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Introduction

To achieve the routing task, a routing protocol typically uses routing tables stored at each node in order to find a path in the network. These tables are computed beforehand by what is usually called a routing scheme. One of the main goals in the context of routing is to reduce the storage of the routing information at each node (to allow quick routing decisions, fast updates, and scalability), while maintaining routes along paths as short as possible.

A routing scheme that guarantees a sub-linear ‡ routing table size at each node is qualified to be compact. There is a trade-off between the route efficiency (measured in terms of stretch) and the memory requirements (measured by the size or the number of entries in the routing tables). An extra desirable property of a routing scheme is to use arbitrary routing addresses (say based on processor IDs or MAC addresses) and thus independent of any topological information. Such routing schemes are called name-independent, in contrast with labeled routing schemes for which nodes are labeled by poly-logarithmic size addresses that do depend on the graph and can be freely designed to help routing decisions.

Trade-offs between stretch and memory for routing in arbitrary graphs are well known, and optimal name-independent algorithms exist (see for example [START_REF] Abraham | Compact name-independent routing with minimum stretch[END_REF]). Nevertheless for some types of routing, like routing in the AS-internet graph, optimizations can be done and trade-offs are still barely known. Indeed, this network, like many others, exhibits several structural properties that can help a lot for routing.

Routing in internet-like graphs has already received some attention in the literature. In particular [CSTW12] and [START_REF] Tang | HDLBR : A name-independent compact routing scheme for power-law networks[END_REF] respectively studied labeled and name-independent compact routing scheme for internet-like graphs. They both proved that the average number of entries in the routing tables for Random Power Low Graphs (RPLG, see Fig. 1) can be significantly lower than for arbitrary graphs, and they both confirmed experimentally their analytic results on large CAIDA and "BC" maps § . † Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014).

‡. W.r.t. the number of nodes in the graph. §. The latter maps are the benchmark graphs used in the study of [START_REF] Brady | Compact routing on power law graphs with additive stretch[END_REF]. They are based on Power Low Random Graphs (a.k.a. PLRG) a model for internet-like graphs whose analytic study is less convenient than the RPLG model.

FIGURE 1:

The largest connected component of a RPLG(n,t) for n = 300 and t = 2.9. The component has 216 nodes (whose size is depicted proportional to their degree) and 280 edges. The maximum degree is 19.

Results

Our two main contributions are the following. First we present a new name-independent routing scheme, that both guarantees, in internet-like graphs, to produce compact routing tables at every node, of very small average size, and to achieve a constant stretch factor : Main Theorem. For any n-node graph sampled from RPLG(n,t) with t ∈ (2, 3), within its largest connected component, our algorithm CLUSTER has with high probability ¶ the following properties : i) the maximal size of the routing tables is O( √ n ) ; ii) the average size of the routing tables is Õ(n c ) with c = t-2 2(t-1) for t ≤ 5 2 , and c = t 2 -4t+4 t-1 otherwise ; iii) the stretch factor is at most 7.

Secondly we experimentally compare our scheme to AGMNT [START_REF] Abraham | Compact name-independent routing with minimum stretch[END_REF], DCR [START_REF] Gavoille | On the communication complexity of distributed name-independent routing schemes[END_REF], HDLBR [START_REF] Tang | HDLBR : A name-independent compact routing scheme for power-law networks[END_REF], and TZ+ [START_REF] Chen | A compact routing scheme and approximate distance oracle for power-law graphs[END_REF]. In particular, Table 1 shows that our scheme, CLUSTER, improves significantly the routing table sizes on a CAIDA map (sampled from the AS network [Cai]) and on a BC graph, even though TZ+ (a specialized variant of Thorup-Zwick routing scheme) is a labeled routing scheme. Moreover, we have provided a fully distributed implementation for the schemes DCR, HDLBR, CLUSTER, and proved that each one generates all the routing tables in Õ(n 3/2 ) messages. No distributed implementation within o(n 2 ) messages is known for AGMNT.

Our scheme

Preliminaries. Similarly to TZ+ and HDLBR, our algorithm is based on a set L of landmark nodes, that are positioned in the "center" of the graph. In our case, the set of landmarks is composed of the k = √ n ¶. I.e., with probabilty at least 1 closest nodes from the highest degree node 1 , prefering nodes with highest degree at the last layer. Moreover, every landmark node i , i ∈ {1, . . . , k}, is provided with a distinct color c( i ) ∈ {1, . . . , k}. Landmark nodes also share a balanced (w.h.p.) hash function h, as in [START_REF] Abraham | Compact name-independent routing with minimum stretch[END_REF], mapping in constant time all node identifiers to the set {1, . . . , k}.

-1/n. . The notation Õ( f (n)) stands for f (n) • polylog( f (n)).
Routing tables. Any landmark node i stores one entry per node v whose hash value is equal to the color of i , namely c( i ). This entry corresponds to the path from i to v in some fixed shortest-path spanning tree T rooted at 1 . Every landmark also stores one entry for each color c. Similarly, this entry corresponds to the path in T from i to the landmark with color c. Each path of T can be compressed into a poly-logarithmic size entry, e.g. by using the classical labeled compact routing scheme for trees from [START_REF] Fraigniaud | Routing in trees[END_REF]. This adds one entry to every node. For every non-landmark node u, we define its vicinity ball B u as the set of all nodes that are strictly closer to u than u , where u is a landmark closest to u. For every node v in B u ∪ { u }, node u stores the next-hop on a shortest path to v.

Routing from u to v. If u has an entry for v, then u can route directly to v. Otherwise u forwards the packet to u , its closest landmark. At this point, u computes the hash value h(v) of node v and forwards the packet to the landmark h of color h(v) via the tree T . Finally, the information stored in the entry corresponding to v in the routing table of h is used to route the packet to its final destination v via T .

