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Abstract 17 

Global Vegetation Models (GVMs) simulate CO2, water and energy fluxes at large scales, 18 

typically no smaller than 10 x 10 km. GVM simulations are thus expected to simulate the 19 

average functioning, but not the local variability. The two main limiting factors in refining this 20 

scale are 1) the scale at which the pedo-climatic inputs – temperature, precipitation, soil water 21 

reserve, etc. – are available to drive models and 2) the lack of geospatial information on the 22 

vegetation type and the age of forest stands. This study assesses how remotely sensed biomass 23 

or stand height could help the new generation of GVMs, which explicitly represent forest age 24 

structure and management, to better simulate this local variability. For the ORCHIDEE-FM 25 

model, we find that a simple assimilation of biomass or height brings down the root mean 26 

square error (RMSE) of some simulated carbon fluxes by 30-50%. Current error levels of remote 27 

sensing estimates do not impact this improvement for large gross fluxes (e.g. terrestrial 28 

ecosystem respiration), but they reduce the improvement of simulated net ecosystem 29 

productivity, adding 13.5-21% of RMSE to assimilations using the in situ estimates. The data 30 

assimilation under study is more effective to improve the simulation of respiration than the 31 

simulation of photosynthesis. The assimilation of height or biomass in ORCHIDEE-FM enables 32 

the correct retrieval of variables that are more difficult to measure over large areas, such as 33 

stand age. A combined assimilation of biomass and net ecosystem productivity could possibly 34 

enable the new generation of GVMs to retrieve other variables that are seldom measured, such 35 

as soil carbon content. 36 
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1 Introduction 39 

Along with the growing concern about climate change, international agreements and regional 40 

markets have appeared and now give an economical value to carbon. These developments have 41 

naturally led to look at forest services from a carbon perspective: what is the carbon budget of 42 

a country’s forests and how will it evolve? How can forest management increase the carbon 43 

balance of a forest stand and how can this mitigation effort be rewarded? To answer these 44 

questions, policy makers and foresters have progressively turned to forest models. 45 

Stand-scale growth-and-yield models – such as FAGACEES (Dhôte and Hervé, 2000), SILVA 46 

(Pretzsch et al., 2002) or CO2FIX (Masera et al., 2003) – or process-based models – such as 47 

CASTANEA (Dufrene et al., 2005) or GRAECO (Porté, 1999) – offer trustworthy local simulations 48 

of carbon stocks. Nevertheless, the former require a local site productivity index and the latter 49 

tend to require an intensive local calibration, based on extensive field observations. It renders 50 

both types of models very site-specific and unfit to simulate regional fluxes and stocks. Another 51 

solution is to use generic global vegetation models such as Ecosytem Demography (Moorcroft 52 

et al., 2001), Biome-BGC (Thornton et al., 2002), LPJ (Sitch et al., 2003) or ORCHIDEE (Krinner et 53 

al., 2005). Although these GVMs tend to perform worse than well calibrated stand-scale models 54 

on a site-by-site basis (Loustau et al., 2005), they provide estimates of carbon stocks and fluxes 55 

at regional scales, or where data is lacking for a local calibration. Their estimates of continental 56 

carbon budgets are within the range given by other methods (Lindner et al., 2004), but 57 

uncertainty remains high: for the carbon balance of European forests (EU25), the estimates of 58 

three similar GVMs exhibit a 2-fold difference (Luyssaert et al., 2010). 59 
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The bigger uncertainty of GVM estimates has two main causes: first the pedo-climatic inputs 60 

driving the models are too coarse and do not capture local variations, which in turn can 61 

generate errors due to the non-linear response of physiological processes to these inputs. 62 

Second most GVMs do not explicitly simulate management (Le Quere et al., 2009), and 63 

therefore fail to correctly simulate age-dependent variables such as aboveground biomass. This 64 

pitfall is being increasingly addressed (Zaehle et al., 2006; Desai et al., 2007; Sato et al., 2007; 65 

Bellassen et al., 2010a). 66 

In even-aged stands, local variations of soil fertility, climate, and stand age can be combined in 67 

the notion of “growth stage”. Forest yield tables indeed show that most characteristics – stand 68 

density, height, basal area, diameter, aboveground biomass, ... – of two stands with different 69 

fertility classes follow the same evolution with age, albeit not at the same pace (Vannière, 70 

1984; JRC, 2009). A 50 year old forest standing on a productive site may be considered to be at 71 

the same “growth stage” than a 100 year old forest standing on an unfertile soil, as they have 72 

similar biomass and height. Information about the “growth stage” of forest stands could be 73 

used to account for sub-grid heterogeneity in GVM simulations and increase the match 74 

between simulations and local measurements. Initializing a GVM with a spatially explicit map of 75 

growth stage may improve simulations in two ways: 1) at the local level, information on growth 76 

stage recreates some intra-pixel variability in simulations which may improve the fit to site data 77 

and 2) at the continental level, a map of growth stage provides a spatially more precise 78 

initialization than the current regional or national age averages of forest inventories. The 79 
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initialization of carbon pools has already been shown to play an important role in the ability of 80 

GVMs to reproduce local flux data (Carvalhais et al., 2010). 81 

Both average stand height and aboveground biomass could be estimated at large scales with 82 

active remote sensing techniques such as RADAR and LiDAR. These two variables can therefore 83 

be used to initialize growth stage in a model simulation. P-band RADAR has been particularly 84 

used for estimating biomass, as the reflected signal is more specific to the woody components 85 

of trees, and therefore saturates at higher levels of biomass than other techniques (Le Toan et 86 

al., 2008). The LiDAR signal is less specific and most often used to estimate canopy height 87 

structure. Many studies however derive biomass estimates from LiDAR measurements, using 88 

the allometric relationship between biomass and height (Lim and Treitz, 2004; Lefsky et al., 89 

2005b; Stephens et al., 2007; Naesset, 2009). Except for a few data from the GLAS LiDAR 90 

satellite (Lefsky et al., 2005a; Boudreau et al., 2008), all P-band RADAR and LiDAR studies relied 91 

on airborne campaigns, and were therefore limited to the local scale. As the European Space 92 

Agency is currently assessing the need for a P-band RADAR satellite (Le Toan et al., 2008) and a 93 

LiDAR satellite (Durrieu, 2010), there is a pressing need to quantify the benefits of remotely 94 

sensed biomass or height for the new generation GVMs which simulate different stand growth 95 

stages. 96 

To this aim the current study compares the standard version of the ORCHIDEE GVM, with 97 

steady-state equilibrium forests, to a more recent version, ORCHIDEE-FM, that simulates forest 98 

management and the resulting tree height and biomass in a generic – that is even-aged – 99 

managed stand. The ability of ORCHIDEE-FM to simulate the growth stages of a forest stand is 100 
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checked with forest inventory plots. Then, pseudo-RADAR and LiDAR estimates of height and 101 

biomass are generated, based on existing in situ measurements from forest inventories and a 102 

global flux database. These pseudo-measurements are used to initialize ORCHIDEE-FM, and the 103 

improvement brought by this basic data assimilation is quantified for the simulation of volume 104 

increment, gross primary production (GPP), total ecosystem respiration (TER) and net 105 

ecosystem productivity (NEP). These quantified improvements provide a first assessment of the 106 

knowledge that could be gained from remotely sensed “growth stage” maps for large-scale 107 

carbon and water flux estimates. 108 

2 Material and Methods 109 

2.1 Field data 110 

Two in situ datasets are used in this study: the French national forest inventory (IFN) plots in 111 

two different regions, and the global flux and biometry database of Luyssaert et al. (2007). 112 

