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Recognition of linear-slender context-free languages by real time one-way cellular automata

A linear-slender context-free language is a context-free language whose number of words of length n is linear in n. Its structure has been finely characterized in a work of Ilie, Rozenberg and Salomaa. Thanks to this characterization, we show that every linear-slender context-free language is recognizable by a real time one-way cellular automaton.

Introduction

One-way cellular automaton (OCA) is one of the simplest parallel recognizing devices. Since its introduction by Dyer [START_REF] Dyer | One-way bounded cellular automata[END_REF], it has been the subject of much interest. Numerous studies have been directed towards the real time OCA, the class of languages decidable in minimal time, and have already provided a good understanding of its abilities and limitations.

In particular, it is known that the real time OCA and the family of context free languages are incomparable [START_REF] Terrier | On real time one-way cellular array[END_REF]. This calls into question which languages they have in common. That is not the case for deterministic CFL: there exits a LL(1) CFL which is not a real time OCA one [START_REF] Okhotin | Comparing linear conjunctive languages to subfamilies of the context-free languages[END_REF]. On the other hand, linear CFL and visible pushdown languages have been proved to be real time OCA ones [START_REF] Čulík | Systolic trellis automata. I, II[END_REF][START_REF] Okhotin | Comparing linear conjunctive languages to subfamilies of the context-free languages[END_REF].

With the aim to identify more common languages, we will take into consideration the counting function that measures the number of words of length n in the language. Noticing that all CFL known to be not real time OCA have their counting function of exponential order, the best is to look at sparse languages. These are the poly-slender CFL whose counting functions are polynomial in n and, more specifically, the linear-slender CFL whose counting functions are linear. The purpose here is to show that linear-slender CFL are real time OCA ones.

The present work essentially relies on a paper by Ilie, Rozenberg and Salomaa which presents a characterization of poly-slender CFL in terms of Dyck loops [START_REF] Ilie | A characterization of polyslender context-free languages[END_REF]. Čulík's OCA which recognizes in real time the language {a n b n+m a m : n, m ≥ 0} and Okhotin's characterization of real time OCA by linear conjunctive grammars will come also into play [START_REF] Čulík | Variations of the firing squad problem and applications[END_REF][START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF].

Preliminary

Basic notions

We first recall some basic definitions and notations.

For any language L, the number of words in L of length n is denoted by n (L). For an integer k,

a language L is k-poly-slender if n (L) is in O(n k ). A language L is poly-slender if L is k-poly-slender for some k. A language L is linear-slender if n (L) is in O(n).
A language L is bounded if there exists a finite number of words

u 1 , u 2 , • • • , u k such that L ⊆ u * 1 u * 2 • • • u * k .
For any word w ∈ Σ + , the primitive root of w is denoted by ρ(w) and corresponds to the minimal word such that w ∈ (ρ(w)) * .

Poly-slender context free languages

We review the definitions and results presented in [START_REF] Ilie | A characterization of polyslender context-free languages[END_REF] that will be fundamental ingredients throughout this paper.

Definition 1 (Dyck loop). Let z = z 1 z 2 • • • z 2k be a Dyck word on {[, ]} of length 2k
. Let l i and r i denote the respective positions of the i-th opening parenthesis [ and its corresponding closing one ] in z. Given some words y 0 ,

• • • , y 2k , x 1 , • • • , x 2k , consider the map h n1,••• ,n k (z 1 z 2 • • • z 2k ) = y 0 x e1 1 y 1 x e2 2 y 2 • • • x e 2k
2k y 2k where each pair of parentheses shares the same exponent: The structure of poly-slender CFL finely corresponds to Dyck loops: Theorem 1. For any k ≥ 0, a context-free language is k-poly-slender if and only if it is a finite union of (k + 1)-Dyck loops.

e li = e ri = n i . A k-Dyck loop is any set D = {h n1,••• ,n k (z 1 z 2 • • • z 2k ) : n i ≥ 0}
The following notion captures whether the position of some word w can be distinguished or not.

