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. When algebraic tails lead to acceleration despite the Allee effect, we also give an accurate estimate of the position of the level sets.

Introduction

In this paper we are concerned with the spreading properties of u(t, x) the solution of the monostable reaction-diffusion equation

∂ t u = ∂ xx u + f (u), t > 0, x ∈ R, (1) 
when the initial data is front-like and has a heavy tail. When the nonlinearity f is of the Fisher-KPP type, Hamel and Roques [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] proved that such solutions spread by accelerating and precisely estimated the position of the level sets of u(t, •) as t → ∞, revealing that they are propagating exponentially fast. The goal of the present paper is to introduce a weak Allee effect, by letting f (0) = 0, and study the balance between such a slowing effect and the acceleration that heavy tails tend to induce. We prove that, for data with heavy tails but lighter than algebraic, acceleration is cancelled by any weak Allee effect (even if very small).

For algebraic tails, we prove the exact separation between "no acceleration and acceleration".

In the latter case, we estimate the position of the level sets of u(t, •) as t → ∞, revealing that they are propagating polynomially fast.

Heavy tails in the Fisher-KPP context. In some population dynamics models, a common assumption is that the growth is only slowed down by the intra-specific competition, so that the growth per capita is maximal at small densities. This leads to consider the reaction diffusion equation ( 1) -where the quantity u stands for a normalized population densitywith nonlinearities f of the Fisher-KPP type, namely f (0) = f (1) = 0, and 0 < f (s) ≤ f (0)s, ∀s ∈ (0, 1).

The simplest example f (s) = s(1 -s) was first introduced by Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky and Piskunov [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] to model the spreading of advantageous genetic features in a population.

In such situations, it is well known that the way the front like initial data -in the sense of Assumption 2.1-approaches zero at +∞ is of dramatic importance on the propagation, that is the invasion for large times of the unstable steady state u ≡ 0 by the stable steady state u ≡ 1. To describe such phenomenon, one can use the notion of spreading speed (if it exists): for a given front like initial data, we say that c = c(u 0 ) ∈ R is the spreading speed of the solution u(t, x) of (1) if

min x≤vt u(t, x) → 1 as t → ∞ if v < c, max x≥vt u(t, x) → 0 as t → ∞ if v > c.
For initial data with a exponentially bounded tail (or light tail) at +∞, there is a spreading speed c ≥ c * := 2 f (0) which is selected by the rate of decay of the tail. More precisely,

if u 0 (x) = O(e - √ f (0)x ) as x → +∞ (including left compactly supported initial data) then c = c * = 2 f (0), whereas if u 0 (x) decays like e -λx , 0 < λ < f (0), then c = λ + f (0) λ > c * .
There is a large literature on such results and improvements. Let us mention among others the works [START_REF] Fisher | The wave of advance of advantageous genes[END_REF], [START_REF] Kolmogorov | Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], [START_REF] Mckean | Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov[END_REF], [START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF], [START_REF] Kametaka | On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type[END_REF], [START_REF] Uchiyama | The behavior of solutions of some nonlinear diffusion equations for large time[END_REF], [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF], [START_REF] Kiselev | Enhancement of the traveling front speeds in reactiondiffusion equations with advection[END_REF], [START_REF] Berestycki | The speed of propagation for KPP type problems. I. Periodic framework[END_REF][START_REF]The speed of propagation for KPP type problems. II. General domains[END_REF], [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF], [START_REF] Hamel | Spreading speeds for some reaction-diffusion equations with general initial conditions[END_REF] and the references therein. More recently, the authors in [START_REF] Hamel | Spreading properties and complex dynamics for monostable reaction-diffusion equations[END_REF] considered the case when the initial data is trapped between two exponentially decreasing tails, revealing further properties which enforce to reconsider the notion of spreading speed.

On the other hand, Hamel and Roques [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] recently considered the case of initial data with heavy tail (or not exponentially bounded), namely

lim x→+∞ u 0 (x)e εx = 0, ∀ε > 0.
Typical examples are algebraic tails but also "lighter heavy tails", see [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] or [START_REF] Garnier | Accelerating solutions in integro-differential equations[END_REF], and "very heavy tails", see [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF]. In this context, it is then proved in [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] that, for any λ ∈ (0, 1), the λ level set of u(t, •) travel infinitely fast as t → ∞, thus revealing an acceleration phenomenon (which in particular prevents the existence of a spreading speed). Also, the location of these level sets is estimated in terms of the heavy tail of the initial data.