2.1.1 French national forest inventory (IFN) 113 

The first in situ dataset used in this study comes from the French national forest inventory 114 

(IFN). The IFN conducts yearly field measurement campaigns covering the entire French 115 

metropolitan territory. A systematic inventory grid is visited and inventoried following the IFN 116 

protocol (IFN, 2006): circumference at breast height, width of the last five rings, height and 117 

species are recorded for a representative sample of trees. IFN allometric rules are used to 118 

estimate commercial volume and volume increment. For even-aged stands, a few tree cores 119 
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sampling all growth rings are used to estimate stand age class, with age class widths between 120 

10 and 20 years. Raw data for each plot is available on the IFN website (www.ifn.fr). 121 

When necessary, estimated standing volume is converted to total aboveground biomass, using 122 

the default branch ratio and carbon density parameters of ORCHIDEE-FM (Table 1). 123 

Furthermore, commercial wood increment is used to estimate annual woody Net Primary 124 

Productivity (NPP), using Eq. 1.  125 

     cwibwoody ddBEFVbrTINPP  1
  (1) 126 

where NPPwoody is the annual woody NPP in gC m-2 yr-1, I is the estimated commercial wood 127 

increment in m3 m-2 yr-1, Tb is the annual turnover of branches in yr-1, br is the total branch ratio 128 

(no unit), V is the estimated standing commercial wood in m3 m-2, ε is the averaged increment 129 

of trees that died over the last five years before measurement in m3 m-2 yr-1, BEFi is the biomass 130 

expansion factor for volume increment (no unit), dw is the wood density in gDM m-3 (grams of 131 

dry matter), and dc is the carbon density in gC gDM-1. At most a few percent of trees commonly 132 

die over 5 years. They are usually smaller trees and not all die right before measurement date. ε 133 

is therefore much smaller than the wood increment of trees which survived, and neglected in 134 

the calculations. For parameter values, see Table 1. 135 

For this study, the results of three campaigns – 2005, 2006 and 2007 – are pooled, and only 136 

even-aged stands are used. To assess the performance of ORCHIDEE-FM, we selected regions 137 

that filled the following criteria: 138 

- As  REMO climate input data  have a 0.25° x 0.25° resolution  (see section 2.3.2) we 139 

selected grid points where climate does not vary strongly at the considered spatial scale 140 

http://www.ifn.fr/
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so that a single ORCHIDEE-FM simulation should be representative of neighbouring IFN 141 

plots 142 

-  A second criteria is to have enough IFN plots within a 0.5° radius for statistical 143 

purposes. 144 

 Two highly forested regions fit these criteria for both broadleaves and needleleaves: 145 

southwestern and northeastern France. We therefore selected one southwestern gridpoint, 146 

hereafter referred to as “Landes”, and one northeastern gridpoint, hereafter referred to as 147 

“Vosges”, with respectively 215 and 324 IFN plots within a 0.5° radius of the grid point 148 

centre. The characteristics of these two grid points are summarized in Table 2. The IFN 149 

dataset thus provides a high number of in situ estimates for age, average height, standing 150 

aboveground biomass, and woody NPP at various growth stages (stand ages vary from 2 to 151 

200 years). However, it does not provide direct carbon fluxes measurements. 152 

2.1.2 Global dataset for carbon fluxes 153 

Luyssaert et al. (2007) compiled a dataset of carbon flux measurements on forest sites, heavily 154 

building on the eddy covariance FLUXNET network (Baldocchi et al., 2001).  This dataset also 155 

gives additional site information, when available, regarding stand age, average height and 156 

biomass. All managed sites in temperate and boreal biomes informed for stand age, average 157 

height and aboveground biomass, and either GPP, TER or NEP were retained for this study, thus 158 

reducing the database to a subsample of 31 sites. When several years of measurements were 159 

available for a given variable, the average was retained. The resulting dataset, hereafter 160 

referred to as the “global flux dataset”, is presented in Appendix A. 161 
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Three peculiar site configurations are beyond the expected validity domain of ORCHIDEE-FM 162 

and therefore excluded for the quantification of performance improvement: 163 

 Forest stands younger than 20 years (8 sites): in such young stands, NEP is expected to 164 

be heavily influenced by the site history before stand establishment (eg. afforested 165 

farmland or clearcut old stand) for which we have no information. This hypothesis is 166 

tested by analyzing the difference in simulations with two extreme sets of initial 167 

conditions: forest regrowth – initial conditions corresponding to the clear-cut of a 168 

mature forest – and reforestation – initial conditions corresponding to a cropland. 169 

 Carbon sources (2 sites): our dataset only contains growing managed stands younger 170 

than 103 years old. Such stands are not expected to be net sources of carbon for several 171 

years in a row, unless management events such as heavy thinnings or clear-cuts take 172 

place within the footprint of the flux tower. Again, the absence of information on such 173 

heavy management events makes it hazardous to simulate these sites. 174 

 Collelongo (1 site): GPP at this 103 years old Italian site is twice larger than TER, which 175 

makes it an outlier in most analysis of the global flux database (Luyssaert et al., 2009). In 176 

our case, climate is a possible explanation as it exhibit strong local variations – 177 

uncaptured by the 0.25° resolution forcing data – in this part of Italy. 178 

The resulting dataset of 20 sites is hereafter referred to as the “screened dataset”. 179 

2.2 Generation of pseudo remote sensing data 180 

The in situ estimates of average stand height and biomass from the two datasets are used to 181 

construct a set of pseudo remote sensing estimates of these variables. To this end, a random 182 
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error is added to the in situ estimates of height and biomass. This random error is drawn from a 183 

normal probability law centred on the in situ estimate and with a standard deviation equal to 184 

the typical RMSE of LiDAR and P-band RADAR estimates of average height and biomass. This 185 

implies three assumptions: in situ estimates are assumed to be perfect, remote sensing 186 

observations are assumed to be unbiased and their error is assumed to be independent of the 187 

estimate value. The typical RMSE assigned to these pseudo-remote sensing observations are 188 

averages of RMSE from relevant literature studies (see Table 3): the typical RMSE of LiDAR is 189 

lower than that of RADAR for average height (1.66 vs 2.34 m) and higher for average biomass 190 

(23.7 vs 18.5 tC ha-1). The procedure of “pseudo data” generation is repeated 10 000 times – 191 

procedure based on the Monte Carlo technique (Rubinstein and Kroese, 1981) – for each in situ 192 

estimate in order to generate a representative pseudo-dataset. 193 

2.3 Model 194 

2.3.1 ORCHIDEE and ORCHIDEE-FM 195 

The ORCHIDEE global vegetation model (“ORganizing Carbon and Hydrology In Dynamic 196 

Ecosystems”) is designed to operate from regional to global scales (Krinner et al., 2005). 197 

ORCHIDEE typically represents an average mature forest at steady-state equilibrium in a “big-198 

leaf” approach. For a given climatology, it simulates the carbon, water and energy budget at the 199 

pixel scale. For carbon, ORCHIDEE computes its assimilation (GPP), allocates photosynthates to 200 

the different biomass compartments where they are respired or stored, and recycles carbon 201 

through constant tree mortality and soil respiration. This “standard” version of ORCHIDEE 202 
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(V1.9.4) is intended to simulate forests that have reached a steady-state equilibrium between 203 

growth and mortality. Its uses the allocation framework of Friedlingstein et al. (1999), and does 204 

not simulate the nitrogen cycle, recently included in ORCHIDEE-N by Zaehle and Friend (2010). 205 

