}.

Theorem 5 . 4 .

 54 Let n ≥ 3 and let G = C 2 ⊕ C 2n . The following statements are equivalent: • The squarefree sequence S ∈ F (G) of length g ± (G) -1 does not have a plus-minus weighted subsum of length exp(G). • There exists a basis (e 1 , e 2 ) with ord e 1 = 2 and ord e 2 = 2n such that S = S 0 (e 1 + S 1 )(e 2 + S 2 )(e 1 + e 2 + S 3 ) where S 0 , S 1 , S 2 , S 3 ∈ F ( 2e 2 ) are squarefree sequences with |S 0 | + |S 1 | + |S 2 | + |S 3 | = 2n + 1, and there is a j ∈ [0, 3] such that |S j | = 0 and |S i | is odd for i = j.

  Thus, it suffices to show that 2• Σ 0 (π 2 (g -1 S)) = 2e 2 . Let g | S. If | supp(π 2 (g -1 S))| ≥ cr( e 2 ) + 1, then Σ(supp(π 2 (g -1 S))) = e 2 as | supp(π 2 (g -1 S)) \ {0}| ≥ cr( e 2 ). If this is the case, since |Σ(supp(π 2 (g -1 S)))| ≤ |Σ(π 2 (g -1 S)| ≤ |Σ 0 (π 2 (g -1 S)|, we have Σ 0 (π 2 (g -1 S) = e 2 . By Theorem 3.5, we know cr( e 2 ) = n for n ≥ 5 and cr( e 2 ) = n + 1 for n = 3 and n = 4.

  -1 S that has a plus-minus weighted sum equal to zero with |N | even and |N | ≤ |M | + 2. Then M N has a plus-minus weighted zero-subsums of length equal to n for each even n ≤ |M N |; for n ≤ |M | this is clear by the definition of M and for n ≥ |M | + 2 we can combine the plus-minus weighted zero-sum of N with a plus-minus weighted zero-subsum of length n -|N | of M (note that |N | ≤ |M | + 2 ≤ n ≤ |M | + |N |).
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