Definition 2 (Link). Let u, v ∈ Σ + and w ∈ Σ * . The word w links u with v (link(u, w, v)) if and only if ρ(u)w = wρ(v). That means ρ(u) = pq, ρ(v) = qp and w = (pq) * p for some p, q. And so u m wv n is a prefix of (pq) * Example 3. With x i and y i as defined in Example 1, link(x 4 , y 4 , x 5 ) holds but link(x i , y i , x i+1 ) does not hold for i = 1, 2, 3, 5. With x i and y i as defined in Example 2, link(x 2 , y 2 , x 3 ) holds but neither link(x 1 , y 1 , x 2 ) nor link(x 3 , y 3 , x 4 ) holds.

We will make great use of the following lemma: Lemma 1. Consider some words x i ∈ Σ + and y i ∈ Σ * , and some non-negative

integers n i , m i . Denote w = y 0 x n1 1 y 1 x n2 2 y 2 • • • x nr r y r , w = y 0 x m1 1 y 1 x m2 2 y 2 • • •
x mr r y r and assume that link(x i , y i , x i+1 ) holds for no i. Then there is a constant N 0 , depending only on the lengths of the words x i and y i , such that, if n i , m i are larger than N 0 and there is i with n i = m i , then w = w .

For a general overview, we recall the result of Latteux and Thierrin [START_REF] Latteux | On bounded context-free languages[END_REF] and the one of Ginsburg and Spanier [6]: Theorem 2. A context-free language is poly-slender if and only if it is bounded. Theorem 3. The family of bounded languages is the smallest family which contains all finite languages and is closed under the following operations:

1. union 2. catenation 3. (x, y) L = n≥0
x n Ly n for any x, y words

Real time one-way cellular automaton

A one-way cellular automaton is a one-dimensional array of finite automata (the cells) indexed by N. The cells evolve synchronously at discrete time steps. Each cell takes one value from a finite set of states Q. At each step, the evolution of a cell is defined by its own state and the state of its right neighbor according to a transition function δ. Formally, denoting c, t the state of the cell c at time t, c, t

+ 1 = δ ( c, t , c + 1, t ).
In order that an OCA acts as a language recognizer, we specify two subsets of Q: the alphabet Σ of input symbols and the set of accepting states Q accept . The input mode is parallel. At initial time 0, the i-th bit of the input word w ∈ Σ * is fed to the cell i: i, 0 = w i . An OCA is said to accept (resp. reject) a word w in real time, if on input w the cell 0 enters an accepting (resp. non-accepting) state at time |w| -1. It corresponds to the minimal time for the cell 0 to know the whole input. A language is a real time OCA language if there exists some OCA (Q, Σ, Q accept , δ) which accepts in real time exactly the words w ∈ L.

The computation of an OCA is usually represented by a time-space diagram (see Fig 1). The t-row corresponds to the cellular array at time t. Only those sites involved in the real time computation are depicted. As a matter of fact, there are two topologically equivalent ways to display the time-space diagram. We will use here the bilateral symmetric layout, i.e., the right one. The real time OCA class is robust: introducing the notion of conjunctive grammar, Okhotin has exhibited a characterization of real time OCA in terms of a generating device [START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF]. Let us recall its statement, it will be one of the main ingredients in this paper. An alternating grammar is a grammar enhanced with a conjunctive operation symbolized by &. Denoting N the set of variables and Σ the set of terminals, each production is of the form

A → α 1 & • • • & α k where A ∈ N and α 1 , • • • , α k ∈ (A ∪ Σ) *
. Such a production denotes that the language generated by A is the intersection of the languages generated by α 1 , • • • , α k . Analogously to linear context free grammars, a linear conjunctive grammar is defined as an alternating grammar with the restriction that for every production

A → α 1 & • • • & α k ,
no α i has more than one instance of a variable. An algorithm describing how to recognize any linear CFL on a real time OCA was already known [START_REF] Čulík | Systolic trellis automata. I, II[END_REF]. More radically, to extend linear context free grammars with the conjunctive operation & leads to a complete characterization of real time OCA [START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF]: Theorem 4. A language L is recognized in real time by an OCA if and only if L is generated by a linear conjunctive grammar.

Let us recall the conversion from a real time OCA to a linear conjunctive grammar that we will need later. See Fig. 2 to get some insight about the translation.