Related results exist for the integro-differential equation of the KPP type

∂ t u = J * u -u + f (u), (2) 
where the kernel J allows to take into account rare long-distance dispersal events. Here, the initial data is typically compactly supported and this is the tail of the dispersion kernel J that determines how fast is the invasion. If the kernel is exponentially bounded, then propagation occurs at a constant speed, as can be seen in [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF], [START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: the bistable and ignition case[END_REF], [START_REF] Coville | On a non-local equation arising in population dynamics[END_REF] among others.

More recently, Garnier [START_REF] Garnier | Accelerating solutions in integro-differential equations[END_REF] proved an acceleration phenomenon for kernels which are not exponentially bounded, so that ( 2) is an accurate model to explain the Reid's paradox of rapid plant migration (see [START_REF] Garnier | Accelerating solutions in integro-differential equations[END_REF] for references on this issue).

To conclude on acceleration phenomena in Fisher-KPP type equations, let us mention the case when the Laplacian is replaced by the generator of a Feller semigroup, a typical example being

∂ t u = -(-∂ xx ) α u + f (u), 0 < α < 1, (3) 
where -(-∂ xx ) α stands for the Fractional Laplacian, whose symbol is |ξ| 2α . In this context, it was proved by Cabré and Roquejoffre [START_REF] Cabré | The influence of fractional diffusion in Fisher-KPP equations[END_REF] that, for a compactly supported initial data, acceleration always occurs, due to the algebraic tails of the Fractional Laplacian.

Heavy tails vs. Allee effect. In population dynamics, due for instance to the difficulty to find mates or to the lack of genetic diversity at low density, the KPP assumption is unrealistic in some situations. In other words, the growth per capita is no longer maximal at small densities, which is referred to as an Allee effect.

Remark 1.1. In the sequel, by Allee effect, we always mean weak Allee effect. To take into account a strong Allee effect, for which the growth of the population is negative at small densities, the common nonlinearity is of the bistable type. In such a framework, heavy tails typically do not lead to acceleration [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF], [START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF], [START_REF] Gui | Traveling wave solutions of Allen-Cahn equation with a fractional laplacian[END_REF], [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocaldiffusion[END_REF].

In this Allee effect context, if f (0) > 0 the situation -even if more complicated-is more or less comparable to the KPP situation: most of the above qualitative results remain valid. On the other hand, much less is known in the degenerate situation where f (0) = 0, for which typical nonlinearities take the form

f (s) = rs β (1 -s δ ), r > 0, β > 1, δ > 0.
In this work, we focus on the local equation [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocaldiffusion[END_REF] with such an Allee effect. The first question which arises is whether or not propagation (in the sense of invasion) still occurs for equation [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocaldiffusion[END_REF]. It turns out that, in some situations, quenching may occur. This happens typically when a compactly supported initial data is too small (in some L 1 sense) and β > 3. On the other hand, any compactly supported initial data not too small (in some L 1 sense) will lead to invasion in the sense that lim t→∞ u(t, x) = 1, locally uniformly in space.

Such results were proved by [START_REF] Xin | Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media[END_REF], [START_REF] Bebernes | Travelling fronts in cylinders and their stability[END_REF], [START_REF] Zlatoš | Quenching and propagation of combustion without ignition temperature cutoff[END_REF]. See also earlier works [START_REF] Kanel | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF], [START_REF] Roquejoffre | Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders[END_REF], [START_REF]Front propagation in heterogeneous media[END_REF] for the case when the nonlinearity is of the ignition type.

Since we will consider front like initial data (see below for a precise statement), invasion will always occur. A natural question is therefore to study the balance between the Allee effect (whose strength is measured by β > 1) which tends to slow down the invasion process, and heavy tails which tend to accelerate. Let us mention some numerical results [START_REF] Sherratt | Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation[END_REF], [START_REF] Kay | Comparison theorems and variable speed waves for a scalar reaction-diffusion equation[END_REF] for the nonlinearity f (s) = s 2 (1-s). Also, for nonlinearities f (s) = s β (1-s) and algebraic initial data, matched asymptotic expansions [START_REF] Needham | Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations[END_REF], [START_REF] Leach | The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates[END_REF] have been used to determine if the solution travels with finite or infinite speed.

In this work, we provide a rigorous description of the competition between the Allee effect and the heavy tail for equation [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocaldiffusion[END_REF]. For algebraic tails, we prove the separation between acceleration or not (depending on the strength of the Allee effect). Also, when acceleration occurs, we precisely estimate the location of the level sets of the solution. This separation for algebraic tails immediately implies that acceleration never occurs for lighter tails (even if the Allee effect is very small), and always occurs for heavier tails (even if the Allee effect is very large). This is in sharp contrast with the KPP situation [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF].

