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Hexagonal lattices with three-point interactions

H. Le Dret1 and A. Raoult2

Abstract

We characterize the macroscopic effective mechanical behavior of
a graphene sheet modeled by a hexagonal lattice with two- and three-
point atomic interactions, using Γ-convergence.

Keywords: Graphene sheet; homogenization; Γ-convergence.
AMS Subject Classification: 74Q05, 74Q15, 74K35, 49J45.

1 Introduction

We consider a two-dimensional hexagonal atomic network with two- and
three-point interactions. Such a network can be used to model the me-
chanical behavior of a graphene sheet with nearest neighbor atom to atom
interaction on the one hand, and torques resulting from three-point interac-
tions on the other hand. We are interested in deriving an equivalent con-
tinuum mechanics model for the deformations of the sheet by means of a
homogenization procedure when the rest lengths of the bonds go to 0, using
Γ-convergence techniques. The electronic properties of graphene are out of
the scope of this article.

There is a comprehensive body of work on the homogenization of discrete
networks, see for instance [1, 2, 4, 6, 7, 17], mostly in the context of two-point
interactions, either short or long range. Our previous work on hexagonal net-
works was also concerned with only two-point, nearest neighbor interactions,
see [13]. There are relatively few works dealing with three-point interactions,
let us mention [3, 9, 14] in this direction.

We thus consider two-point interactions composed of two terms, an elastic
term as in [13], and a Lennard-Jones term. The three-point interactions
correspond to the fact that the three chemical bonds radiating from any given
atom in a graphene sheet have a preferred pairwise angle of 2π

3 . Deviations
from this angle thus result in torques relative to the angle vertex, caused by
the deformations of triangles of atoms. We work with an energy minimization
formulation. Energy densities corresponding to such torques can be found in
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the material science literature. They penalize deviations from the preferred
angle, see e.g. [18].

In the same spirit as [6] and many other works in the literature, we
rewrite the problem as a sequence of problems in the calculus of variations,
indexed by a parameter representing the interatomic distance. We replace
the discrete displacements of the atoms in the sheet by continuous piecewise
affine functions defined on a domain, which makes it easy to talk about
convergence in a Sobolev space setting. As opposed to [13], it is not possible
to replace the discrete energies by continuous energies at the onset, because
of the three-point interactions which have a slightly non local effect. We
therefore use an entirely different approach, in the spirit of the work of
Alicandro-Cicalese, [2], taking in addition advantage of a simplified slicing
technique introduced in [11].

We show that the discrete energy minimizers for the energy with Dirich-
let boundary conditions weakly converge in a Sobolev space to minimizers
of a limit continuous energy, see Proposition 4.2 and Corollary 4.4, when
the parameter goes to 0. We also identify the limit energy density via a
homogenization formula, see Proposition 4.3.

2 Setting of the problem

In our previous article [13], we considered graphene sheets of arbitrary shape
and devoted a lot of effort to properly defining boundary conditions. In order
to avoid such technicalities, we consider here a much simpler setup, which
we presently introduce. A sheet is a discrete two-dimensional structure that
deforms in three-dimensional Euclidean space. We choose an orthonormal
basis (e1, e2, e3) of R3. The scalar product and norm in R3 are respectively
denoted by · and | |.

The basic hexagonal lattice in R2 is spanned by the three vectors

s1 =
√

3e1, s2 =

√
3

2
e1 +

3

2
e2 and p =

1

3
(s1 + s2).

In the description we use, the lattice is comprised of two types of nodes: The
type 1 nodes, which occupy points is1 + js2 with (i, j) ∈ Z2, and the type 2
nodes, which occupy points is1 + js2 + p, again with (i, j) ∈ Z2, see Figure
1. Associated with this set of nodes are two Delaunay triangulations. The
main Delaunay triangulation we use is depicted in Figure 2, its edges are the
solid lines and the dashed lines. The alternate one, which we will use less,
is depicted in Figure 3.

The chemical bonds between atoms join nearest neighboring type 1 and
type 2 nodes. The bonds are represented by the closed segments joining two
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s1

s2

p

Figure 1: •: type 1 nodes, ◦: type 2 nodes

Figure 2: Hexagonal structure, main Delaunay triangulation.

neighboring nodes, see Figure 2.
Let now Y be the parallelogram based on vectors s1 and s2. This set will

also be used later on as the unit cell of our homogenization procedure. Let
us pick a scale factor L > 0 and set ω = LY to be the reference configuration
of a family of sheets. Each sheet in the family consists of the global, scale
1, lattice scaled by a factor ε = L/n where n is an integer, and cropped
to ω, see Figure 4, which deforms in R3. Homogenization will occur in the
limit n → +∞ or equivalently ε → 0. This setting considerably simplifies
boundary condition issues, which we know are tractable in much more general
geometric situations as shown in [13]. Indeed, we assume here that all type
1 nodes on ∂ω are submitted to a boundary condition of place defined by a
given deformation ϕ0 which is at least continuous on ω̄ in order for its node
values to make sense. We can also consider the case when the boundary
condition of place is enforced only on part of ∂ω.
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Figure 3: Alternate Delaunay triangulation.

ω

Figure 4: A typical sheet with its main Delaunay triangulation.

Let us now turn to the mechanical side of the model. We first describe
the deformations of the sheet in R3. We will switch between two equivalent
points of view depending on whichever is the most convenient at any given
point in the proofs.

We denote by L the Z-lattice generated by s1 and s2 and let L∗ = L+ p.
Basically, a deformation ϕε is a mapping from

(
ε(L ∪ L∗)

)
∩ ω̄ into R3 that

satisfies the boundary condition. This is the discrete point of view. With
this discrete point of view, we associate a continuous point of view by letting
the same ϕε denote the piecewise affine Lagrange interpolate of the nodal
values of the former ϕε on the main Delaunay triangulation of ω̄ depicted in
Figure 4. We denote by A(ε) the set of all such continuous piecewise affine
functions, without boundary conditions.
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The function ϕε thus defined is in H1(ω;R3), and we can freely take its
gradient in the distributional sense, which is piecewise constant,M3,2-valued,
where M3,2 denotes the space of 3 × 2 matrices. The boundary condition
reads

ϕε(x) = ϕε0(x) for all x belonging to ∂ω, (1)

where ϕε0 denotes the piecewise affine Lagrange interpolate of ϕ0|∂ω on the
nodes located on ∂ω. Note that ϕε0 is also the trace on ∂ω of the piecewise
Lagrange interpolate Πεϕ0 of ϕ0 on the main Delaunay triangulation. We
will make additional regularity assumptions on ϕ0 in section 4.

We now describe the energy of the sheet. Let us be given a global num-
bering of the bonds bk contained in ω̄. Each bond bk links a type 1 node nk1

and a type 2 node nk2. We let ϕε(bk) = ϕε(nk2)− ϕε(nk1). This particular
choice of orientation is not important, but it needs to be consistent over the
whole sheet.