This version of ORCHIDEE, hereafter referred to as the standard version, is intended to simulate 206 

forests that have reached a steady-state equilibrium between growth and mortality.  207 

The standard version does not represent important processes driving the evolution of stand 208 

structure such as competition, forest management, or the age-limitation of NPP and is 209 

therefore not suited to simulate managed forests, or forests recovering from past disturbance. 210 

As a consequence of its formulation all carbon pools, including biomass, need to be put to 211 

equilibrium before studying the effect of varying climate and CO2 conditions. This equilibrium is 212 

obtained by a “spin-up”, that is an initial simulation which stops when carbon and water pools 213 

are in equilibrium with a fixed climate which can take up to 10 000 years. 214 

In order to simulate forest management, several processes have been added to the standard 215 

version of ORCHIDEE, among which a Forest Management Module (FMM) inspired from the 216 

stand-level model FAGACEES (Dhôte and Hervé, 2000). The key concept is to add to the 217 

“average tree” representation of ORCHIDEE an explicit distribution of individual trees, which is 218 

the basis for a process-based simulation of mortality. The aboveground “stand-scale” wood 219 

increment simulated by ORCHIDEE is distributed among individual trees according to the rule of 220 

Deleuze et al. (2004): the basal area of each individual trees grows proportionally to its 221 

circumference. Tree mortality is then determined by the structure of the stand. Mortality due 222 

to natural competition relies on the self-thinning rule of Reineke (1933) while another set of 223 
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rules drives the mortality processes due to human interventions such as thinnings or clearcuts. 224 

Some other small refinements have been added to ORCHIDEE such as a height limitation on leaf 225 

area index (LAI) and an age-related decline in photosynthesis efficiency. As a result, this new 226 

version of the model, called ORCHIDEE-FM, is able to simulate the carbon budget and detailed 227 

stand structure of forests of varying ages (Bellassen et al., 2010b). Its equations are fully 228 

described in Bellassen et al. (2010a). For both versions of the model, the standard value of the 229 

maximum rate of carboxylation, Vcmax, is set to the optimized values for 6 sites in France and 230 

Germany found by Santaren (2006) for needleleaves and broadleaves, that is respectively 42.6 231 

and 52.2 in µmol m–2 s-1. 232 

2.3.2 Simulations 233 

2.3.2.1 Input data 234 

For simulations at the sites of the global flux dataset, the climate forcing data comes from the 235 

2.5° resolution NCEP – National Centers for Environmental Prediction – reanalysis, adjusted 236 

with the 0.5° CRU – Climate Research Unit – data for temperature and precipitation and 237 

interpolated to a 0.5° resolution (Kalnay et al., 1996; Mitchell and Jones, 2005). As in most 238 

global simulations (Krinner et al., 2005), the soil bucket is uniformly taken to be 2 m deep and 239 

its texture is evenly distributed between clay, sand and silt, corresponding to a uniform water 240 

holding capacity of 300 mm 241 
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For the IFN sites, we use the 0.25° resolution REMO reanalysis (Vetter et al., 2008), which 242 

covers Europe. Maps of soil depth and texture were derived from FAO and IGBP products 243 

(Vetter et al., 2008). 244 

2.3.2.2 Model “spinup” 245 

Following a standard method in GVM modelling, a model “equilibrium spinup” is performed 246 

before all simulations to define the initial conditions of subsequent simulations, in particular for 247 

soil carbon. For this “spinup”, ORCHIDEE is repeatedly run for the climate of the 10 years 248 

preceding stand establishment until all ecosystem carbon and water pools, including soil, reach 249 

a steady-state equilibrium. For the ORCHIDEE-FM simulations, the runs start with a clear-cut: 250 

stems are exported and all the remaining biomass – branches, roots and leaves – goes to the 251 

litter pools, except for a small fraction corresponding to the initial stand structure assumed by 252 

the model. 253 

2.3.2.3 Simulation set up 254 

The reference simulation – STD – uses the standard version of ORCHIDEE. This simulation is 255 

compared to seven simulations using ORCHIDEE-FM, the age-explicit version of the model. For 256 

each grid point, ORCHIDEE-FM is run 15 times, with plantation dates spanning 150 years before 257 

the date of observation, in order to capture all the growth stages potentially existing on the grid 258 

point. Out of these 15 runs, seven simulations are then selected for comparison with the 259 

reference simulations: FMga, FMgb and FMgh, the simulations with respectively the closest age, 260 

biomass and height to the actual in situ estimate. FMlb and FMlh are the simulations with the 261 

respectively closest biomass and height to the pseudo-lidar measurement. FMrb and FMrh are 262 
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the simulations with respectively closest biomass and height to pseudo-radar measurement. 263 

This selection is in fact a basic synthetic data assimilation procedure (Piao et al., 2009) assuming 264 

a perfect model and random errors only: the starting date of ORCHIDEE-FM simulations is 265 

chosen among different realizations in order to minimize the absolute difference between a 266 

simulated variable – age, biomass, or height – and its measured counterpart. The simulation 267 

procedure is summarized in 268 

 269 

Figure 1 and simulations names are summarized in Appendix E, together with other 270 

abbreviations. 271 
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2.4 Model assessment and quantification of simulation improvement 272 

2.4.1 Assessment of stand growth simulation 273 

The expected improvement of ORCHIDEE-FM simulations relies on the assumed ability of the 274 

model to correctly simulate the evolution of forest stand variables such as height and biomass 275 

as a function of age. To check this ability, two tests are performed: first, the simulated 276 

evolution of woody NPP with age is compared to the IFN plots estimates. Second, since stand 277 

age, biomass and height are correlated with each other, ORCHIDEE-FM should be able to 278 

retrieve stand age when biomass or height is assimilated. For simulations FMgb and FMgh where 279 

stand age is adjusted in the simulations to minimize the error on respectively biomass and 280 

height, the inferred stand age can be cross-validated by the in situ data on stand age. 281 

2.4.2 Quantification of simulation improvement 282 

2.4.2.1 Quantified evaluation criteria 283 

To quantify the improvement in simulations resulting from the use of ORCHIDEE-FM in 284 

conjunction with external estimates of biomass or height, we focus on four carbon flux 285 

variables available in the datasets: GPP, TER, NEP, and woody NPP, this last being the indirect 286 

result of the allocation of NPP between the different organs of trees. While thirteen model 287 

evaluation criteria are computed (Appendix B) for each simulation according to the 288 

recommendations of Willmott (1982), we especially focus our analysis on two of them: the root 289 

mean square error (RMSE) as an indicator of average simulation error, and the slope of the 290 
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linear regression between simulated and measured values (a), as an indicator of the model’s 291 

ability to reproduce a trend observed in the data. 292 

While it is technically feasible to assimilate biomass in the standard version,  as in the CASA 293 

steady-state equilibrium model (Carvalhais et al., 2010), the constant mortality assumed by 294 

ORCHIDEE, and the absence of wood removals, lead to a very fast equilibrium between NPP and 295 

TER, and therefore a limited ability to take advantage of biomass data. We therefore chose to 296 

discuss directly the relative merit of ORCHIDEE-FM with biomass or height assimilation against 297 

the standard version without data assimilation.  298 

2.4.2.2 Example of application: maps of NEP 299 

Data-derived maps of height and volume in French forests can be obtained by a smooth 300 

interpolation of IFN data (Bellassen et al., 2010b): each grid cell is attributed the averaged 301 

height and standing volume over IFN plots within a 50 km radius from its centre. In order to 302 

illustrate the potential of remote sensing data assimilation in ORCHIDEE-FM, three maps of 303 

average simulated NEP in the 1990s are then produced for France. One represents the NEP 304 

simulated by ORCHIDEE-FM without prior knowledge of the growth stage of French forests: all 305 