As far as the integro-differential equation ( 2) with an Allee effect is concerned, the question of propagation or not has been recently studied by [START_REF] Zhang | Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with degenerate nonlinearity[END_REF], [START_REF] Zhang | Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity[END_REF]. One may then wonder what is the exact balance between the Allee effect and dispersion kernels with heavy tails. We refer to [START_REF] Alfaro | Propagation phenomena in nonlocal monostable equations: traveling waves vs. acceleration[END_REF] for first results in this direction.

Last, notice that the question of acceleration or not in the nonlocal equation ( 3) with an Allee effect has been recently solved by Gui and Huan [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF].

Considering ∂ t u = -(-∂ xx ) α u + u β (1 -u)
, they show that: for 0 < α ≤ 1/2 acceleration always occurs whatever β > 1 by comparing with an ignition type problem; next, for 1/2 < α < 1, acceleration occurs if and only if β < 2α 2α-1 . See [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF] for more precise results.

Assumptions and main results

Through this work, and even if not recalled, we always assume the following on the initial condition. Notice that, in each result, we clearly state the heavy tail assumption which is therefore not included below.

Assumption 2.1. (Initial condition) The initial condition u 0 : R → [0, 1] is uniformly continuous and asymptotically front-like, in the sense that

u 0 > 0 in R, lim inf x→-∞ u 0 (x) > 0, lim x→+∞ u 0 (x) = 0. ( 4 
)
Even if not recalled, we always assume the following on the nonlinearity f . Notice that, in each result, we clearly quantify the degeneracy assumption (Allee effect) which is therefore not included below. Assumption 2.2. (Degenerate monostable nonlinearity) The nonlinearity f : [0, 1] → R is of the class C 1 , and is of the monostable type, in the sense that

f (0) = f (1) = 0, f > 0 in (0, 1).
The steady state 0 is degenerate, that is f (0) = 0.

The simplest example of such a degenerate monostable nonlinearity is given by f (s) = s β (1 -s), with β > 1 (in contrast with the KPP situation β = 1).

In the sequel, we always denote by u(t, x) the solution of (1) with initial condition u 0 . From the above assumptions and the comparison principle, we immediately get

0 < u(t, x) < 1 ∀(t, x) ∈ (0, ∞) × R.
Also, as announced in the introduction, the state u ≡ 1 does invade the whole line R as t → ∞. Indeed, define η := inf x≤0 u 0 (x) > 0. In view of [37, Theorem 1.1], the solution v(t, x) of (1) with initial data v 0 (x) = ηχ (-∞,0) (x) satisfies lim t→∞ inf x≤γt v(t, x) = 1 for some γ > 0. From v 0 ≤ u 0 and the comparison principle, the same holds true for u(t, x):

lim t→∞ inf x≤γt u(t, x) = 1, (5) 
so that propagation is at least linear. Notice also that the proof of [19, Theorem 1.1 part a)] does not require the KPP assumption and can then be reproduced to get

lim x→+∞ u(t, x) = 0, ∀t ≥ 0. (6) 
In order to state our results we define, for any λ ∈ (0, 1) and t ≥ 0,

E λ (t) := {x ∈ R : u(t, x) = λ}
the λ level set of u(t, •). In view of ( 5) and ( 6), for any λ ∈ (0, 1), there is a time

t λ > 0 such that ∅ = E λ (t) ⊂ (γt, +∞), ∀t ≥ t λ . (7) 
Our first main result states that, for algebraic initial tail, acceleration can be blocked by a strong enough Allee effect.

Theorem 2.3. (Cancelling acceleration by Allee effect) Let α > 0 and β > 1 be such that

β ≥ 1 + 1 α . ( 8 
)
Assume that there are C > 0 and x 0 > 1 such that

u 0 (x) ≤ C x α , ∀x ≥ x 0 . (9) 
Assume that there are r > 0, δ > 0 and s 0 ∈ (0, 1) such that

f (s) ≤ rs β (1 -s δ ), ∀0 ≤ s ≤ s 0 . ( 10 
)
Then, there is a speed c > 0 such that, for any λ ∈ (0, 1), there is a time T λ ≥ t λ such that

∅ = E λ (t) ⊂ (γt, ct), ∀t ≥ T λ . (11) 
On the one hand, for any Allee effect β > 1, one can find some initial conditions with algebraic tail (whose power is large enough) so that the solutions do not accelerate, as can be seen from [START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: the bistable and ignition case[END_REF]. On the other hand, for any initial condition with algebraic tail, one can find some Allee effect (strong enough) so that acceleration is cancelled. This is in sharp contrast with the KPP situation β = 1 studied in [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF].