We consider that there are several contributions to the energy. First, as
in [13], there is a two-point elastic contribution for each bond bk of the form

Bε
k(ϕ

ε) = ε2κ1(ε−1|ϕε(bk)| − 1)2, (2)

where κ1 > 0 is a stiffness parameter, ε is the natural length of the bond
and |ϕε(bk)| is its deformed length. The ε2 scaling factor is the right one
to obtain a finite nonzero limit energy (without rescaling). Then there is a
two-point, Lennard-Jones type contribution of the form

Rεk(ϕ
ε) = ε2r(ε−1|ϕε(bk)|), (3)

where r : R+ → R̄+ is a Lennard-Jones type potential, i.e., a continuous
function such that r(0) = +∞, r is decreasing on [0, 1], r(1) = 0, r is
nondecreasing on [1,+∞[, and r(`) → c when ` → +∞ for some constant
c ≥ 0. The sum of these two terms forms an elastic energy for each bond,
which is minimum at the natural length ε. This energy is infinitely repulsive
when the deformed length of a bond goes to 0 and tends to +∞ when
the deformed length of a bond goes to +∞. While the former behavior is
desirable from the atomistic modeling point of view, the latter one is more
debatable, because interatomic forces should tend to 0 when the interatomic
distance tends to +∞. It is mostly there for coercivity reasons. We refer to
[4] for work in which such coercivity assumptions are not made.

Finally, and this is the main aspect of our purpose here, there is a three-
point potential that penalizes deviations from 2π

3 of the angle between pairs
of bonds radiating out of each node. The specific form of this moment
potential is not very important, but it is clear that it must be discontinuous
when the deformed length of one of the bonds goes to 0 and the angle in
question becomes undefined. For definiteness, for any such pair of bonds
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{bk, bl} with |ϕε(bk)| |ϕε(bl)| > 0, we choose

M ε
kl(ϕ

ε) = ε2κ2

(
ϕε(bk) · ϕε(bl)
|ϕε(bk)| |ϕε(bl)|

+
1

2

)2

, (4)

where κ2 > 0 is another stiffness coefficient, see [15, 18] where similar energies
are used and for experimental values of the constants.

The total stored energy of the sheet under deformation is thus the sum
of all the above terms when no bond is of zero deformed length,

Iε(ϕε, ω̄) =
∑
k

(
Bε
k(ϕ

ε) +Rεk(ϕ
ε)
)

+
∑
k,l

M ε
kl(ϕ

ε) (5)

the first summation index k running through all the bonds in ω̄ and the
second {k, l} through all pairs of bonds in ω̄ sharing one node, and

Iε(ϕε, ω̄) = +∞ (6)

when at least one bond has zero deformed length. This energy is clearly
frame indifferent.

Let us remark that it is easy to abstract the properties of the above
energies that play an effective role in the ensuing convergence analysis, and
to write down a more general result in terms of the form of the energy. We
however chose to keep the above specific forms because they correspond to
classical modeling hypotheses.

To complete the description of the mechanical setting, we impose external
dead loading forces on all nodes in the sheet. We are thus given a function
f : ω̄ → R3, which we assume to be continuous and independent of ε, such
that the external force acting on a node is ε2f(x), where x is the location
of the node in question in the reference configuration. The corresponding
energy term reads

F ε(ϕε) = ε2
( ∑

0≤i,j≤n
f
(
ε(is1 + js2)

)
· ϕε
(
ε(is1 + js2)

)
+

∑
0≤i,j≤n−1

f
(
ε(is1 + js2 + p)

)
· ϕε
(
ε(is1 + js2 + p)

))
.

We consequently end up with a total energy for the sheet which is the
difference Iε − F ε of the total stored energy and the above force term. For
any given ε, the deformed configuration of the sheet at equilibrium minimizes
the total energy among all possible deformations ϕε satisfying condition (1).
The existence of such minimizers is obvious because the discontinuity of the
three-point interaction potential is counterbalanced by the singularity of the
Lennard-Jones term, and the elastic term plus boundary condition provides
coercivity.
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3 Convergence without boundary conditions

Let us first give some background on Γ-convergence and integral representa-
tion results. We follow essentially the same strategy as that of [1, 2, 6, 7],
which is to appropriately restrict the stored energy to arbitrary open subsets
of ω in order to define a sequence of functionals on the Cartesian product
of a function space X (in our case X = L2(ω;R3)) with the set O of the
open subsets of ω. The Γ-limit of this sequence is thus roughly speaking
also defined on the same Cartesian product. Buttazzo-Dal Maso’s integral
representation theorem in then used in order to identify the Γ-limit as a
functional of the calculus of variations. For the reader’s convenience, let us
briefly go over the definitions and results.

Let X be a metric space. We consider a sequence of functionals Iε : X ×
O → R̄ = R ∪ {+∞}. The inferior and superior Γ-limits are respectively
defined by

I ′(ψ,U) = Γ- lim inf
ε→0

Iε(ψ,U) = inf
ψε→ψ inX

lim inf
ε→0

Iε(ψε, U)

and

I ′′(ψ,U) = Γ- lim sup
ε→0

Iε(ψ,U) = inf
ψε→ψ inX

lim sup
ε→0

Iε(ψε, U).

When I ′(·, U) = I ′′(·, U) = I(·, U), the sequence is said to Γ-converge (on U)
for the topology of X to Γ- limε→0 I

ε(·, U) = I(·, U). It is well-known that
if the minimizers of the sequence of functionals remain in a compact subset
of X, then their limit points are minimizers of the Γ-limit. The concept of
Γ-convergence is thus perfectly suited to the asymptotic study of sequences
of problems in the calculus of variations.

We next state Buttazzo-Dal Maso’s integral representation theorem in a
simplified setting that is sufficient for our purposes here, see [5, 8].

Theorem 3.1 Let I : H1(ω;R3)× O→ R, bounded below and such that
i) for all ψ ∈ H1(ω;R3), the mapping U 7→ I(ψ,U) is the restriction of a
Borel measure to O,
ii) there exists a constant C such that for all ψ ∈ H1(ω;R3) and all U ∈ O,
I(ψ,U) ≤ C

∫
U (1 + |∇ψ|2) dx,

iii) I is local, i.e., I(ψ1, U) = I(ψ2, U) whenever ψ1 = ψ2 a.e. on U ,
iv) for all ψ ∈ H1(ω;R3), U ∈ O and a ∈ R3, I(ψ + a, U) = I(ψ,U),
v) for all U ∈ O, the mapping ψ 7→ I(ψ,U) is sequentially weakly lower
semicontinuous on H1(ω;R3).

Then there exists a Carathéodory function W : ω ×M3,2 → R bounded
below satisfying W (x, F ) ≤ C(1 + |F |2) such that

I(ψ,U) =

∫
U
W (x,∇ψ(x)) dx (7)
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for all ψ ∈ H1(ω;R3) and U ∈ O.
If in addition,

vi) for all affine ψ, I(ψ,B) = I(ψ,B′) where B and B′ are any two balls of
the same radius included in ω, then W does not depend on x.