French forests are assumed to belong to the 40-50 years age class. The two others – one 306 

assimilating height and the other volume – show how the initial map can be refined with 307 

information on growth stage. From 15 ORCHIDEE-FM simulations over France representing 308 

stands aged between 0 and 150 years, each grid cell is attributed the NEP of the simulation with 309 

closest height or biomass to the corresponding data-derived map. 310 
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3 Results 311 

3.1 Simulation of age-related trends by ORCHIDEE-FM 312 

Whereas the woody NPP simulated by the standard version of ORCHIDEE is by definition 313 

insensitive to age, ORCHIDEE-FM reproduces the observed downward trend in woody NPP for 314 

both locations and both functional types 315 

(  316 

Figure 2). The age-related decline is however steeper in IFN estimates than in simulations. In 317 

particular, the simulated decline of woody NPP is several times smaller than the standard 318 

deviation of observations for any given age class. In terms of absolute values, measured and 319 



19 

 

simulated woody NPP are comparable for broadleaves, but tend to be overestimated by the 320 

model for needleleaves.  321 

3.2 Age retrieval from assimilation of height or biomass data 322 

The in situ estimate of stand age is correctly retrieved by assimilating biomass – FMgb 323 

simulation – or height – FMgh simulation –for both PFTs: the shape of the frequency distribution 324 

of age differences between simulations and observations is close to a zero-centered Gaussian 325 

curve (  326 
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Figure 3). The spread of the distribution is larger toward positive differences, leading to a 327 

positive mean age difference of 5 to 34 years between simulations and observations, for ages 328 

measured between 10 and 250 years. This bias is comparable to the precision of the 329 

measurement (the width of measured age classes varies between 10 and 20 years). The 330 

narrower shape of height histograms indicates than assimilating average height in ORCHIDEE-331 

FM is slightly more discriminating than assimilating biomass. 332 

3.3 No quantified improvement in simulated woody NPP 333 

The ability of ORCHIDEE-FM to simulate an age-related decline in woody NPP 334 

(  335 
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Figure 2) does not translate in a quantified improvement in the fit to IFN-derived estimates 336 

(  337 

Figure 4): both RMSE and the slope of the linear regression are largely by model type 338 

(ORCHIDEE vs ORCHIDEE-FM) and assimilation procedure (height vs biomass, in situ 339 

measurement vs pseudo remote sensing data). The simulated and observed average woody 340 

NPP are comparable (Appendix C), but the models are unable to reproduce the observed cross 341 

plot variability: the slope of the linear regressions between simulations and measurements are 342 
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close to 0 (-0.03 – 0.6). The values of the thirteen Wilmott performance indexes are listed in 343 

Appendix C. 344 

3.4 Improvement in simulated GPP, TER and NEP 345 

3.4.1 Simulation of carbon sources and sinks 346 

Despite the expected presence of outliers in the global flux dataset, ORCHIDEE-FM – FMga 347 

simulation – is better able than ORCHIDEE to reproduce the observed cross-sites gradient of 348 

NEP across sites (  349 

Figure 5). Interestingly, it is able to simulate the huge carbon source of -606 gC m-2 yr-1 350 

measured at the very young site of Vancouver Island. 351 
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The use of our “screened dataset” is justified by the exponential decrease over time of the 352 

difference in simulated TER between reforested cropland and regrowing clearcut forests 353 

(  354 

Figure 6). This difference can reach 1 000 gC m-2 yr-1 for younger stands but is below 300 gC m-2 355 

yr-1 for all the sites of the screened dataset, older than 20 years. These figures compare to a 356 

typical simulated interannual variability of 300 gC m-2 yr-1. 357 

3.4.2 Quantification of improvement in simulated carbon fluxes 358 

The standard version of ORCHIDEE correctly reproduces the spatial gradient of GPP across the 359 

screened dataset, despite a systematic positive bias, but not that of TER (Figure 7). Due to its 360 

representation of stand growth, ORCHIDEE-FM improves the simulation of TER, despite a 361 
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systematic positive bias, and consequently the simulation of NEP. This improvement is 362 

quantified in Figure 8: the RMSE is improved (i.e. reduced) by 40-50% for TER, and by 20-40% 363 

for NEP. More importantly for NEP, ORCHIDEE-FM is able to reproduce the observed variability, 364 

with slopes of data-simulations linear regressions between 0.8 and 1. This is a clear 365 

improvement from the NEP simulated by standard version of ORCHIDEE, which correlates very 366 

poorly with observations. 367 

Whereas large gross fluxes (GPP, TER) are unaffected by an additional error on pseudo remote 368 

sensing data (FMrb, FMlb, FMrh and FMlh simulations), the simulation of NEP deteriorates with 369 

decreasing precision of the biomass data assimilated: the assimilation of in situ biomass (FMgb) 370 

improves RMSE by 37% against only 23% for pseudo-lidar biomass (FMlb), and 28% for pseudo-371 

radar biomass (FMrb). The slope of the linear regression is also worsened from 1.01 to 372 

respectively 0.81 and 0.86. 373 

Assimilating height or biomass leads to broadly similar improvements in flux simulations. 374 

Biomass assimilation nevertheless seems most beneficial: while height assimilation further 375 

reduces RMSE for GPP and TER, this reduction comes at the price of a degraded linear 376 

regression. For NEP, biomass assimilation brings the strongest improvement in both RMSE and 377 

slope of linear regression. 378 

3.4.3 Application: maps of NEP 379 

Our simple assimilation procedure – using data-derived maps of height or biomass to select an 380 

age-class in ORCHIDEE-FM simulations – produces less uniform and likely more realistic maps of 381 

NEP for France (Figure 9). In particular, the older forests of central and north-eastern France are 382 
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detected from their higher height and biomass, leading to a lower simulated NEP than the 383 

simulation without information on growth stage (Figure 9a). 384 

4 Discussion 385 

4.1 Flux simulation improvement delivered by height/biomass data 386 

Our results show that a simple height or biomass data assimilation already yields a 30-50% 387 

decrease in RMSE for both TER and NEP. The tested range of measurement errors (representing 388 

Lidar or Radar errors) does not affect the improvement in large gross fluxes (GPP and TER). 389 

However, the precision of NEP simulation is impacted: a 18.5 tC ha-1 uncertainty on the 390 

assimilated biomass data, typical of P-band radar measurements, increases the simulation error 391 

by 20 gC m2 yr-1 (7.5% of observed average NEP), and a 23.6 tC ha-1 uncertainty, typical of LiDAR 392 

derived estimates, increases the simulation error by 31 gC m2 yr-1 (11.5% of observed average 393 

NEP). Thus, a reduced error on remote sensing estimates of biomass would not be useful for 394 

the simulation of large fluxes, but could further reduce the error on simulated NEP by 20-31 gC 395 

m2 yr-1 down to 149 gC m2 yr-1, that is the error obtained by assimilating the in situ estimate. 396 
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These results are both site- and model-dependent. For instance, the strong influence of land-397 

use history on the NEP of younger stands limits the benefits of the assimilation procedure 398 