Another difference with [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] is concerned with heavy tails that are lighter than algebraic ones, for which acceleration is always cancelled whatever the strength of the Allee effect.

Corollary 2.4. (Heavy tails lighter than algebraic) Let β > 1 be arbitrary. Assume that for all α > 0, there are C α > 0 and x α 0 > 1 such that

u 0 (x) ≤ C α x α , ∀x ≥ x α 0 . (12) 
Assume [START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF]. Then, for any λ ∈ (0, 1), the no acceleration result (11) holds.

The above result is independent on β > 1 and is valid, among others, for initial data satisfying u 0 (x) ≤ Ce -ax/(ln x) , ∀x ≥ 2, for some C > 0, a > 0, [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] or

u 0 (x) ≤ Ce -ax b , ∀x ≥ 1, for some C > 0, a > 0, 0 < b < 1. ( 14 
)
For such tails, any Allee effect cancels the acceleration, whereas in the KPP case acceleration always occurs [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF]. The proof of Corollary 2.4 is obvious: for a given β > 1, select a large α > 0 such that (8) holds, and then combine ( 12) with Theorem 2.3. From Theorem 2.3 and Corollary 2.4, "the transition from no acceleration to acceleration" seems to take place for algebraic tails. This is confirmed by our next main result, which is concerned with the case when the Allee effect is not strong enough to prevent the acceleration induced by algebraic tails.

Theorem 2.5. (Acceleration despite Allee effect) Let α > 0 and β > 1 be such that

β < 1 + 1 α . ( 15 
)
Assume that there are C > 0 and x 0 > 1 such that

u 0 (x) ≥ C x α , ∀x ≥ x 0 . (16) 
Assume that there are r > 0, δ > 0 and s 0 ∈ (0, 1) such that

f (s) ≥ rs β (1 -s δ ), ∀0 ≤ s ≤ s 0 . (17) 
Then, for any λ ∈ (0, 1), any small ε > 0, there is a time T λ,ε ≥ t λ such that

E λ (t) ⊂ (x -(t), +∞) ∀t ≥ T λ,ε , x -(t) := (r -ε)C β-1 (β -1)t 1 α(β-1) . (18) 
Combining Theorem 2.3 and Theorem 2.5, we get a complete picture of the propagation phenomenon. Indeed, in the (α, β) plane there is no acceleration above or on the hyperbola β = 1 + 1 α . On the other hand, strictly below the hyperbola acceleration occurs (see Figure 1).

As an immediate corollary of Theorem 2.5 we get that, for tails heavier than algebraic ones, acceleration always occurs whatever the strength β > 1 of the Allee effect. Typical examples of such tails are

u 0 (x) ≥ C (ln x) b , ∀x ≥ 2, for some C > 0, b > 0. ( 19 
)
Our last result consists in providing upper bounds on the level sets of u(t, x), when the algebraic tail is stronger than the Allee effect so that acceleration occurs. Combining with the lower bounds of Theorem 2.5, this yields an accurate "sandwich" of the level sets.

Theorem 2.6. (Sandwich of the accelerating level sets) Let α > 0, δ > 0 and β > 1 be such that (15) holds. Assume that there are C > 0, C > 0 and x 0 > 1 such that Assume [START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF] and that there is r > 0 such that

C x α ≥ u 0 (x) ≥ C x α , ∀x ≥ x 0 . (20) 
rs β ≥ f (s), ∀0 ≤ s ≤ 1. (21) 
Then, for any λ ∈ (0, 1), any small ε > 0, there is a time T λ,ε ≥ t λ such that

E λ (t) ⊂ (x -(t), x + (t)), ∀t ≥ T λ,ε , (22) 
where 1) .

x -(t) := (r -ε)C β-1 (β -1)t 1 α(β-1) , x + (t) := (r + ε)C β-1 (β -1)t 1 α(β-
The organization of the paper is as follows. In Section 3 we consider the situation where the Allee effect is stronger than the algebraic tail so that acceleration does not occur, that is we prove Theorem 2.3. In Section 4 we consider the opposite situation, proving the acceleration as stated in Theorem 2.5. Last, in Section 5, we prove the upper estimates on the spreading of the level sets when accelerating, thus completing the proof of Theorem 2.6.