The main part of the work is to obtain condition i) by means of the De
Giorgi-Letta criterion, namely by showing that the mapping U 7→ I(ψ,U) is
increasing, additive and inner regular, see [5].

In section 4, we reintroduce the boundary condition in the Γ-limit process
and show that the result is unchanged. We also add the external force terms.
Once this is done, we obtain a homogenization formula that identifies de limit
density W .

We need to restrict the stored energy of the sheet to arbitrary open
subsets U of ω. Each pair of bonds {bk, bl} sharing one common node deter-
mines a closed triangle tkl either of the main Delaunay triangulation or of
the alternate Delaunay triangulation, see Figure 5.

tkl

bk

bl

tkl

Figure 5: Bonds and associated triangles.

We let Tm(U) (resp. Ta(U)) denote the subset of closed triangles of the
main (resp. alternate) Delaunay triangulation that are contained in U . A
bond will be counted in the energy restricted to U if it belongs to one of the
triangles of Tm(U) and an angle will be counted if it belongs to a triangle of
Tm(U) or Ta(U). We thus define Iε on L2(ω;R3)× O by

Iε(ϕε, U) =
∑

bk⊂t∈Tm(U)

(
Bε
k(ϕ

ε) +Rεk(ϕ
ε)
)

+
∑

tkl∈Tm(U)∪Ta(U)

M ε
kl(ϕ

ε), (8)

if ϕε ∈ A(ε) and Iε(ϕε, U) = +∞ if ϕε ∈ L2(ω;R3)\A(ε). Note that for any
element ϕε of A(ε) such that at least one bond involved has zero deformed
length, we also have Iε(ϕε, U) = +∞, due to the Lennard-Jones energy term.
Thus the energy is not bounded from above even on A(ε).

It should be noted that Iε(·, ω̄) > Iε(·, ω) and that we are primarily
interested in the former. It is however important to stay clear of ∂U , which
can be very irregular, in defining Iε(·, U) for an arbitrary open set U .
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We first note an equicoercivity result. We call empty triangle of the
main Delaunay triangulation any such triangle that does not contain any
bond. A finite union of triangles of the main Delaunay triangulation is
called admissible if every empty triangle in the union is adjacent to at least
two triangles of the form tkl.

Lemma 3.2 There exists a constant C > 0 such that for all ψ ∈ A(ε) and
all admissible finite union T of triangles,

Iε
(
ψ,
◦
T
)
≥ C

(
‖∇ψ‖2L2(T ) − |T |

)
.

Proof. The difficulty is that the equilateral triangles in the triangulation do
not contain any bond. However, the energy is larger than the one considered
in [13], it is thus enough to adapt the argument of Proposition 2 therein
to the slightly different piecewise affine interpolation that we are presently
using, on an admissible finite union of triangles. The admissibility is used
to recover coercivity over the empty triangles in the union considered. �

Corollary 3.3 If I ′(ψ, ω) < +∞ or I ′′(ψ, ω) < +∞, then ψ ∈ H1(ω;R3).

We next show an essential technical lemma implying that it is possible
to keep all neighboring nodes uniformly separated while locally lowering the
stored energy.

Lemma 3.4 There exists 0 < α < 1 such that for all ψ ∈ L2(ω;R3) and
ψε ∈ A(ε) such that ψε → ψ strongly in L2(ω;R3) when ε→ 0, we can find
ψ̄ε ∈ A(ε) such that ψ̄ε → ψ strongly in L2(ω;R3), the deformed lengths of
all bonds are larger than εα and for all U ∈ O,

Iε(ψ̄ε, U) ≤ Iε(ψε, U).

Proof. The idea is to move apart neighboring nodes that are too close to each
other in a given deformation ψε, while locally controlling the energy. We only
modify the positions of type 2 nodes, keeping type 1 nodes unchanged. Let
us take 0 < α < 1 to be chosen later on. We examine each type 2 node in
ω in turn. If the three bonds attached to this node are of deformed length
larger than εα, we do not do anything. If on the other hand, one of the three
bonds has deformed length strictly smaller than εα, then we modify ψε at
the type 2 node. Let us see how more precisely.

Without loss of generality, we can assume that the three bonds attached
to the type 2 node are b1, b2 and b3, with |ψε(b1)| < εα. We denote by Ai,
i = 1, 2, 3, the position in R3 of the three type 1 nodes belonging to bi and
by P the position of the type 2 node, so that |A1P | < εα. There are three
cases.
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A1

A2

A3

P

P̄

β

ε

εα

Figure 6: Construction of the modified deformation.

Case 1: |A2P | ≥ εα and |A3P | ≥ εα. We pick a straight line passing
through P and orthogonal to A2P and A3P . As |A1P | < ε, this straight line
intersects the sphere centered at A1 and of radius ε at two points. We let P̄
denote one of these points closest to P and set |PP̄ | = β, with 0 < β ≤ ε,
see Figure 6. By construction, |A1P̄ | = ε, |A2P̄ | > |A2P | ≥ εα and |A3P̄ | >
|A3P | ≥ εα. This operation modifies the lengths of the three bonds and the
value of at most nine angles taken into account in the energy, at most three
around P and at most two around each Ai. We need to show that α can be
chosen in such a way that the energy decreases.

If |A1P | = 0, there is nothing to prove. Let us thus assume that |A1P | >
0. We only consider the case when there are nine angles, which is the generic
case. The argument should make clear that the other cases can be worked
out as well. We denote by Bi (resp. B̄i) and Ri (resp. R̄i), i = 1, 2, 3, the
elastic and Lennard-Jones energies of the three bonds before (resp. after)
modification, and by Mj (resp. M̄j), j = 1, . . . , 9, the moment energies
before (resp. after) modification. The corresponding energies are

E =
3∑
i=1

(Bi +Ri) +
9∑
j=1

Mj

Ē =

3∑
i=1

(B̄i + R̄i) +

9∑
j=1

M̄j .

Let us consider each term. For i = 2, 3, let `i = |AiP | and ¯̀
i = |AiP̄ |. By

construction, ¯̀2
i = `2i + β2 so that

B̄i −Bi = κ1

(
(¯̀
i − ε)2 − (`i − ε)2

)
= κ1(β2 − 2ε(¯̀

i − `i)) ≤ κ1β
2 ≤ κ1ε

2,
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since β ≤ ε.
Similarly, ¯̀

i
ε ≥

`i
ε ≥ α, so that r

( ¯̀
i
ε

)
≤ r

(
`i
ε

)
+ c, due to the properties

of the function r. Consequently,

R̄i −Ri = ε2

(
r

( ¯̀
i

ε

)
− r
(
`i
ε

))
≤ cε2.

Each moment term is bounded by 9
4κ2ε

2, therefore

9∑
j=1

(M̄j −Mj) ≤
81

2
κ2ε

2.