(  399 

Figure 6). More elaborate distinctions in the usefulness of the method could possibly be made 400 

based on PFT or climate, but the small size of the screened dataset does not allow to draw 401 

robust conclusions. 402 

The error reduction in simulated fluxes could also be further improved by improvements in the 403 

structure and in the parameterisation of ORCHIDEE-FM. In particular, our results point to 404 

systematic positive biases in the simulation of GPP and TER which offset one another in the 405 

simulation of NEP. Zaehle et al. (2010) demonstrated that modelling the nitrogen cycle 406 
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eliminates this systematic bias. This new version of ORCHIDEE, ORCHIDEE-N, remains however 407 

unable to simulate the large positive NEP typical of growing forest sites. In the near future, 408 

when ORCHIDEE-FM is merged with ORCHIDEE-N, we can expect to reduce the bias in GPP and 409 

TER, and further decrease the error on NEP by assimilating age, height or biomass. 410 

Our assumption that remote sensing measurement error is independent on measured value 411 

and normally distributed is not realistic. Remote sensing measurements of biomass for example 412 

are known to carry a larger error for larger biomass values due to signal saturation (Le Toan et 413 

al., 2008). We nevertheless opted for this simplistic approach of error modelling due to the lack 414 

of quantification of these error patterns. An alternative to improving error modelling would be 415 

to use real remote sensing data where it coincides with in situ measurements of carbon fluxes, 416 

but this additional requirement would further reduce an already small dataset. 417 

The simple data assimilation framework tested in this study could easily be applied at 418 

continental scale, provided reliable biomass or height estimates are available. It would be most 419 

meaningful in temperate and boreal regions, where carbon fluxes are most impacted by 420 

management and age effects (Grant et al., 2007; Magnani et al., 2007; Nunery and Keeton, 421 

2010): most temperate forests are thinned or harvested, and large fires are the dominant 422 

source of disturbance in boreal forests. 423 

These large-scale applications are very promising: TER is the component of NEP for which 424 

existing GVM estimates are most uncertain (Mitchell et al., 2009), and it is also the flux for 425 

which simulation improvement is largest in our framework. This large improvement in TER 426 

comes from the process-based mortality and wood removals simulated by ORCHIDEE-FM. For a 427 
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test broadleaf site in northeastern France, Bellassen et al. (2010a) showed that the delay in 428 

litterfall and the wood removals were responsible for 60% and 40% of the sink over one forest 429 

rotation respectively. The combination of these two processes allows the simulation of a 430 

realistic disequilibrium in biomass and soil carbon. 431 

4.2 Scale issues in spatial heterogeneity 432 

The ability of ORCHIDEE-FM to simulate correctly the across-site gradient in “growth stages” of 433 

the global flux dataset does not yield a quantitative improvement in the simulation of woody 434 

NPP for the IFN dataset. This difference points out the limits in the notion of “growth stage”. 435 

While it applies relatively well to some characteristics such as NEP (these characteristics 436 

evolving similarly in all stands, albeit not at the same pace), other variables such as woody NPP 437 

cannot be easily explained in this light only. Forests standing on poor soils for example will 438 

never have strong woody NPP, no matter how long one waits. As illustrated in Figure 10, the 439 

large variability in woody NPP for stands of similar ages highlights the importance of other 440 

factors than growth stage: the growth stage-dependent allocation and photosynthesis 441 

efficiency simulated in ORCHIDEE-FM cannot be expected to reproduce such a wide range of 442 

observed values. 443 
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The same phenomenon explains that the spread of age deviation distributions presented in 444 

 445 

Figure 3 is larger on the positive (younger ages) than on the negative (older ages) side. The 446 

assimilation framework can go very far towards younger simulated ages in order to match a 447 

small observed biomass, but the reverse is not true for high observed biomass: the old stands 448 

of average productivity simulated by ORCHIDEE-FM cannot reach the biomass of some 449 

observed high productive stands which are only slightly younger. 450 

This large residual heterogeneity is most likely explained by species or local fertility, which 451 

could also be integrated in ORCHIDEE-FM. Model parameters in particular could be adapted to 452 



30 

 

distinguish between fast-growing and slow-growing species. The main limitation for these 453 

developments is the ability to get proxies for these factors on a large scale. Fine resolution 454 

maps of species or site productivity are even more difficult to obtain than equivalent maps of 455 

height or biomass, although they may not be completely unmanageable (Nabuurs et al., 2008). 456 

4.3 Biomass vs. height 457 

The application of our method on the global flux dataset points to biomass as a more suitable 458 

candidate than average height for assimilation in ORCHIDEE-FM. The smaller RMSE obtained for 459 

GPP and TER in the FMgh, FMlh, and FMrh simulations are indeed misleading. They result from an 460 

overestimate of stand age which activates age-related decline processes in ORCHIDEE-FM: 461 

while the previously discussed positive biases in GPP and TER are consequently reduced, they 462 

are probably not reduced for the correct reason since the RMSE in NEP is higher than for the 463 

FMgb simulation. As shown by Figure 11, the assimilation of height in ORCHIDEE-FM indeed 464 

leads to an overestimate of stand age for other plant functional types than temperate 465 

summergreen broadleaves and temperate evergreen needleleaves. This overestimate probably 466 

comes from the height-circumference allometry and the self-thinning relationship of 467 

ORCHIDEE-FM, which have only been tested rigorously for temperate summergreen 468 

broadleaves and temperate evergreen needleaves. 469 
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The IFN dataset, which is restricted to these two plant functional types, provides a different 470 

picture. The narrower and more centered distributions of age deviation for FMgh simulations 471 

(see  472 

Figure 3) point to height as a more useful variable for assimilation in ORCHIDEE-FM. Height is 473 

indeed expected to be less sensitive than biomass to varying intensities of management. 474 

These contradicting results make it difficult to draw a general and definitive conclusion on the 475 

relative merits of height vs. biomass assimilation in ORCHIDEE-FM. While height seems 476 

theoretically more promising, the allometric and self-thinning rules of ORCHIDEE-FM may not 477 

be currently generic enough to make the best use of it. 478 
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4.4 Retrieval of unmeasured variables 479 

Some variables, such as stand age or soil carbon content, are difficult to measure and therefore 480 

seldom available at a fine resolution over large areas. Ours results show that ORCHIDEE-FM is 481 

able to use biomass or height data, in addition to pedo-climatic conditions, to correctly retrieve 482 

stand age. If such data were available over large areas, this simple assimilation method could 483 

therefore produce a new set of stand age maps. The method is independent of the combination 484 

of inventory data and remote sensing of disturbances used by Pan et al. (2010) to produce age 485 

maps over north America, and the disagreements between the two would undoubtedly provide 486 

useful insights on the strengths and weaknesses of both methods. 487 

Estimates of soil carbon content could also be retrieved from ORCHIDEE-FM by assimilating 488 

simultaneously biomass and NEP. Assuming that the model simulates correctly NPP and 489 

litterfall once it has been initialised for biomass, the resulting discrepancy between measured 490 

and simulated NEP would be due to a faulty soil carbon content, which could then be corrected 491 

in the model to match the NEP measurements. 492 

5 Conclusion 493 

Large-scale information on biomass derived from remote sensing estimates would provide 494 

valuable constraints for the simulation of carbon fluxes in ORCHIDEE-FM: the RMSE of 495 

simulated NEP is decreased by up to 30% for a global flux dataset. Most importantly, this 496 

improvement results from the ability of ORCHIDEE-FM, initialized with the correct “growth 497 
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stage”, to reproduce spatial gradients in NEP, an ability that is lacking in the standard steady-498 

state equilibrium version of ORCHIDEE. 499 

At a smaller spatial scale, where climate conditions are comparable, remotely sensed 500 

information on “growth stage” does not bring a useful constraint on woody NPP, probably 501 

because of the relatively higher importance of local factors such as soil fertility and species mix. 502 