Sketch of the proof

The proof of our main theorem is based on topological observations done on RPLG(n,t) graphs [START_REF] Chung | The Average Distance in a Random Graph with Given Expected Degrees[END_REF]. Those graphs are constructed as follows. With each node v i , i ∈ {1, . . . , n}, we assign a weight w i = (n/i) 1/(t-1) . There is an edge between node v i and v j with probability min{1, w i w j /σ}, where σ = ∑ i w i .

Memory size analysis. The first step is to show that the radius of the cluster of landmarks is 1 (w.h.p.). Next we show that the sum of the weights, called the volume, of the set of nodes inside the cluster is polynomial, depends on t ∈ (2, 3), but is always much larger than √ n. Then, we use one lemma from [CL03] which states that two sets of nodes with high volumes intersect (w.h.p.). This implies that the volume of every vicinity ball is upper bounded by a small polynomial. The last part consists in exhibiting a strong relationship between the volume and the number of nodes in the vicinity balls. We use the facts, shown in [START_REF] Chen | A compact routing scheme and approximate distance oracle for power-law graphs[END_REF], that the volume of a set of nodes is likely to be equal to the sum of their degrees, and that two balls of radius r and r + 1 do not differ too much in terms of their number of nodes.

Stretch analysis. The stretch analysis is also based on the fact that the radius of the cluster is 1 (w.h.p.). From the routing algorithm from u to v taken from the main connected component of G, we derive that the route length is either the distance

d = d G (u, v) if v ∈ B u , or bounded by d G (u, u ) + d T ( u , h ) + d T ( h , v)
otherwise. (Recall that the route goes first from u to u along a shortest path in G, then to h using T , and then to v using T again.) If w denotes the closest ancestor of v in T in the cluster, then the length of the route from

h to v can be bounded by d T ( h , v) ≤ d T ( h , w) + d T (w, v) ≤ d G ( v , v) + 2 by definition of v and T . Since d T ( u , h ) ≤ 2, the route length is at most d G (u, u ) + d G (v, v ) + 4. Note also that d G (v, v ) ≤ d G (v, u) + d G (u, u ) = d + d G (u, u
) since otherwise u would be a closer landmark for v than v . Assuming that v / ∈ B u (otherwise the stretch is 1), it turns out also that d G (u, u ) ≤ d. Overall, combining these inequalities, the route length is at most 3d + 4. In other words, the stretch is at most 3 + 4/d ≤ 7.

Improved scheme. As we also show in [START_REF] Gavoille | Brief Announcement : Routing the Internet with less than fifteen entries[END_REF], a slight modification of the scheme allows us to improve the maximum stretch to 5 with no penalties on the average stretch, and with asymptotically the same memory requirements, for the maximum and the average.

The modification is based on the observation that if one of the two nodes u, v is in the cluster, then the route length is at most d + 4 instead of 3d + 4. Indeed, is v is in the cluster (i.e., v = v ), then the route length is at most d In particular, if every non-cluster node stores the next-hop to all its neighbors * * , the stretch becomes (d + 4)/d = 1 + 4/d ≤ 5 if u is in the cluster, it is 1 if v is a neighbor of u (thanks to the new storage in u), or it is 3 + 4/d ≤ 5 since d ≥ 2 if the previous case does not hold.

G (u, u ) + d G (v, v ) + 4 = d G (u, u ) + 4 ≤ d + 4.
We note that the average stretch can only be improved, that the average memory can only be worst by an additive constant number of entries (since the extra storage costs in total at most the number of edges of the whole graph, that is O(σ) = O(n), and that the component G has Ω(n) nodes), and that the maximum number of entries remains in O( √ n ) since w.h.p. the highest degree of a non-cluster node is O( √ n ).

  And, if u is in the cluster, then we have seen thatd G (v, v ) ≤ d + d G (u, u ) = d,and thus the route length bounded by d G (u, u ) + d G (v, v ) + 4 ≤ d + 4.

TABLE 1 :

 1 According to[START_REF] Vazquez | Internet topology at the router and autonomous system level[END_REF] the AS power law exponent t can be estimated to 2.1. It is proved in[START_REF] Tang | HDLBR : A name-independent compact routing scheme for power-law networks[END_REF] that the route length for HDLBR is at most 2(d + δ(t)) where d is the source-destination distance and δ(t) the interlandmark distance. It is not difficult to see that δ(2.1) > 1 w.h.p., and from this observation one can derive that the maximum stretch is at least 6. We ran our own (distributed) version of HDLBR since results for AS and BC maps were not available. TZ+ is not a name-independent routing scheme, and we have not implemented it. Thus, we have some unknown experimental values for this algorithm.

	Name-indep AGMNT DCR HDLBR CLUSTER	RPLG(n,t) for t = 2.1 Stretch max Mem avg Mem max 3 Õ( √ n ) Õ( √ n ) 7 Õ( √ n ) Õ( √ n ) ≥ 6 O( √ n ) Ω(n 1/2+ε ) 7 Õ(n 1/22 ) O( √ n )	AS graph (n = 16 301) Stretch avg Mem avg Mem max Stretch avg Mem avg Mem max BC graph (n = 10K, t = 2.1) ? ? 465 1 261 1.56 396 1 143 1.74 465 1 261 1.63 396 1 143 1.52 106 2 324 1.24 404 1 877 1.79 14.4 770 1.92 12.4 246
	Labeled									
	TZ+	5	O(n 1/12 )	O(n 1/12 )	? ?	? ?	? ?	1.30	55.2	? ?