By construction, B̄1 = R̄1 = 0. Letting C = 2(κ1 + c) + 81
2 κ2, we thus

have

Ē − E ≤ −B1 −R1 + Cε2 ≤ −R1 + Cε2 =

(
− r
(
|A1P |
ε

)
+ C

)
ε2,

where we recall that |A1P | < εα. We now choose α < 1 such that r(α) > C,
which is possible since r(α)→ +∞ when α→ 0+, so that Ē < E.

Case 2: |A2P | < εα and |A3P | ≥ εα. We can only consider the case
when both |A1P | and |A2P | are nonzero. We may assume that α < 1

2 , so
that |A1A2| < ε. Consequently, the two spheres of radius ε centered at A1

and A2 intersect along a circle. The plane orthogonal to the third bond and
passing through P intersects this circle at two points. We pick one of these
two points for P̄ , and the rest is as above with a second value of α (we retain
the smallest of the two).

Case 3: |A2P | < εα and |A3P | < εα. In this case, there exists a point P̄
such that ε ≤ |AiP̄ | ≤ 2ε for all i, as is easily checked, which we pick for the
new position. This provides a third value of α, which we retain if it smaller
than the previous one.

The procedure ends when all type 2 nodes have been processed. We
thus have a new deformation ψ̄ε that globally diminishes the energy. It also
does so for local energies for any open set U . Indeed, the new deformation
is obtained via a local construction, and when a type 2 node is taken into
account in a local energy, there are a priori less bonds and angles attached
to it involved than in the global energy, so it is easier to decrease the energy.

It remains to show that ψ̄ε still tends to ψ strongly in L2(ω;R3). This is
quite obvious since by construction, ‖ψ̄ε − ψε‖L∞ ≤ 2ε. �

Note that we also have Iε(ψ̄ε, ω̄) ≤ Iε(ψε, ω̄), with Iε(ψ̄ε, ω̄) < +∞
since the only nodes on ∂ω are type 1 nodes. We remark that the above
construction also works when a boundary condition of place is enforced on
∂ω for the same reason.

We now establish several properties of the Γ-limsup and Γ-liminf of the
sequence Iε.
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Proposition 3.5 There exists a constant C such that for all ψ ∈ H1(ω;R3)
and U ∈ O, we have

I ′′(ψ,U) ≤ C
(
‖∇ψ‖2L2(U) + |U |

)
. (9)

Proof. We first take ψ ∈ C∞(ω̄;R3) and denote by Πεψ ∈ A(ε) the piecewise
affine Lagrange interpolate of ψ on the main Delaunay triangulation. We
consider the corresponding modified deformation Πεψ of Lemma 3.4. By
construction, we have Πεψ → ψ in L2(ω) strong.

Let U be an open subset of ω and bk be a bond included in a triangle of
Tm(U). We choose one of the at most two possible triangles, tk. Let B̄ε

k and
R̄εk denote the elastic and Lennard-Jones energies of bond bk. By Lemma
3.4, |R̄εk| ≤ Cε2 ≤ C|tk|. Moreover, we have

B̄ε
k ≤ Cε2

(∣∣∣∇(Πεψ|tk

)∣∣∣2 + 1
)
≤ C

∫
tk

(∣∣∣∇(Πεψ(x)
)∣∣∣2 + 1

)
dx.

When we add up the contributions of all the bonds, any such triangle is
counted at most twice, thus∑

bk⊂t∈Tm(U)

(
B̄ε
k + R̄εk

)
≤ C

∫
⋃
Tm(U)

(∣∣∣∇(Πεψ(x)
)∣∣∣2 + 1

)
dx

≤ C
(∫

⋃
Tm(U)

∣∣∣∇(Πεψ(x)
)∣∣∣2 dx+ |U |

)
,

since all the triangles are included in U . Likewise, each angle taken into
account belongs to exactly one triangle, so that∑

tkl∈Tm(U)∪Ta(U)

M̄ ε
kl ≤ C

∫
⋃

(Tm(U)∪Ta(U))
dx ≤ C|U |.

Consequently,

Iε(Πεψ,U) ≤ C
(∫

⋃
Tm(U)

∣∣∣∇(Πεψ(x)
)∣∣∣2 dx+ |U |

)
.

By construction, Πεψ = Πεψ + δε with ‖∇δε‖L∞ ≤ C. Therefore

Iε(Πεψ,U) ≤ C
(∫

⋃
Tm(U)

∣∣∣∇(Πεψ(x)
)∣∣∣2 dx+ |U |

)
.

By classical finite element theory, we know that there exists a constant C
independent of ψ such that, for any union T of triangles tkl,

‖∇ψ −∇Πεψ‖L2(T ) ≤ Cε‖ψ‖H2(T ) ≤ Cε‖ψ‖H2(ω),
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hence

Iε(Πεψ,U) ≤ C
(∫

⋃
Tm(U)

∣∣∣∇ψ(x)
)∣∣∣2 dx+ |U |

)
+ Cε2‖ψ‖2H2(ω)

≤ C
(∫

U

∣∣∣∇ψ(x)
)∣∣∣2 dx+ |U |

)
+ Cε2‖ψ‖2H2(ω).

We now let ε tend to 0 and obtain

I ′′(ψ,U) ≤ lim sup Iε(Πεψ,U) ≤ C
(∫

U

∣∣∣∇ψ(x)
)∣∣∣2 dx+ |U |

)
.

We conclude by density of C∞(ω̄) in H1(ω) and lower-semicontinuity of
I ′′(·, U) in L2(ω). �

Proposition 3.6 The Γ-limsup and Γ-liminf are increasing set functions,
i.e., for all ψ ∈ L2(ω;R3) and U, V ∈ O with U ⊂ V ,

I ′(ψ,U) ≤ I ′(ψ, V ) and I ′′(ψ,U) ≤ I ′′(ψ, V ). (10)

Proof. Clear. �

We next show that both Γ-limsup and Γ-liminf are inner regular. We
begin with a technical lemma pertaining to the convergence of piecewise
affine interpolates.

Lemma 3.7 Let ψ ∈ L2(ω;R3) such that ψ|U ∈ H1(U ;R3) and ψε ∈ A(ε)
a sequence such that ψε → ψ strongly in L2(ω;R3) and ∇ψε is bounded in
L2(U). Then, for any smooth function θ with support in U , Πε(θψε) → θψ
strongly in L2(ω;R3).

Proof. It suffices to show that Πε(θψε) − θψε tends to 0 in L2(ω;R3). For
ε small enough, this function is identically 0 in any triangle not included in
U . We thus just need to see what happens on any triangle t ⊂ U . Let Si,
i = 1, 2, 3 be the vertices of this triangle and λi the associated barycentric
coordinates. For all x ∈ t, we can write

(
Πε(θψε)− θψε

)
(x) =

3∑
i=1

λi(x)θ(Si)ψ
ε(Si)− θ(x)ψε(x)

=
3∑
i=1

λi(x)
(
(θ(Si)− θ(x))ψε(Si) + θ(x)(ψε(Si)− ψε(x)

)
.