The notion of “growth stage” may also be less relevant for woody NPP than for NEP. 503 

Nevertheless, our simple assimilation framework for height or biomass correctly retrieves stand 504 

age, despite a large standard deviation. 505 

The simulated error of pseudo remote sensing estimates of biomass or height does not impact 506 

the improvement of large gross fluxes (GPP and TER). For simulated NEP however, this 507 

additional source of uncertainty increases the total error by 13.5% and 21% for P-band radar 508 

and lidar respectively. 509 

Finally, while the results of our simple assimilation framework are promising, they represent 510 

only a first assessment of the potential of large-scale data assimilation in DGVMs. New 511 

developments in ORCHIDEE (Zaehle and Friend, 2010), and more refined assimilation 512 

frameworks, including other remotely sensed variables such as leaf area index (Demarty et al., 513 

2007) or CO2 concentration (Sarrat et al., 2009), will doubtlessly optimize the use that 514 

ORCHIDEE-FM can make of remote sensing estimates of biomass and height. 515 
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Appendixes 523 

Appendix A. Subsample of the global carbon flux dataset (Luyssaert et al., 2007) used in this 524 

study (“global flux dataset”) 525 

ID Site name Latitude Longitude PFT1 ASH2

(m)

Biomass

(gC m-2)

GPP

(gC m-2 yr-1)

RECO

(gC m-2 yr-1)

NEP

(gC m-2 yr-1)

YE3 ME4 Age 

(years)

1003 Collelongo 41.75 °N 13.75 °E TeBS 19.0 9 860 1 127 591 583 1895 1998 103

1004 Prince_Albert_SSA_(SOAS) 53.75 °N 106.25 °W BoBS 20.3 1 997 1 215 1 030 178 1928 1998 70

1006 Prince_Albert_SSA_(SOJP) 53.75 °N 104.75 °W BoNE 13.0 1 997 690 638 35 1931 1999 68

1007 Thompson_NSA_(NYJP) 55.75 °N 98.25 °W BoNE 5.0 3 090 960 550 410 1972 1994 22

1012 Bayreuth/Weiden_Brunnen 50.25 °N 11.75 °E TeNE 36.0 9 267 1 303 1 334 -32 1954 1998 44

1014 Slash_pine_Florida_Mid 29.75 °N 82.25 °W TeNE 10.0 2 285 2 762 2 087 589 1987 1999 12

1015 Slash_pine_Florida_old 29.75 °N 82.25 °W TeNE 19.0 8 271 2 606 1 944 675 1973 1998 25

1089 Duke_Forest 35.75 °N 79.25 °W TeNE 14.0 5 128 1 788 1 233 497 1982 2000 18

1092 Harvard 42.75 °N 72.25 °W TeBS 25.0 9 900 1 287 1 058 202 1936 1997 61

1093 Walker_Branch 35.75 °N 84.25 °W TeBS 25.3 5 715 1 690 1 335 514 1930 1997 67

1095 Flakaliden_C 64.25 °N 19.25 °E BoNE 4.7 1 770 1 000 932 104 1960 2000 40

1096 Norunda 60.25 °N 17.25 °E BoNE 28.0 11 135 1 312 1 404 -61 1900 1999 99

1097 Hyytiala 61.75 °N 24.25 °E BoNE 15.5 5 900 1 012 782 233 1964 2000 36

1101 Willow_Creek 45.25 °N 90.25 °W BoBS 24.0 7 490 1 165 835 289 1933 1999 66

1106 Morgan_Monroe 39.25 °N 86.25 °W TeBS 26.5 8 720 1 452 1 163 279 1924 2000 76

1109 Le_Bray 44.75 °N 0.75 °W TeNE 19.0 7 008 1 833 1 451 407 1969 2000 31

1110 Balmoral 42.75 °S 172.75 °E TeNE 8.0 3 700 1 774 1 166 608 1987 1996 9

1154 Oak_ridge_liriodendron 35.75 °N 84.25 °W TeBS 30.0 6 288 na na 249 1918 2000 82

1168 Skyttorp2 60.25 °N 17.75 °E BoNE 16.0 6 063 1 232 953 360 1970 2004 34

1169 Puechabon 43.75 °N 3.75 °E TeBE 6.0 5 424 1 379 1 071 309 1942 2002 60

1170 Dooary 52.75 °N 7.25 °W TeNE 8.0 6 162 2 001 1 141 860 1989 2004 15

1178 Takayama 36.25 °N 137.25 °E TeBS 20.0 13 488 1 050 833 217 1962 1997 35

1185 Hyytiala_12 61.75 °N 24.25 °E BoNE 4.0 250 854 752 102 1991 2002 11

1246 Hyytiala_75 61.75 °N 24.25 °E BoNE 25.0 6 700 918 566 352 1927 2001 74

1328 Skyttorp3 60.25 °N 17.75 °E BoNE 18.0 7 310 na na 370 1938 2002 64

1364 Espirra 38.75 °N 8.75 °W TeBE 20.0 4 212 1 495 876 619 1991 2004 13

1378 Bartlett 44.25 °N 71.25 °W TeBS 19.0 10 730 1 053 790 263 1925 2005 80

1482 Chibougamau_EOBS 49.75 °N 74.25 °W BoNE 14.0 4 500 584 580 4 1909 2004 95

1507 Vancouver_Island_HDF00 49.75 °N 125.25 °W TeNE 1.0 2 775 435 1 041 -606 1999 2002 3

1508 Vancouver_Island_HDF88 49.75 °N 124.75 °W TeNE 8.0 5 700 1 214 1 347 -133 1988 2002 14

1509 Vancouver_Island_DF49 49.75 °N 125.25 °W TeNE 29.0 10 550 1 991 1 737 337 1949 2001 52

1. TeNE: tempereate needleleaf evergreen, TeBE: temperate broadleaf evergreen, TeBS: temperate broadleaf summergreen, BoNE: boreal 

needleleaf evergreen, BoBS: boreal broadleaf summergreen

2. Average stand height / 2. Year of establishment / 3. Measurement year  526 

 527 
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Appendix B. Wilmott performance indexes (Willmott, 1982) 528 

 529 
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Appendix C. Wilmott performance indexes for the simulation of volume increment (IFN dataset) 530 

Abbreviations for the names of performance indexes are given in Appendix B. For details on 531 

simulations names, see part 2.3.2, Appendix E and 532 

 533 

Figure 1. 534 

Woody NPP - broadleaves (gC m
-2

 yr
-1

)

Simulation obs average sim average obs sd sim sd N a b MAE RMSE RMSEs RMSEu d r2

STD 426.7 520.7 241.9 55.5 211 0.00 518.81 214.0 263.8 258.0 55.4 0.36 0.00

FM ga 468.9 523.4 280.5 41.3 86 -0.02 533.51 234.1 292.9 290.1 40.6 0.20 0.02

FM gb 426.7 534.1 241.9 38.6 211 -0.02 543.00 221.5 271.4 268.7 38.2 0.35 0.02

FM gh 426.7 530.2 241.9 37.6 211 -0.01 535.58 219.3 268.0 265.4 37.4 0.34 0.01

FM lb 426.7 536.2 241.9 37.5 211 -0.02 545.14 222.9 272.1 269.6 37.1 0.35 0.02

FM rb 426.7 533.8 241.9 39.0 211 -0.03 545.63 223.8 272.8 270.1 38.3 0.34 0.03

FM lh 426.7 530.1 241.9 38.5 211 -0.01 536.03 219.3 268.3 265.6 38.3 0.34 0.01

FM rh 426.7 531.9 241.9 38.2 211 -0.02 538.57 220.2 269.4 266.7 37.9 0.34 0.01  535 
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Woody NPP - needleleaves (gC m
-2

 yr
-1

)