Lemma 2. Given any language L recognizable by some real time OCA A = (Q, Σ, Q accept , δ), L is generated by the linear conjunctive grammar G = (Σ, {S} ∪ {A q : q ∈ Q}, S, R) where R contains the following rules:

S → A q for all q ∈ Q accept A a → a for all a ∈ Σ A δ(g,d) → A g b & cA d for all g, d ∈ Q and all b, c ∈ Σ
At last, let us give some examples and properties of real time OCA to illustrate their abilities and limits. The Dyck language, the linear-slender CFL {a n b n+m a m : n, m ≥ 0}, the inherently exponentially ambiguous CFL L * with L = {a i b j c k : i = j or j = k} [START_REF] Naji | Ambiguity of context-free languages as a function of the word length[END_REF], the non CFL languages {a n b n c n : n ≥ 0} and {a n b 2 n : n ≥ 0} with a non semilinear Parikh image, are all real time OCA languages. In addition, real time OCA languages include all linear CFL and visible δ(g, d)

g d c • • • w • • • b cw ∈ LG(Ag) wb ∈ LG(A d ) cwb ∈ LG(A δ(g,d) ) Fig. 2. The OCA's transition δ(g, d) is converted into the rule A δ(g,d) → Agb & cA d
pushdown languages [START_REF] Čulík | Systolic trellis automata. I, II[END_REF][START_REF] Okhotin | Comparing linear conjunctive languages to subfamilies of the context-free languages[END_REF]. On the other hand, several languages are known not to be real time OCA: all non regular languages over a one letter alphabet, the inherently ambiguous CFL L 1 L 1 square of the linear CFL L 1 = {1 k 0u10 k : k > 0, u ∈ {0, 1} * }, the language {uvu : u, v ∈ {0, 1} * , |u| > 1}, the deterministic CFL (to be more precise: [START_REF] Terrier | On real time one-way cellular array[END_REF][START_REF] Terrier | Language not recognizable in real time by one-way cellular automata[END_REF][START_REF] Okhotin | Comparing linear conjunctive languages to subfamilies of the context-free languages[END_REF]. Further, the real time OCA class is closed under boolean operations, reverse, operation (the one defined in Theorem 3), left and right concatenation with regular languages. The proofs are folklore. A contrario, the real time OCA class is not closed under morphism, concatenation, Kleene star and cycle [START_REF] Čulík | Systolic trellis automata: Stability, decidability and complexity[END_REF][START_REF] Terrier | On real time one-way cellular array[END_REF][START_REF] Terrier | Closure properties of cellular automata[END_REF].

LL(1) language) {c m a l0 ba l1 b • • • a lm b • • • a lz bd n : m, n, l i ≥ 0, z ≥ 1, l m = n} [1,

Poly-slender context free languages and real time one-way cellular automata

The question behind this paper is whether the poly-slender CFL are real time OCA languages. According to Theorem 3, the poly-slender CFL are the smallest family which contains all finite languages and is closed under union, concatenation and operation. Of course, real time OCA languages include all finite languages and are closed under union and operation. This is easy to prove using the grammar characterization of real time OCA. The problematic point is concatenation: can we assert that the concatenation of two Dyck loops is a real time OCA language? We do not answer this question but in the simple case: 1-Dyck loops. Precisely we will show the following result:

Theorem 5. Linear-slender context-free languages are recognizable in real time by one-way cellular automata.

The rest of the paper will be devoted to the proof of this theorem. Concretely we have to show that 2-Dyck loops are recognized in real time by OCA.

It remains to examine the most technical case where y 2 links x 2 with x 3 but link(x i , y i , x i+1 ) does not hold for i = 1 and i = 3. As y 2 links x 2 with x 3 there exists some p, q and α, β, γ such that x 2 = (pq) α , x 3 = (qp) β and y 2 = (pq) γ p. Then x n1 1 y 1 x n2 2 y 2 x n3 3 y 3 x n4 4 can be rewritten as x n1 1 y 1 (pq) αn1+βn3+γ py 3 x n3 4 . Setting z 1 = x 1 , z 2 = y 1 , z 3 = pq, z 4 = py 3 , z 5 = x 4 , such 2-Dyck loops can be reshaped into z n1 1 z 2 z αn1+βn3+γ 3 z 4 z n3 5 with the properties that z 2 does not link z 1 with z 3 and, readily verifiable, z 4 does not link z 3 with z 5 . So our task is to show that {z n 1 z 2 z αn+βm+γ 3 z 4 z m 5 : n, m ≥ 0} is a real time OCA language. It will be done in two steps:

1. Given a five letters alphabet A = {a 1 , • • • , a 5 }, whatever α, β ≥ 1 and γ ≥ 0 are, we will present a real time OCA which recognizes the language L α,β,γ = {a n 1 a 2 a αn+βm+γ 3 a 4 a m 5 : n, m ≥ 0}. 2. For any homomorphism h on A such that neither link(h(a 1 ), h(a 2 ), h(a 3 ))

nor link(h(a 3 ), h(a 4 ), h(a 5 )) holds, we will verify that h(L α,β,γ ) is a real time OCA language.

Proposition 1. The language L α,β,γ = {a n 1 a 2 a αn+βm+γ 3 a 4 a m 5 : n, m > 0}, where the symbols a 1 , • • • , a 5 are distinct, is recognizable in real time by an OCA.

Proof. The main ingredient is Čulík's OCA which recognizes in real time the language {a n b n+m a m : n, m ≥ 0} [START_REF] Čulík | Variations of the firing squad problem and applications[END_REF]. His construction makes ingenious use of a firing squad synchronization. Let us begin by recalling the process (see Fig. 3). For convenience, we identify the sites of the OCA with integer coordinates (x, y) where x + y is even. In this way, the input symbols are placed at positions (2x, 0). The unique symbol a 2 is chosen to be at the origin (0, 0) and, when the input is of shape a + 1 a 2 a j 3 a 4 a + 5 , the unique symbol a 4 is at (2j + 2, 0). The process is set up using a firing squad synchronization with two generals G g and G d located according to the unique symbols a 2 and a 4 . Precisely, the left general G g is at [START_REF] Čulík | Systolic trellis automata. I, II[END_REF][START_REF] Dyer | One-way bounded cellular automata[END_REF] and the right general G d at (2j -1, 5). Thus the synchronization occurs at points (1 + 2k, 1 + 2j) for all k with 0 < k < j. We check that the k-th firing points (1 + 2k, 1 + 2j) corresponds to the output of the input subword which begins at (2(k -j), 0) and ends at (2(1 + j + k), 0), namely the subword a j-k 1 a 2 a j 3 a 4 a k 5 . Next, Čulík showed that the construction can be adapted to recognize the languages {a i b j a k : i, k ≥ 0, mj + c = i + k} for all m ≥ 1, c ≥ 0. Actually, the same approach works in these more general settings: it exists a real time OCA deciding the language L α,β,γ = {a i 1 a 2 a j 3 a 4 a k 5 : i, j, k ∈ N, j = αi + βk + γ} for every non-negative rational numbers α, β, γ. Let us outline the modified construction. Be warned that we will use rational coordinates but the technique to revert to an OCA diagram is standard. Firstly observe that we may reduce the range of the synchronization in locating the two generals later: with the left general G g at (3 + γ, 5 + γ) and the right general G d at (2j -1 -γ, 5 + γ), the set of firing points becomes {(1 + 2k + γ, 1 + 2j -γ) : k ∈ N, 0 < k < j -γ}. We explain now the construction in terms of geometric transformations. It will be achieved by the composition of two directional scalings (see Fig. 4). Initiated from the unique symbol a 2 , the first transformation starts at point (0, 0) and applies on its cone of consequences {(c, t) : |c| ≤ t}, i.e., the future light cone of (0, 0) which encompasses the set of points impacted by (0, 0). It leaves the line t = c stable and scales by the factor 1/α in the up-left to downright direction according to the map M g = (1+α)/(2α) (α-1)/(2α) (α-1)/(2α) (1+α)/(2α) . Observe that the transformation is workable. Inside the cone, the neighborhood constraints are satisfied. The right side of the cone is stable. And the computation on the subword a + 1 occurring below the left side can easily be scaled. The second transformation is symmetric. Initiated from the unique symbol a 4 , it starts at point (2j + 2, 0) and applies on its cone of consequences {(c, t) : |c -2j -2| ≤ t}. It leaves the line t + c = 2j + 2 stable and scales by the factor 1/β in the up-right to down-left direction according to the map M d = (1+β)/(2β) (1-β)/(2β)