We thus have for all x ∈ t,

∣∣(Πε(θψε)− θψε
)
(x)
∣∣2 ≤ Cε2

( 3∑
i=1

|ψε(Si)|2 + |∇ψε(x)|2
)
.
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Indeed, ψε is affine on t. Now it is fairly clear that

ε2
( 3∑
i=1

|ψε(Si)|2 ≤ C
∫
t
|ψε(x)|2 dx

for the same reason, see [13]. Consequently,∫
t

∣∣(Πε(θψε)− θψε
)
(x)
∣∣2 dx ≤ Cε2

∫
t

(
|ψε(x)|2 + |∇ψε(x)|2

)
dx,

and the result follows by summing over all such triangles t. �

Proposition 3.8 For all U ∈ O and ψ ∈ H1(ω;R3), we have

I ′(ψ,U) = sup
U ′bU

I ′(ψ,U ′) and I ′′(ψ,U) = sup
U ′bU

I ′′(ψ,U ′). (11)

Proof. Let us take U and ψ. We treat the case of the Γ-limsup. We
have already seen that the Γ-limsup is an increasing set function, so that
I ′′(ψ,U ′) ≤ I ′′(ψ,U) for all open sets U ′ compactly included in U . We thus
just need to find a sequence of open sets U ′ that achieves this upper bound.

Actually we will prove that for all U ′ b U and U ′′ b U ′, we have

I ′′(ψ,U) ≤ I ′′(ψ,U ′) + I ′′(ψ,U \ Ū ′′) (12)

and the conclusion will follow by taking U ′m = {x ∈ U ; d(x, {U) > 1/m},
U ′′m = {x ∈ U ; d(x, {U) > 2/m} and by letting m → +∞ and appealing to
estimate (9).

Let us thus take U ′ and U ′′ as above. There exist two sequences ψε1,
ψε2 ∈ A(ε) such that ψε1, ψε2 → ψ in L2(ω;R3) strong, and

Iε(ψε1, U
′)→ I ′′(ψ,U ′) and Iε(ψε2, U \ Ū ′′)→ I ′′(ψ,U \ Ū ′′). (13)

By Lemma 3.4, we may assume that no bond has deformed length smaller
than εα by both sequences so that ψε1 = ψε1 and ψε2 = ψε2.

We need to patch the two sequences together by a slicing argument. The
standard slicing argument involves a number of slices that goes to infinity.
We use here a variant thereof introduced in [11] that only involves a small
fixed number of slices. For s ≥ 0, let U ′s =

{
x ∈ U ′; d(x, {U ′) > s

}
. The

open slices will be sets of the form U ′is\Ū ′(i+1)s, i = 0, 1, . . . , 4. We take s > 0

small enough so that the five slices are all compactly included in U ′ \ Ū ′′.
Let us take a smooth cut-off function θs such that θs = 1 on U ′3s, θs = 0

on ω \ U ′2s, |∇θs| ≤ C
s . We define

ψεs = Πε
(
θsψε1 + (1− θs)ψε2

)
.
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By construction, ψεs ∈ A(ε) is such that ψεs → ψ in L2(ω;R3) strong when
ε → 0 by Lemmas 3.4 and 3.7, and no bond has deformed length smaller
than εα.

The energy of ψεs in U takes into account the bonds attached to triangles
tkl of the main Delaunay triangulation that are included in U and the angles
attached to triangles tkl of both Delaunay triangulations also included in U .
If such a triangle intersects the closure of one slice, i.e., tkl∩

(
Ū ′is \U ′(i+1)s

)
6=

∅, we claim that tkl intersects at most three slices for ε small enough (indeed,
in the sequel, we will let ε → 0 first). Let x0 ∈ tkl ∩

(
Ū ′is \ U ′(i+1)s

)
. Let us

take ε < s√
3
. Since diam tkl =

√
3ε, for any x ∈ tkl, we have

d(x, {U ′) ≤ d(x, x0) + d(x0, {U
′) ≤
√

3ε+ (i+ 1)s < (i+ 2)s.

Therefore, x /∈ U ′(i+2)s. Similarly, for any x ∈ tkl,

d(x, {U ′) ≥ d(x0, {U
′)− d(x, x0) ≥ is−

√
3ε > (i− 1)s.

Therefore, x /∈ U ′(i−2)s \ Ū
′
(i−1)s. It follows that tkl intersects at most the

slices U ′js \ Ū ′(j+1)s for j = i− 1, i and i+ 1.
There are three possible cases for any given triangle tkl:
Case 1: tkl ⊂ U ′3s. In this case, ψεs = ψε1 on tkl, since ψε1 = ψε1, and

the corresponding terms add up to Iε(ψε1, U ′3s). We note that Iε(ψε1, U ′3s) ≤
Iε(ψε1, U

′).
Case 2: tkl ⊂ U \ Ū ′2s. In this case, for the same reason, ψεs = ψε2 on

tkl and the corresponding terms add up to Iε(ψε2, U \ Ū ′2s). We note that
Iε(ψε2, U \ Ū ′2s) ≤ Iε(ψε2, U \ Ū ′′).

Case 3: tkl ∩
(
Ū ′2s \U ′3s

)
6= ∅. By the remark above, the sum of all terms

corresponding to this case is smaller than Iε(ψεs, U ′s \ Ū ′4s).
We thus see that

Iε(ψεs, U) ≤ Iε(ψε1, U ′) + Iε(ψε2, U \ Ū ′′) + Iε(ψεs, U
′
s \ Ū ′4s).

As in the proof of Proposition 3.5, we have

Iε(ψεs, U
′
s \ Ū ′4s) ≤ C

∫
T ε
s

(∣∣∣∇(Πε
(
θsψ

ε
1 + (1− θs)ψε2

))∣∣∣2 + 1
)
dx,

where T εs denotes the union of triangles tkl included in U ′s \ Ū ′4s.
Now it follows from the same argument as in Lemma 4.4 of [13] with a

slightly different piecewise affine Lagrange interpolation that∫
T ε
s

∣∣∣∇(Πε
(
θsψ

ε
1 + (1− θs)ψε2

))∣∣∣2 dx
=

∫
T ε
s

∣∣∣∇(ψε2 + Πε
(
θs(ψ

ε
1 − ψε2)

))∣∣∣2 dx
≤ C

∫
U ′s\Ū ′4s

(
|∇ψε1|2 + |∇ψε2|2 +

1

s2
|ψε1 − ψε2|2

)
1T ε

s
dx.
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We first let ε → 0. The sequence
(∣∣∇ψε1|2 +

∣∣∇ψε2|2 + 1
)
1T ε

s
is bounded

in L1(U ′ \ Ū ′′), by coercivity of Lemma 3.2. Therefore, up to a further
subsequence, it weakly-∗ converges to a finite Radon measure ν on U ′ \ Ū ′′,
and we have

lim sup
ε→0

∫
U ′s\Ū ′4s

(
|∇ψε1|2 + |∇ψε2|2 + 1

)
1T ε

s
dx

≤ ν
(
U ′s \ Ū ′4s

)
= ν

(
U ′s \ U ′4s

)
≤ ν(U ′ \ U ′4s).