Simulation obs average sim average obs sd sim sd N a b MAE RMSE RMSEs RMSEu d r2

STD 481.5 650.9 219.1 71.0 328 0.05 624.71 228.4 276.4 267.4 69.9 0.48 0.03

FM ga 483.1 617.1 193.8 70.4 172 0.05 592.82 189.1 237.7 227.3 69.5 0.46 0.02

FM gb 481.5 648.2 219.1 72.8 328 0.06 620.94 225.2 274.8 265.3 71.6 0.48 0.03

FM gh 481.5 640.5 219.1 70.8 328 0.06 613.97 220.6 269.9 260.8 69.7 0.48 0.03

FM lb 481.5 651.6 219.1 71.6 328 0.05 627.34 227.3 277.6 268.5 70.7 0.48 0.02

FM rb 481.5 649.4 219.1 72.7 328 0.06 621.86 225.0 275.4 265.9 71.5 0.48 0.03

FM lh 481.5 642.1 219.1 71.1 328 0.05 616.99 222.3 271.5 262.3 70.0 0.47 0.03

FM rh 481.5 641.8 219.1 70.6 328 0.06 615.26 220.7 270.6 261.6 69.4 0.48 0.03  536 

537 
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Appendix D. Wilmott performance indexes for the simulation of GPP, TER and NPP (screened 538 

global flux dataset) 539 

Abbreviations for the names of performance indexes are given in Appendix B. For details on 540 

simulations names, see part 2.3.2, Appendix E and 541 

 542 

Figure 1. 543 



40 

 

GPP (gC m-2 yr-1) OA SA OS SS N a b MAE RMSE RMSEs RMSEu d r2

STD 1296 1579 502 582 18 1.12 129 286 325 289 149 0.91 0.93

FM ga 1296 1562 502 593 18 1.14 87 269 315 274 154 0.92 0.93

FM gb 1296 1562 502 601 18 1.15 71 279 319 276 160 0.92 0.92

FM gh 1296 1472 502 613 18 1.15 -22 219 274 190 197 0.94 0.89

FM lb 1296 1544 502 596 18 1.13 73 269 310 258 167 0.92 0.91

FM rb 1296 1552 502 597 18 1.14 75 273 313 265 164 0.92 0.92

FM lh 1296 1475 502 619 18 1.17 -43 219 272 198 185 0.94 0.90

FM rh 1296 1475 502 620 18 1.17 -45 220 272 198 185 0.94 0.90

TER (gC m-2 yr-1) OA SA OS SS N a b MAE RMSE RMSEs RMSEu d r2

STD 1032 1493 403 569 18 1.31 142 462 520 477 207 0.76 0.86

FM ga 1032 1288 403 425 18 0.96 302 263 311 257 176 0.86 0.82

FM gb 1032 1324 403 423 18 0.96 333 292 336 292 166 0.85 0.84

FM gh 1032 1269 403 412 18 0.94 296 250 285 239 156 0.88 0.85

FM lb 1032 1331 403 443 18 0.99 310 301 354 301 187 0.84 0.81

FM rb 1032 1330 403 436 18 0.98 321 300 350 299 183 0.84 0.82

FM lh 1032 1262 403 416 18 0.95 278 241 278 231 155 0.89 0.85

FM rh 1032 1261 403 416 18 0.95 277 241 278 230 155 0.89 0.85

NEP (gC m-2 yr-1) OA SA OS SS N a b MAE RMSE RMSEs RMSEu d r2

STD 269 94 152 70 20 0.12 62 185 229 219 66 0.46 0.06

FM ga 269 282 152 176 20 0.79 69 97 129 34 125 0.82 0.47

FM gb 269 250 152 214 20 0.99 -17 110 149 19 148 0.81 0.50

FM gh 269 213 152 255 20 0.98 -49 155 210 56 202 0.70 0.34

FM lb 269 226 152 215 20 0.79 15 134 180 59 163 0.74 0.40

FM rb 269 235 152 212 20 0.84 10 127 169 47 158 0.76 0.42

FM lh 269 223 152 244 20 0.96 -34 146 194 47 189 0.73 0.37

FM rh 269 223 152 244 20 0.96 -34 146 194 47 188 0.73 0.37  544 

 545 

546 
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Appendix E. Abbreviations 547 

5.1.1.1.1.1 General terms 548 

FMM: Forest Management Module 549 

GPP: Gross Primary Productivity 550 

GVM: Global Vegetation Model 551 

IFN: French National Forest Inventory 552 

NEP: Net Ecosystem Productivity (a positive value indicates a carbon sink) 553 

NPP: Net Primary Productivity 554 

PFT: Plant Functional Type 555 

RMSE: Root Mean Square Error 556 

TER: Terrestrial Ecosystem Respiration 557 

5.1.1.1.1.2 Simulations names 558 

STD: Simulation using the standard version of ORCHIDEE, representing a forest stand at steady-559 

state equilibrium. 560 

FMga: Simulation with closest age to the in situ estimate, selected from a set of ORCHIDEE-FM 561 

simulations separated by 10-years intervals. 562 

FMgb: Simulation with closest biomass to the in situ estimate, selected from a set of ORCHIDEE-563 

FM simulations separated by 10-years intervals. 564 

FMgh: Simulation with closest average stand height to the in situ estimate, selected from a set 565 

of ORCHIDEE-FM simulations separated by 10-years intervals. 566 
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FMlb: Simulation with closest biomass to the pseudo-lidar estimate, selected from a set of 567 

ORCHIDEE-FM simulations separated by 10-years intervals. 568 

FMrb: Simulation with closest biomass to the pseudo-radar estimate, selected from a set of 569 

ORCHIDEE-FM simulations separated by 10-years intervals. 570 

FMlh: Simulation with closest average stand height to the pseudo-lidar estimate, selected from 571 

a set of ORCHIDEE-FM simulations separated by 10-years intervals. 572 

FMrh: Simulation with closest average stand height to the pseudo-radar estimate, selected from 573 

a set of ORCHIDEE-FM simulations separated by 10-years intervals.  574 

575 
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Tables 576 

Parameter Conifers Broadleaves Unit Source 

BEFi 1.1 1.2 no unit (IPCC, 2003) 

Tb 0.025 0.025 yr-1 (Bellassen et al., 2010a) 

br 0.25 0.38 no unit (Bellassen et al., 2010a) 

dc 0.5 0.5 gC gDM-1 (Bellassen et al., 2010a) 

dw 0.4*106 0.6*106 gDM m-3 (Bellassen et al., 2010a) 