(1-β)/(2β) (1+β)/(2β) . Now, the composition of these two scalings applies inside the cone of consequences of (j +1, j +1): {c, t) : |c-j -1| ≤ t-j -1}, intersection of the two cones issued from a 2 and a 4 . See Fig. 5. It corresponds to the affine transformation with origin (j + 1, j + 1) and matrix M = M g × M d = (α+β)/(2αβ) (α-β)/(2αβ) (α-β)/(2αβ) (α+β)/(2αβ) . Thus the firing points {(1+2k +γ, 1+2j -γ) : k ∈ N, 0 < k < j -γ} being inside the cone of (j + 1, j + 1) are mapped to the points {(1 + j -(j -k -γ)/α + k/β, 1 + j + (j -k -γ)/α + k/β) : k ∈ N, 0 < k < j -γ}. Among these points, some of them match OCA's sites providing k/β and (j -k -γ)/α are integers. Moreover such a point, with (j -k -γ)/α, k/β ∈ N, corresponds to the output of the input subword that begins at (2(j -k -γ)/α, 0) and ends at (2j + 2 + 2k/β, 0), i.e., the subword a n 1 a 2 a j 3 a 4 a m 5 with n = (j -k -γ)/α, m = k/β. To conclude just note that αn + βm + γ = j. Proposition 2. For any homomorphism h on A such that neither link(h(a 1 ), h(a 2 ), h(a 3 )) nor link(h(a 3 ), h(a 4 ), h(a 5 )) holds, h(L α,β,γ ) is a real time OCA language.

  for some underlying Dyck word z 1 z 2 • • • z 2k and words x i , y i . Example 1. {ab n1 a(ba) n2+1 a n2+1 (ba) n1+n3+2 b n3 : n 1 , n 2 , n 3 ≥ 0} is a 3-Dyck loop for the underlying Dyck word [[]][] and words y 0 = a, x 1 = b, y 1 = aba, x 2 = ba, y 2 = a, x 3 = a, y 3 = ε, x 4 = ba, y 4 = bab, x 5 = ab, y 5 = a, x 6 = b, y 6 = ε. Example 2. {a n1 b n1+n2 a n2 : n 1 , n 2 ≥ 0} is a 2-Dyck loop for the underlying Dyck word [][] and words x 1 = x 4 = a, x 2 = x 3 = b, y 0 = y 1 = y 2 = y 4 = ε.
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 11 Fig. 1. Time-space diagram of a real time OCA
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 15 Fig. 5. Composition of two scalings

As an introduction, we may observe that 1-Dyck loops are real time OCA languages. Indeed a 1-Dyck loop corresponds to a set D = {y 0 x n 1 y 1 x n 2 y 2 : n ∈ N} for some words y 0 , x 1 , y 1 , x 2 , y 2 . It is a linear CFL and so it is a real time OCA language. As a consequence, all constant-slender languages are real time OCA languages.

Let us now consider 2-Dyck loops. According to whether the underlying Dyck word is [[]] or [][], they are of shape {y 0 x n1 1 y 1 x n2 2 y 2 x n2 3 y 3 x n1 4 y 4 : n 1 , n 2 ≥ 0} or {y 0 x n1 1 y 1 x n1 2 y 2 x n2 3 y 3 x n2 4 y 4 : n 1 , n 2 ≥ 0} A first simplification is to assume that the two ends y 0 and y 4 are empty knowing that if L is a real time OCA language then so is {y 0 }L{y 4 } whatever the words y 0 and y 4 are. We will suppose also that the words x i are non-empty, the degenerate cases being easy to handle.

The underlying Dyck word is [[]].

That is the simple case. The corresponding Dyck loop {x n1 1 y 1 x n2 2 y 2 x n2 3 y 3 x n1 4 : n 1 , n 2 ≥ 0} is clearly a linear CFL and so it is real time OCA recognizable. Here it is basically the closure under the operation which is involved.

The underlying Dyck word is [][].

Now it is the closure under concatenation of 1-Dyck loops which is involved.