Cancelling acceleration by Allee effect

In this short section, we prove Theorem 2.3. The formal argument is very simple, close to the rigorous proof and enlightening. We therefore take the liberty to present it: in order to block acceleration, we aim at finding a speed c > 0 and a power p > 0 such that w(z) := 1 z p is a supersolution of the associated traveling wave equation for z >> 1, that is

w (z) + cw (z) + f (w(z)) ≤ 0.
In view of [START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF] this is enough to have

p(p + 1) z p+2 - cp z p+1 + r z pβ ≤ 0, for large z >> 1, which requires p + 1 ≤ pβ, that is 1 β-1 ≤ p.
On the other hand we also need the ordering at initial time, which in view of (9), requires p ≤ α. Hence one needs 1 β-1 ≤ α, so that the hyperbola separation (8) arises very naturally. Let us now make this formal argument precise.

We define

p := 1 β -1
, w(z) := K z p for z ≥ z 0 := K 1/p , where K > 1.

Lemma 3.1. (Supersolutions traveling at constant speed) Let assumptions of Theorem 2.3 hold. Then, for any K > 1, there is c > 0 such that

w (z) + cw (z) + f (w(z)) ≤ 0, ∀z ≥ z 0 .
Proof. In view of [START_REF] Chen | Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations[END_REF]

, if z ≥ z 1 := K s 0 1/p > z 0 then w(z) = K z p ≤ s 0 so that w (z) + cw (z) + f (w(z)) ≤ Kp(p + 1) z p+2 - cKp z p+1 + rK β z pβ = Kp(p + 1) z p+2 - cKp -rK β z p+1 .
Choosing c > r(β -1)K β-1 , the above is clearly negative for z large enough, say z ≥ z 2 . Last, on the remaining compact region z 0 ≤ z ≤ z 2 , we have

w (z) + cw (z) + f (w(z)) = Kp(p + 1) z p+2 - cKp z p+1 + f (w(z)) ≤ Kp(p + 1)
z p+2 0 - cKp z p+1 2 + f L ∞ (0,1)
≤ 0 by enlarging c if necessary.

We can now complete the proof of Theorem 2.3. We select K = max(1, C), where C > 0 is the constant that appears in [START_REF] Cabré | The influence of fractional diffusion in Fisher-KPP equations[END_REF], and c > 0 the associated speed given by the above lemma. Then v(t, x) := min (1, w(x -

x 0 + 1 -ct)) ,
is a supersolution of equation [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocaldiffusion[END_REF]. Indeed, since 1 solves (1) it is enough to deal with the region where v(t, x) < 1, that is z := xx 0 + 1 -ct > z 0 , where it directly follows from the above lemma since

(∂ t v -∂ xx v -f (v))(t, x) = (-cw -w -f (w))(z). Also we have v(0, x) = min 1, K (x -x 0 + 1) p ≥ u 0 (x),
in view of u 0 ≤ 1, the assumption on the tail (9), K ≥ C and p = 1 β-1 ≤ α. It follows from the comparison principle that

u(t, x) ≤ v(t, x) = min (1, w(x -x 0 + 1 -ct)) .
Now, let λ ∈ (0, 1) be given. In view of (7), for t ≥ t λ , we can pick x ∈ E λ (t), and the above inequality enforces

x ≤ x 0 -1 + K λ β-1 + ct ≤ (c + 1)t,
for all t ≥ T λ , if T λ ≥ t λ is sufficiently large. This proves the upper bound in [START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: the bistable and ignition case[END_REF]. The lower bound in [START_REF] Coville | Travelling fronts in asymmetric nonlocal reaction diffusion equation: the bistable and ignition case[END_REF] being known since [START_REF] Berestycki | The speed of propagation for KPP type problems. I. Periodic framework[END_REF], this completes the proof of Theorem 2.3.

Acceleration despite Allee effect

In this section, we analyze the situations where the algebraic tail is stronger than the Allee effect, in the sense of [START_REF] Gui | Traveling wave solutions to some reaction diffusion equations with fractional laplacians[END_REF], so that the solution accelerates. Namely, we prove Theorem 2.5. Notice that, in view of ( 16) and the comparison principle, we only need to consider the case where

u 0 (x) = C x α , ∀x ≥ x 0 . (23) 