 577 

Table 1. Parameter values 578 

 579 
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Name Landes Vosges

Latitude 43.875°N 48.125°N

Longitude 0.875°W 6.875°E

2001-2005 average 

temperature (°C) 14.3 9.7

2001-2005 average rainfall 

(mm yr-1) 925 971

Number of broadleaf plots 

within a 0.5° radius 78 133

Number of needleleaf plots 

within a 0.5° radius 137 191

Average volume increment 

of neighbouring broadleaf 

plots (m3 ha-1) 12.2 14.0

Average volume increment 

of neighbouring needleleaf 

plots (m3 ha-1) 19.8 22.2

Average age of neighbouring 

broadleaf plots (years) 92 97

Average age of neighbouring 

needleleaf plots (years) 42 71
 580 

Table 2. Description of the IFN plots used in this study 581 
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Remote sensing technique LiDAR (airborne) P-band RADAR (airborne) 

Average stand height   

RMSE (m) 1.66 2.34 

Number of studies 5 3 

References 

(Nelson et al., 2003; Balzter et 
al., 2007a; Balzter et al., 2007b; 

Stephens et al., 2007; 
Breidenbach et al., 2008) 

(Neeff et al., 2005; Dubois-
Fernandez et al., 2008; Hajnsek 

et al., 2009) 

Aboveground biomass   

RMSE (tC ha-1) 23.66 18.5 

Number of studies 9 6 

References 

(Means et al., 1999; Drake et al., 
2002; Lim and Treitz, 2004; 

Lefsky et al., 2005b; Watt and 
Haywood, 2006; Hyde et al., 
2007; Stephens et al., 2007; 

Boudreau et al., 2008; Lucas et 
al., 2008) 

(Neeff et al., 2005; Hyde et al., 
2007; Saatchi et al., 2007; Le 

Toan et al., 2008) 

 582 

Table 3. RMSE of LiDAR and P-band radar for height and biomass 583 
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Figure legends 584 

 585 

Figure 1. Combination of input data (italic) and models (bold) used in the simulation 586 

procedure 587 

A typical “spinup” is used to generate intial conditions for both ORCHIDEE and 588 

ORCHIDEE-FM simulations. Out of the fifteen ORCHIDEE-FM simulations, seven are 589 

selected for each site according to their proximity to in situ or “pseudo remote sensing” 590 

measurements, and are given a specific name (FMga, FMgb, …). 591 

 592 
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 593 

Figure 2. Age-related trend in woody NPP – IFN dataset 594 

The black solid line and grey area respectively give the average and standard deviation 595 

of measured woody NPP in National Forest Inventory (NFI) broadleaf (a and b) or 596 

needleleaf (c and d) plots within a 50 km radius of the selected “Landes” (a and c) or 597 

“Vosges” (b and d) grid cell. Measurements are pooled per age class, and the resulting 598 

statistics per age class are smoothed using a “loess” algorithm (only age classes with 5 599 

or more plots are retained). The large-dashed red curve and the small-dashed blue 600 

curve respectively give the wood increment in the STD and FMga simulations.  601 

 602 
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 603 

Figure 3. Age retrieval by assimilating biomass or height in ORCHIDEE-FM simulations – 604 

IFN dataset 605 

The difference between the age retrieved by biomass (FMgb simulation, a and c) or 606 

height (FMgh simulation, b and d) assimilation in ORCHIDEE-FM and the in situ estimates 607 

(IFN dataset) is presented as a frequency distribution for the 201 broadleaf plots (a and 608 

b) and the 328 needleleaf plots (c and d) of the combined “Landes” and “Vosges” 609 

locations. A negative value indicates that the simulated age is higher than the 610 

measurement. 611 
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 612 

 613 

Figure 4. Improvement in simulated woody NPP – IFN dataset 614 

The histograms compare two performance indexes for seven simulations: the RMSE (a) 615 

and the slope of the linear regression between data and simulation (b). Four groups of 616 

simulations are distinguished: STD (brick red) using the standard version of ORCHIDEE, 617 

FMga (full blue) assimilating age in ORCHIDEE-FM, FMgb, FMlb and FMrb (vertical and 618 
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0 

horizontal dashed purple) assimilating biomass in ORCHIDEE-FM, and FMgh, FMlh and 619 

FMrh (diagonal dashed green) assimilating height in ORCHIDEE-FM. For a full explanation 620 

of simulations names, see part 2.3.2, Appendix E and 621 

 622 

Figure 1. 623 

 624 
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 625 

Figure 5. Simulation of NEP with age assimilation – global flux dataset 626 

The values of the STD simulation are shown in red, while those of the FMga simulation 627 

are shown in blue. The red and blue lines represent the respective linear trends of these 628 

plot series. A different font is used for each plant functional type, with the following 629 

code: TeNE for tempereate needleleaf evergreen, TeBE for temperate broadleaf 630 

evergreen, TeBS for temperate broadleaf summergreen, BoNE for boreal needleleaf 631 

evergreen, and BoBS for boreal broadleaf summergreen. 632 

 633 
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 634 

Figure 6. Difference in simulated TER between forest regrowth and reforestation 635 

In the “Forest spinup” case, the intial conditions of the simulation correspond to the 636 

clear-cut of a mature forest whereas in the “Cropland spinup” case, the initial conditions 637 

of the simulation correspond to a cropland. 638 

 639 
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 640 

Figure 7. Simulation of GPP, TER and NEP with age assimilation – screened dataset 641 

The values of the STD simulation are shown in red, while those of the FMga simulation 642 

are shown in blue. The red and blue lines represent the respective linear trends of these 643 

plot series. A different font is used for each plant functional type, with the following 644 

code: TeNE for tempereate needleleaf evergreen, TeBE for temperate broadleaf 645 

evergreen, TeBS for temperate broadleaf summergreen, BoNE for boreal needleleaf 646 

evergreen, and BoBS for boreal broadleaf summergreen. 647 

 648 
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 649 

Figure 8. Improvement in simulated GPP, TER and NEP – screened dataset 650 

The histograms compare two performance indexes for seven simulations: the RMSE (a) 651 

and the slope of the linear regression between data and simulation (b). Four groups of 652 

simulations are distinguished: STD (brick red) using the standard version of ORCHIDEE, 653 

FMga (full blue) assimilating age in ORCHIDEE-FM, FMgb, FMlb and FMrb (vertical and 654 

horizontal dashed purple) assimilating biomass in ORCHIDEE-FM, and FMgh, FMlh and 655 

FMrh (diagonal dashed green) assimilating height in ORCHIDEE-FM. For a full explanation 656 
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of simulations names, see part 2.3.2, Appendix E and 657 

 658 

Figure 1. 659 

 660 

 661 

Figure 9. Maps of simulated NEP assimilated data-derived maps of height and volume 662 

The average NEP in the 1990s is obtained from a single simulation of ORCHIDEE-FM for 663 

the 40-50 age class (a), by selecting for each grid cell the ORCHIDEE-FM age-class with 664 
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closest biomass to the IFN-derived map (b), or by selecting for each grid cell the 665 

ORCHIDEE-FM age-class with closest height to the IFN-derived map (c). 666 

 667 

 668 

Figure 10. Evolution of woody NPP with age for broadleaves in the IFN dataset 669 

For a given age class, the whisker plot represents successively the mean, 1st and 3rd 670 

quartile, and extreme values within a distance of twice the interquartile from the box. 671 

 672 
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 673 

Figure 11. Age retrieval by assimilating biomass (a) or height (b) in ORCHIDEE-FM 674 

simulations – global flux dataset 675 

The difference between the age retrieved by biomass (FMgb simulation, a) or height 676 

(FMgh simulation, b) assimilation in ORCHIDEE-FM and the in situ estimates (global flux 677 

dataset) is presented as a frequency distribution for the 31 sites. A negative value 678 

indicates that the simulated age is higher than the measurement. 679 
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