Therefore, since∫
U ′s\Ū ′4s

|ψε1 − ψε2|21T ε
s
dx ≤

∫
U ′s\Ū ′4s

|ψε1 − ψε2|2 dx→ 0

when ε→ 0, it follows that

I ′′(ψ,U) ≤ lim sup
ε→0

Iε(ψεs, U) ≤ I ′′(ψ,U ′) + I ′′(ψ,U \ Ū ′′) + Cν(U ′ \ U ′4s).

We now take a decreasing sequence s→ 0 and obtain estimate (12).
The argument is exactly the same for the Γ-liminf. �

At this point, we can extract a subsequence, still denoted ε such that
Iε(·, U) is Γ-convergent for all open sets U ∈ O and all ψ ∈ H1(ω;R3), by
appealing to Theorem 10.3 of [5], i.e.,

I ′(ψ,U) = I ′′(ψ,U) = I(ψ,U).

Let us now show that the Γ-limit I is superadditive.

Proposition 3.9 Let U, V ∈ O be such that U ∩ V = ∅. For all ψ ∈
L2(ω;R3), we have

I(ψ,U ∪ V ) ≥ I(ψ,U) + I(ψ, V ). (14)

Proof. Indeed, for any ψε we clearly have Iε(ψε, U ∪ V ) ≥ Iε(ψε, U) +
Iε(ψε, V ), hence the result by passing to the inferior limit. �

We now turn to subadditivity.

Proposition 3.10 Let U, V ∈ O. For all ψ ∈ L2(ω;R3), we have

I(ψ,U ∪ V ) ≤ I(ψ,U) + I(ψ, V ). (15)

Proof. It suffices to consider the case when I(ψ,U) < +∞ and I(ψ, V ) <
+∞. By the inner regularity of Proposition 3.8, it is also enough to prove
that

I(ψ,U ′ ∪ V ′) ≤ I(ψ,U) + I(ψ, V ),
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for all U ′ b U and V ′ b V . Again, there exist two sequences ψε1, ψε2 ∈ A(ε)
both converging to ψ in L2 strong and

Iε(ψε1, U)→ I(ψ,U) and Iε(ψε2, V )→ I(ψ, V ).

Again by Lemma 3.4, we may assume that no bond has deformed length
smaller than εα by both sequences.

The argument is basically the same as in Proposition 3.8 and we just
sketch it, see also [2]. We define slices in U ′ and associated cut-off functions
θs which are loosely speaking equal to 1 inside the innermost slice and to 0
on V \ U ′. As before, we set

ψεs = Πε
(
θsψε1 + (1− θs)ψε2

)
.

and check that the slicing argument proceeds to its end. �

We can now apply the De Giorgi-Letta criterion, see Theorem 10.2 in [5].

Proposition 3.11 For all ψ ∈ H1(ω;R3), the mapping U 7→ I(ψ,U) is the
restriction of a Borel measure to O.

Proof. Indeed, this set function is increasing, subadditive by Proposition
3.10, superadditive by Proposition 3.9, and inner regular by Proposition 3.8.
�

In view of applying Buttazzo-Dal Maso’s representation theorem, we still
need one ingredient.

Proposition 3.12 Let ψ1, ψ2 ∈ H1(ω;R3). If ψ1 = ψ2 on U ∈ O, then we
have

I(ψ1, U) = I(ψ2, U). (16)

Proof. By inner regularity, it is enough to consider the case U b ω. Let us
thus be given two sequences ψε1 and ψε2 in A(ε), with ψεα → ψα, α = 1, 2,
strongly in L2(ω;R3) and

Iε(ψε1, U)→ I(ψ1, U) and Iε(ψε2, U)→ I(ψ2, U).

We use again the same slicing argument. Let U ′ b U and place slices
between U ′ and U with associated cut-off functions θs. As before, we set

ψεs = Πε
(
θsψε1 + (1− θs)ψε2

)
.

Since ψ1 = ψ2 in ω, we have ψεs → ψ2 strongly in L2(ω;R3) by Lemmas 3.4
and 3.7 again, so that

I(ψ2, U) ≤ lim inf
ε→0

Iε(ψεs, U).
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On the other hand,

Iε(ψεs, U) ≤ Iε(ψε1, U ′) +Dε ≤ Iε(ψε1, U) +Dε,

and the usual slicing argument shows that the inferior limit of the remainder
terms Dε can be made as small as we want. Therefore,

I(ψ2, U) ≤ I(ψ1, U),

from which the conclusion follows. �

Proposition 3.13 There exists a Carathéodory function W : ω×M3,2 → R
bounded below, satisfying W (x, F ) ≤ C(1 + |F |2), such that

I(ψ,U) =

∫
U
W (x,∇ψ(x)) dx (17)

for all ψ ∈ H1(ω;R3) and U ∈ O.

Proof. We apply the first part of Buttazzo-Dal Maso’s integral representa-
tion theorem 3.1. We have seen that conditions i), ii) and iii) are satisfied.
Condition iv) obviously holds true. Condition v) is also quite clear since
if ψm ⇀ ψ weakly in H1(ω;R3), then ψm → ψ strongly in L2(ω;R3), and
the sequential lower semicontinuity follows from the general properties of
Γ-convergence. �

Proposition 3.14 The function W is independent of x.

Proof. We apply the last part of Buttazzo-Dal Maso’s theorem, namely con-
dition v). Let us be given ρ > 0 and x1, x2 such that B(xi, ρ) ⊂ ω, i = 1, 2.
Let us take any gradient g and let ψ(x) = gx. We thus have a sequence
ψε2 ∈ A(ε) such that ψε2 → ψ strongly in L2(ω;R3) and Iε(ψε2, B(x2, ρ)) →
I(ψ,B(x2, ρ)). Let T ε2 denote the set of full triangles included in B(x2, ρ).
We look for the same pattern of triangles that has the maximum number
of triangles included in B(x1, ρ). This is possible since there is only a fi-
nite number of such patterns. We let T ε1 denote the corresponding set of
translated triangles, by a vector τ ε.

We now set ψε1(x) = ψε2(x− τ ε) at all nodes of T ε1 , and ψε1(x) = g(x− τ ε)
at all other nodes. It is fairly clear that ψε1 → ψ − g(x1 − x2) strongly
in L2(ω;R3) and that Iε(ψε1, B(x1, ρ)) → I(ψ,B(x2, ρ)). Therefore I(ψ −
a,B(x1, ρ)) ≤ I(ψ,B(x2, ρ)) with a = g(x1 − x2), and we conclude by con-
dition iv). �
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4 Convergence with boundary conditions and iden-
tification of the limit energy

The next step in the proof consists in showing that the limit energy density
is not modified when we add a boundary condition of place on ∂ω defined by
a function ϕ0 according to equation (1). We define the corresponding energy
by

Iεbc(ψ) =

{
Iε(ψ, ω̄) if ψ −Πεϕ0 ∈ H1

0 (ω;R3),

+∞ otherwise.