An accelerating small bump as a subsolution

The main difficulty is to construct a subsolution which has the form of a small bump and travels to the right by accelerating. To do so in a KPP situation, the authors in [START_REF] Hamel | Fast propagation for KPP equations with slowly decaying initial conditions[END_REF] consider a perturbation of the solution of d dt w(t, x) = rw(t, x) with w(0, x) = u 0 (x) as initial data, where x ∈ R serves as a parameter. Guided by this approach, we shall rely -in our degenerate situation-on the solution of d dt w(t, x) = rw β (t, x) with w(0, x) = u 0 (x) as initial data, where x ∈ R serves as a parameter. Computations are more involved, and it will turn out that the higher order term of the nonlinearity -typically of the form f (s) = rs β (1 -s δ )-will play a role, so that we first need to assume [START_REF] Kiselev | Enhancement of the traveling front speeds in reactiondiffusion equations with advection[END_REF]. We start with some preparations.

Let ε > 0 small be given. We first make the additional assumption (to be removed in the end of the section)

β < 1 + δ. (24) 
We can therefore select a ρ > 0 such that max βr 1 + δ , rε < ρ < r.

Then define w(t, x) := 1

1 u β-1 0 (x) -ρ(β -1)t 1 β-1 for 0 ≤ t < T (x) := 1 ρ(β -1)u β-1 0 (x) , (26) 
which solves ∂ t w(t, x) = ρw β (t, x), w(0, x) = u 0 (x).

Remark 4.1. Notice that, as x → +∞ the interval of existence (0, T (x)) of the solution w(t, x) becomes large since, in view of (23),

T (x) = x α(β-1) ρ(β -1)C β-1 , ∀x ≥ x 0 .
Also, since α(β -1) < 1, we will have "enough place" to observe the acceleration phenomenon which, in some sense, is given by x(t) ∼ O(t 1 α(β-1) ) as t → ∞, as can be seen in Theorem 2.6.

Straightforward computations yield

∂ xx w(t, x) = g(x)w β (t, x) + βh(x)w 2β-1 (t, x), (28) 
On the other hand, for t = 0 and x ≤ y θ (0) = ( C θ ) 1/α , we have u(0, x) ≥ inf

x≤( C θ ) 1/α u 0 (x) > 0,
in view of Assumption 2.1. As a result Θ := inf (t,x)∈∂Ω u(t, x) > 0. Since Θ > 0 is a subsolution for equation [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocaldiffusion[END_REF], it follows from the comparison principle that u(t, x) ≥ Θ, ∀t ≥ 0, ∀x ≤ y θ (t). [START_REF] Zhang | Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity[END_REF] This implies in particular that, for any 0 < λ < Θ, we have, for all t ≥ t λ ,

∅ = E λ (t) ⊂ (y θ (t), +∞) ⊂ (x - ρ (t), +∞), x - ρ (t) := ρC β-1 (β -1)t 1 α(β-1) , (37) 
which implies the lower bound [START_REF] Hamel | Spreading properties and complex dynamics for monostable reaction-diffusion equations[END_REF] since ρ > rε.

Proof of (18) for any λ ∈ (0, 1), under assumption [START_REF] Kiselev | Enhancement of the traveling front speeds in reactiondiffusion equations with advection[END_REF]. Let us now turn to the the case where λ is larger than Θ. Let Θ ≤ λ < 1 be given. Let us denote by v(t, x) the solution of (1) with initial data

v 0 (x) :=      Θ if x ≤ -1 -Θx if -1 < x < 0 0 if x ≥ 0. ( 38 
)
It follows from [37, Theorem 1.1] that lim t→∞ inf x≤γ 1 t v(t, x) = 1, for some γ 1 > 0. In particular there is a time τ λ,ε > 0 (this time depends on θ and therefore on ε from the above construction of the small bump subsolution) such that

v(τ λ,ε , x) > λ, ∀x ≤ 0. (39) 
On the other hand, it follows from [START_REF] Zhang | Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity[END_REF] and the definition (38) that u(T, x) ≥ v 0 (xy θ (T )), ∀T ≥ 0, ∀x ∈ R, so that the comparison principle yields

u(T + τ, x) ≥ v(τ, x -y θ (T )), ∀T ≥ 0, ∀τ ≥ 0, ∀x ∈ R.
In view of (39), this implies that u(T + τ λ,ε , x) > λ, ∀T ≥ 0, ∀x ≤ y θ (T ).