Case 1. link(x i , y i , x i+1 ) holds for no i = 1, 2, 3

Let N 0 be a constant as defined in Lemma 1. The Dyck loop can be divided into three subsets D 1 , D 2 and D 3 , where

: n ∈ N} is a finite union of linear CFL's and thus is alinear CFL. The subset D 2 is as well a linear CFL. Further, Lemma 1 ensures that D 3 can be specified as the intersection of two linear CFL's :

The case where y 1 links x 1 with x 2 (or in a symmetric way y 3 links x 3 with x 4 ) does not present any difficulty. By Definition 2, y 1 links x 1 with x 2 if ρ(x 1 ) = pq, ρ(x 2 ) = qp and y 1 = (pq) γ p for some words p, q and integer γ.

1 y 1 x n2 2 y 2 can be rewritten as (pq) (α+β)n1+γ py 2 and thus specifies a regular language. Moreover x n3 3 y 3 x n4 4 = x n3 3 y 3 x n3 4 corresponds to a linear CFL. Their concatenation is linear CFL and so real time recognizable by an OCA.

Proof. One has to be careful because real time OCA is not closed under morphism: each recursively enumerable language can be written as the image of a real time OCA language by a morphism [START_REF] Čulík | Systolic trellis automata: Stability, decidability and complexity[END_REF]. But here we play with the image of languages with very simple structure.

First observe that h({a n 1 a 2 a αn+βm+γ 3 a 4 a m 5 : n < N 0 or m < N 0 }) is a linear CFL, so to show that h({a n 1 a 2 a αn+βm+γ 3 a 4 a m 5 : n, m ≥ N 0 }) is a real time OCA language will suffice. According to Proposition 1, there exists a real time OCA (Q, A, Q accept , δ) which recognizes the language L = {a n 1 a 2 a αn+βm+γ 3 a 4 a m 5 : n, m ≥ N 0 }. Following Okhotin [START_REF] Okhotin | On the equivalence of linear conjunctive grammars and trellis automata[END_REF], L is defined by the linear conjunctive grammar G = (A, {S} ∪ {A q : q ∈ Q}, S, R) where R contains the following rules:

Now let us make explicit, in the grammar rules, the bounded feature of the language. All words are of shape a + 1 a 2 a + 3 a 4 a + 5 . We denote by Follow(i) the set of j such that a j follows immediately a i in the expression a + 1 a 2 a + 3 a 4 a + 5 : r,j) for all g, d ∈ Q and all i, j, r, s with 1 ≤ i ≤ r ≤ s ≤ j ≤ 5, r ∈ Follow(i), j ∈ Follow(s)

To gain a better understanding of the last derivation rule, see Fig. 6, it depicts the corresponding OCA transition. With such refinements, we get that L G (A q , i, j) is the subset of L G (A q ) whose words begin with a i , ends with a j and which are factors of a + 1 a 2 a + 3 a 4 a + 5 .

In addition, to meet later requirements, we replace all rules (A ai , i, i) → a i with the rules (A δ(ai

1 a 2 a N0 3 a 4 a N0 5 . It does not alter the expressiveness of the grammar.

Finally, in replacing each symbol a i with its image h(a i ), G is rewritten to H = (Σ, {S} ∪ {(A q , i, j) : q ∈ Q, 1 ≤ i ≤ j ≤ 5}, S, R ) where R contains the following rules:

) for all g, d ∈ Q and all i, j, r, s with 1 ≤ i ≤ r ≤ s ≤ j ≤ 5, r ∈ Follow(i), j ∈ Follow(s)

Clearly, h(L G (S)) ⊆ L H (S). Let us ensure that they are equal and, more specifically, that L H (A, i, j) ⊆ h(L G (A, i, j)) for every variable (A, i, j). The proof is done by induction on the height of the parse trees. The inductive assumption is that all words generated within H by a tree of height h and root node (A, i, j) are images by h of words generated within G by a tree of height h and root node (A, i, j).

The base case. The trees of height 1 within H display the derivations

The inductive step. We focus on the trees with root node (A q , 1, 5) and omit the ones with root (A q , i, j) when i > 1 or j < 5 that are easier to handle. Given any tree T within H of height h + 1 > 1 and root (A q , 1, 5). The root node expands into two subtrees of height at most h according to some rule (A q , 1, 5) → (A g , 1, s)h(a 5 ) & h(a 1 )(A d , r, 5) where δ(g, d) = q, s is 4 or 5 and r is 1 or 2. By assumption, (A g , 1, s) produces the image by h of a word a n1 1 a 2 a n2 3 a 4 a n3