Thus Iεbc(ψ) is finite if and only if ψ is piecewise affine on the main Delau-
nay triangulation, satisfies the boundary condition of place at the boundary
nodes and has no bond of zero deformed length.

Let Ω be an open set such that ω̄ ⊂ Ω and extend the hexagonal network,
Delaunay triangulations and energies to Ω.

Proposition 4.1 Assume that ϕ0 ∈ H2(ω;R3). Let ε → 0 be a sequence
such that Iε(·,Ω) is Γ-convergent according to Proposition 3.13. Then Iεbc is
Γ-convergent to the functional

Ibc(ψ) =

{∫
ωW (∇ψ) dx if ψ − ϕ0 ∈ H1

0 (ω;R3),

+∞ otherwise.
(18)

Proof. We first note that ϕ0 may be extended to a function of H2(Ω;R3).
Secondly, since ϕ0 belongs to H2(ω;R3) and the sequence of main Delaunay
triangulations is regular in the sense of finite element theory, we have that
Πεϕ0 → ϕ0 strongly in H1(ω;R3). It follows that γ

(
Πεϕ0

)
→ γ(ϕ0) strongly

in H1/2(∂ω;R3), where γ denotes the trace mapping.
Let I ′bc and I

′′
bc denote the Γ-liminf and Γ-limsup of the sequence Iεbc. Let

us first show that I(·, ω) ≤ I ′bc. There is nothing to prove if I ′bc(ψ) = +∞.
Let Ω′ be an open set such that ω b Ω′ b Ω. We consider a sequence ψε

that achieves I ′bc(ψ) < +∞ and we extend it to Ω by Πεϕ0. We then have

Iε(ψε,Ω′) = Iεbc(ψ
ε) + Sε

where the remainder Sε corresponds to the energies of the bonds that have
at least one extremity outside of ω̄ and the angles for which one of the two
bonds also has an extremity outside of ω̄. Given the value of ψε in this
region, it is easy to see that Sε ≤ C|Ω′ \ω|. Passing to the inferior limit, we
obtain ∫

Ω′
W (∇ψ) dx ≤ I ′bc(ψ) + C|Ω′ \ ω|,

and we conclude by shrinking Ω′ down to ω̄.
We now need to show that I ′bc(ψ) = +∞ for all ψ such that ψ − ϕ0 /∈

H1
0 (ω) and that I ′′bc(ψ) ≤ I(·, ω)(ψ) for all ψ such that ψ − ϕ0 ∈ H1

0 (ω).

19



If we assume that I ′bc(ψ) < +∞, then there exists a sequence ψε such
that ψε → ψ in L2(ω;R3) and Iεbc(ψ

ε) ≤ C < +∞ for some C. By Lemma
3.2, it follows that ∇ψε is bounded in L2(ω;M3,2), thus that ψ ∈ H1(ω;R3)
and ψε ⇀ ψ weakly in H1(ω;R3). Consequently, γ(ψε) ⇀ γ(ψ) weakly in
H1/2(∂ω;R3). Since γ(ψε) = Πεϕ0|∂ω, it follows that ψ − ϕ0 ∈ H1

0 (ω;R3).
Let us thus turn to the upper bound for the Γ-limsup when ψ − ϕ0 ∈

H1
0 (ω;R3). We first consider the case when ψ ∈ H2(ω;R3). Then, by the

same token as for ϕ0, Πεψ → ψ in H1(ω;R3), and since the boundary values
of the interpolate only depend on the values it takes on the type 1 nodes of
∂ω, Πεψ satisfies the discrete boundary condition as well.

Let ψε be a sequence such that ψε → ψ in L2(ω;R3) and Iε(ψε, ω) →
I(ψ, ω). As always, we can assume that ψε = ψε. We use again the slicing
argument variant. For s > 0 small enough, let ωs =

{
x ∈ ω; d(x, {ω) > s

}
and θs be a smooth cut-off function such that θs = 1 on ω4s, θs = 0 on
ω \ ω3s, |∇θs| ≤ C

s .
We define

ψεs = Πε
(
θsψε + (1− θs)ψ

)
.

Because θs is smooth, we have ψεs → ψ in L2(ω;R3), by Lemmas 3.4 and
3.7 for the first term and due to the fact that ψ ∈ H2(ω;R3) for the second
term. Moreover, for ε small enough, we have ψεs = Πεψ in ω \ ω2s. The
boundary nodes are all type 1 nodes, thus the modifications of Lemma 3.4
have no effect on the boundary values and ψεs satisfies the discrete boundary
condition of place. Similarly, for ε small enough, we have ψεs = ψε on ω5s.

In terms of energies, we have

Iε(ψεs, ω̄) ≤ Iε(ψεs, ω5s) + Iε(ψεs, ωs \ ω6s) + Iε(ψεs, ω̄ \ ω2s)

= Iε(ψε, ω5s) + Iε(ψεs, ωs \ ω6s) + Iε(Πεψ, ω̄ \ ω2s),

the overlap between the three slices being there to ensure that all contribu-
tions to the energy, either bonds or angles, are counted at least once in the
right-hand side. Note that the term Iε(ψεs, ω̄ \ω2s) includes the contribution
of the bonds and angles up to ∂ω.

Let us consider each term separately. First of all,

I ′′bc(ψ) ≤ lim sup
ε→0

Iε(ψεs, ω).

Secondly,
Iε(ψε, ω5s) ≤ Iε(ψε, ω)→ I(ψ, ω) when ε→ 0.

Thirdly,

Iε(Πεψ, ω̄ \ ω2s) ≤ C
∫
ω\ω2s

(∣∣∇(Πεψ
)∣∣2 + 1

)
dx→ C

∫
ω\ω2s

(
|∇ψ|2 + 1

)
dx,
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when ε→ 0 by classical finite element error estimates, since ψ ∈ H2(ω;R3).
Therefore

lim sup
ε→0

Iε(Πεψ, ω̄ \ ω2s) ≤ Cµ(ω \ ω6s),

where µ is the finite measure µ(A) =
∫
A(|∇ψ|2 + 1) dx.

We argue as before for the last term. Indeed, we have

Iε(ψεs, ωs \ω6s) ≤ C
∫
ωs\ω6s

(∣∣∇ψε|2 + |∇ψ|2 + 1
)
dx+

C

s2

∫
ωs\ω6s

∣∣ψε−ψ∣∣2 dx.
The last term in the right-hand side tends to 0 when ε → 0. The sequence∣∣∇ψε|2 is bounded in L1(ω), by coercivity of Lemma 3.2. Therefore, up to a
further subsequence, it weakly-∗ converges to a finite Radon measure ν, and
we have

lim sup
ε→0

∫
ωs\ω6s

∣∣∇ψε|2 dx ≤ ν(ωs \ ω6s

)
= ν

(
ωs \ ω6s

)
≤ ν(ω \ ω6s).