Hence, for any t ≥ T 1 λ,ε := max(τ λ,ε , t λ ), if we pick a x ∈ E λ (t) then the above implies 1) , for all t ≥ T λ,ε , with T λ,ε > 0 sufficiently large (recall that ρ > rε). This proves the lower bound [START_REF] Hamel | Spreading properties and complex dynamics for monostable reaction-diffusion equations[END_REF] when Θ ≤ λ < 1 and concludes the proof of Theorem 2.5, under the additional assumption [START_REF] Kiselev | Enhancement of the traveling front speeds in reactiondiffusion equations with advection[END_REF].

x > y θ (t -τ λ,ε ), that is x > ( C θ ) β-1 -ρC β-1 (β -1)τ λ,ε + ρC β-1 (β -1)t 1 α(β-1) ≥ (r -ε)C β-1 (β -1)t 1 α(β-
Relaxing the additional assumption [START_REF] Kiselev | Enhancement of the traveling front speeds in reactiondiffusion equations with advection[END_REF]. When β < 1 + δ does not hold, let us pick δ * > 0 such that β < 1+δ * and define r * := rε 2 . It follows from ( 17) that there is s * 0 ∈ (0, 1) such that f (s) ≥ r * s β (1 -s δ * ), ∀0 ≤ s ≤ s * 0 . Hence, from the above analysis, ( 18) is available with r * in place of r. This concludes the proof of Theorem 2.5.

Upper bounds on the level sets when acceleration

In this section, we sandwich the level sets E λ (t) of the solution u(t, x) when acceleration occurs, namely we prove Theorem 2.6. In view of Theorem 2.5, it only remains to prove the upper estimate in [START_REF] Kanel | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF].

Let λ ∈ (0, 1) and ε > 0 small be given. Up to enlarging x 0 > 1 which appears in [START_REF] Hamel | Spreading speeds for some reaction-diffusion equations with general initial conditions[END_REF], we can assume without loss of generality that

α(α + 1 + 2βα) x 2 0 ≤ ε 2 , (40) and C 
x α 0 < 1. Then, up to enlarging C > 0 which also appears in [START_REF] Hamel | Spreading speeds for some reaction-diffusion equations with general initial conditions[END_REF], we can assume without loss of generality that

C x α 0 = 1. (41) 
Now, for these x 0 > 1 and C > 0, in view of ( 20) and the comparison principle, it is enough to prove the upper bound in [START_REF] Kanel | Stabilization of the solutions of the equations of combustion theory with finite initial functions[END_REF] when

u 0 (x) = C x α , ∀x ≥ x 0 . (42) 
Let us select ρ := r + ε 2 .

We then define

ψ(t, x) := min      1, w(t, x) := 1 1 u β-1 0 (x) -ρ(β -1)t 1 β-1     
, where w(t, x) is as in [START_REF] Leach | The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates[END_REF]. We claim that ψ is a supersolution for equation [START_REF] Achleitner | Traveling waves for a bistable equation with nonlocaldiffusion[END_REF] in the domain Ω := (0, ∞) × (x 0 , +∞). Indeed, since 1 solves (1), it suffices to consider the points (t, x) where ψ(t, x) = w(t, x) < 1. In view of 

∂ t w(t, x) = ρw β (t, x) = (r + ε 2 )w β (t,
since 0 < w(t, x) < 1, and where g(x) and h(x) were defined in [START_REF] Roquejoffre | Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders[END_REF], that is 

+ α 2 x 2 0 ≤ ε 2 ,
in virtue of (40). It therefore follows from (43) that, for any (t, x) ∈ Ω such that w(t, x) < 1, ∂ t w(t, x) -∂ xx w(t, x) -f (w(t, x)) ≥ 0, which proves our claim that ψ is a supersolution of (1) in Ω.

Let us now have a look at the boundary ∂Ω = {0} × [x 0 , +∞) ∪ (0, ∞) × {x 0 }. For t = 0, x ≥ x 0 , we have w(0, x) = u 0 (x) = u(0, x), whereas for t > 0, x = x 0 we have w(t, x 0 ) = 1 (1-ρ(β-1)t)

1 β-1
≥ 1 ≥ u(t, x 0 ). Hence ψ(t, x) ≥ u(t, x) for any (t, x) ∈ ∂Ω. We deduce from the comparison principle that u(t, x) ≤ ψ(t, x) ≤ w(t, x), ∀(t, x) ∈ [0, ∞) × [x 0 , +∞).