Finally, putting the above estimates together, we obtain

I ′′bc(ψ) ≤ I(ψ, ω) + Cµ(ω \ ω6s) + ν(ω \ ω6s),

and the result follows for ψ ∈ H2(ω;R3) by letting s→ 0.
To conclude the proof for a general ψ ∈ H1(ω;R3), we note that since

ψ − ϕ0 ∈ H1
0 (ω;R3), there exists a sequence φm ∈ D(ω;R3) such that

ϕ0 + φm → ψ in H1(ω;R3). Moreover, ϕ0 + φm ∈ H2(ω;R3) and satisfies
the boundary condition of place. Thus

I ′′bc(ϕ0 + φm) ≤ I(ϕ0 + φm, ω) =

∫
ω
W (∇(ϕ0 + φm)) dx.

The left-hand side is strongly L2(ω;R3) lower semicontinuous and the right-
hand side is strongly H1(ω;R3) continuous, so that passing to the limit when
m→ +∞, we obtain

I ′′bc(ψ) ≤
∫
ω
W (∇ψ) dx = I(ψ, ω),

and the Proposition is proved. �

It is now a simple matter to add the force terms. Let us set Jε : L2(ω;R3)→
R̄,

Jε(ψ) = Iεbc(ψ)− F ε(ψ),

in the sense that if ψ /∈ A(ε), the second term, which may be undefined,
does not count anyway.
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Proposition 4.2 Under the above hypotheses, there exists a sequence ε→ 0
such that the sequence Jε is Γ-convergent for the strong topology of L2(ω;R3)
and its Γ-limit is given by

J(ψ) =

{∫
ωW (∇ψ) dx− 4

3
√

3

∫
ω f · ψ dx if ψ − ϕ0 ∈ H1

0 (ω;R3),

+∞ otherwise.
(19)

Moreover, the minimizers of Jε remain in a compact subset of L2(ω;R3),
any limit point of a sequence of minimizers is a minimizer of J and we have

inf
ψ∈L2(ω;R3)

Jε(ψ) −→ inf
ψ∈L2(ω;R3)

J(ψ) when ε→ 0. (20)

Proof. If a sequence ψε → ψ is such that Jε(ψε) ≤ C < +∞, it follows that
ψε is bounded in H1(ω;R3). The same kind of arguments as those used in
the proof of Lemma 3.7 can be used to show that

F ε(ψε)→ 4

3
√

3

∫
ω
f · ψ dx,

from which the Γ-convergence result follows.
Of course, we have

inf
ψ∈L2(ω;R3)

Jε(ψ) ≤ Jε(Πεϕ0) ≤ C,

so that the minimizers are relatively compact in L2(ω;R3). The convergence
of minimizers and minima is then a standard feature of Γ-convergence. �

Let us identify the limit energy densityW . For any nonzero integer k, let
A(kY ) denotes the set of continuous piecewise affine functions on the main
Delaunay triangulation defined on kY and corresponding to ε = 1. Then for
all ψ ∈ A(kY ), we set

Ik(ψ) = I1(ψ, kY ).

Note again that we include here the contributions of the bonds that are
attached to a boundary type 1 node and the angles corresponding to one
boundary type 1 node and two neighboring type 2 nodes in kY .

Proposition 4.3 For all Γ-convergent subsequences and all g ∈M3,2,

W (g) =
1

|Y |
inf
k∈N∗

{
1

k2
inf

ψ∈A(kY )
ψ=gx on ∂(kY )

Ik(ψ)

}
. (21)

Proof. Let us set

Wk(g) =
1

k2|Y |
inf

ψ∈A(kY )
ψ=gx on ∂(kY )

Ik(ψ).
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We claim that the sequence Wk(g) converges to a limit when k → +∞, and
that this limit is given by infnWn(g). In order to prove this, we introduce a
slightly different energy

Ik,](ψ) =
∑
j

(
B1
j (ψ) +R1

j (ψ)
)

+
∑
j,l

M1
jl(ψ) +

∑
l

M1
l,](ψ),

where the first three sums are extended over all the bonds in kY and angles
with three nodes in kY . The extra terms M1

l,](ψ) are defined as follows.
We add k extra phantom type 2 nodes to the right side of kY and k extra
phantom type 2 nodes to the top of kY , see Figure 7, and we extend ψ to
these nodes into a function ψ] such that x 7→ ψ](x)− gx is Y -periodic.

Each phantom node gives rise to two extra moment energy terms,M1
l,](ψ),

except for the rightmost node with only one extra moment erm, see Figure
7. There is thus a total number of 4k−1 extra terms in the extended energy.

Figure 7: The cells 3Y and 4Y with added phantom nodes and angles.

We now let
Wk,](g) =

1

k2|Y |
inf

ψ∈A(kY )
ψ=gx on ∂kY

Ik,](ψ).

This sequence is decreasing for the divisibility order. Indeed, if k | k′, the
periodic repetition of a minimizer for Ik,] is a competing function for Ik′,]
(this is the reason for introducing the phantom nodes in the first place). It
follows that Wk,](g)→ infmWm,](g) when k → +∞.

Now we have for all k and ψ,

Ik(ψ) ≤ Ik,](ψ) = Ik(ψ) +
∑
l

M1
l,](ψ) ≤ Ik(ψ) + Ck,

so that
Wk(g) ≤Wk,](g) ≤Wk(g) +

C

k
,

for all g and k. Consequently, Wk(g)→ infmWm(g).
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We now proceed as in [2]. Recall that ε = L/n, n ≥ 1. Let n′ be a se-
quence such that Iε′ is Γ-convergent, with ε′ = L/n′. SinceW has quadratic
growth and the Γ-limit is weakly lower-semicontinuous on H1(ω;R3), it fol-
lows that W is quasiconvex. In particular,

W (g) =
1

|ω|
inf

ϕ−gx∈H1
0 (ω;R3)

∫
ω
W (∇ϕ) dx.

By Proposition 4.2, we have

inf
ϕ−gx∈H1

0 (ω;R3)

∫
ω
W (∇ϕ) dx = lim

n′→+∞

(
inf

ψ=gx on ∂ω
Iε
′
(ψ)

)
.

The change of variables y = n′x/L sends ω onto n′Y and if we define ψ̃(y) =
n′

L ψ
(Ly
n′

)
, then we have ψ̃ = gy on ∂(n′Y ) and

Iε
′
(ψ) =

L2

(n′)2
In′(ψ̃).

It follows from the previous considerations that

W (g) = lim
n′→+∞

Wn′(g),

and the right-hand side is a subsequence of the total convergent sequence
Wk(g). �

Corollary 4.4 The whole sequence of Proposition 4.2 is Γ-convergent.

Proof. Indeed, Proposition 4.3 shows that the limit of all Γ-convergent sub-
sequences is unique. �

The limit homogenized energy density has symmetry properties.

Proposition 4.5 The limit energy density W is frame-indifferent and its
material symmetry group contains the circular group C6.

Proof. See [13]. Actually, as in the previous reference, W is furthermore D6

right-invariant. �
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