(44)

Now, we can define T λ, r 2 ≥ t λ as in the conclusion (18) of Theorem 2.5. For t ≥ T λ, r 2 , let us pick a x ∈ E λ (t). We know from (18) that x ≥ r 2 C β-1 (β -1)t 1 α(β-1) → +∞ as t → ∞ so, up to enlarging T λ, r 2 , we can assume that x ≥ x 0 . It therefore follows from (44) that w(t, x) ≥ λ which, using the expression for w(t, x) transfers into

x ≤ ( C λ ) β-1 + (r + ε 2 )C β-1 (β -1)t 1 α(β-1)

< (r + ε)C

β-1 (β -1)t 1 α(β-1) =: x + (t), for t ≥ T λ,ε , with T λ,ε ≥ T λ, r 2 chosen sufficiently large. This proves the upper bound in ( 22) and therefore concludes the proof of Theorem 2.6.
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where g(x) := u 0 (x)

In view of [START_REF] Kay | Comparison theorems and variable speed waves for a scalar reaction-diffusion equation[END_REF] and β < 1 + 1 α , we see that both g(x) and h(x) tend to zero as x → +∞. Let us therefore select x 1 > x 0 such that

Now, Assumption 2.1 implies that

Last, we select A > 0 large enough so that

and

where s 0 is as in [START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF]. Equipped with the above material, we are now in the position to construct the desired subsolution. Proof. Since 0 solves (1) it is enough to consider the (t, x) for which v(t, x) > 0. We therefore need to show

This implies in particular that w(t, x) < 1/A 1/δ < κ so that u 0 (x) = w(0, x) ≤ w(t, x) < κ since t → w(t, x) is increasing. In view of the definition of κ in [START_REF] Uchiyama | The behavior of solutions of some nonlinear diffusion equations for large time[END_REF], this enforces x ≥ x 1 . As a result estimates [START_REF] Sherratt | Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation[END_REF] are available. On the other hand v(t, x) [START_REF] Xin | Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media[END_REF]. Hence, it follows from (17) that

Then the convexity inequality (1

Using this, ( 27), [START_REF] Needham | Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations[END_REF], computing ∂ t w 1+δ (t, x) and ∂ xx w 1+δ (t, x), we arrive at Lv(t, x) ≤ ρw β (t, x) -g(x)w β (t, x) -βh(x)w 2β-1 (t, x) -Aρ(1 + δ)w β+δ (t, x)

rw β (t, x) + rAβw β+δ (t, x) + rw β+δ (t, x).

Since 0 ≤ w < 1 we have w 2β-1 ≤ w β and w 2β+δ-1 ≤ w β+δ , so that

The first inequality in [START_REF] Sherratt | Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation[END_REF] implies ρr + |g(x)| + β|h(x)| ≤ ρ-r 2 ≤ 0 and, using the second inequality in [START_REF] Sherratt | Algebraic decay and variable speeds in wavefront solutions of a scalar reaction-diffusion equation[END_REF], we get

thanks to [START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF]. Lemma 4.2 is proved.

Since v(0, x) = max(0, u 0 (x) -Au 1+δ 0 (x)) ≤ u 0 (x), we deduce from the comparison principle that

Lower bounds on the level sets

Proof of (18) for small λ, under assumption [START_REF] Kiselev | Enhancement of the traveling front speeds in reactiondiffusion equations with advection[END_REF]. Equipped with the above subsolution, whose role is to "lift" the solution u(t, x) on intervals that enlarge with acceleration, we first prove the lower bound [START_REF] Hamel | Spreading properties and complex dynamics for monostable reaction-diffusion equations[END_REF] on the level sets E λ (t) when λ is small. Let us fix 0 < θ < 1/A 1/δ .

We claim that, for any t ≥ 0, there is a unique y θ (t) ∈ R such that w(t, y θ (t)) = θ, and moreover y θ (t) is given by

Indeed, since θ < 1/A 1/δ < κ = inf x∈(-∞,x 1 ) u 0 (x) and since w(t, x) ≥ w(0, x) = u 0 (x), for w(t, y) = θ to hold one needs y ≥ x 1 . But, when y ≥ x 1 > x 0 , one can use formula [START_REF] Kay | Comparison theorems and variable speed waves for a scalar reaction-diffusion equation[END_REF] and then solve equation w(t, y) = θ, thanks to expression [START_REF] Leach | The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates[END_REF], to find the unique solution [START_REF] Zhang | Global stability of wavefronts with minimal speeds for nonlocal dispersal equations with degenerate nonlinearity[END_REF].

Let us now define the open set Ω := {(t, x), t > 0, x < y θ (t)}.

Let us evaluate u(t, x) on the boundary ∂Ω. For t > 0, it follows from (34) that u(t, y θ (t)) ≥ w(t, y θ (t)) -Aw 1+δ (t, y θ (t)) = θ -Aθ 1+δ > 0.