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Goal-Oriented Reduction of Automata Networks

We consider networks of finite-state machines having local transitions conditioned by the current state of other automata. In this paper, we depict a reduction procedure tailored for a given reachability property of the form "from global state s, there exists a sequence of transitions leading to a state where an automaton g is in a local state ". By exploiting a causality analysis of the transitions within the individual automata, the proposed reduction removes local transitions while preserving all the minimal traces that satisfy the reachability property. The complexity of the procedure is polynomial in the total number of local transitions, and exponential with the maximal number of local states within an automaton. Applied to automata networks modelling dynamics of biological systems, we observe that the reduction shrinks down significantly the reachable state space, enhancing the tractability of the model-checking of large networks.

Introduction

Automata networks model dynamical systems resulting from simple interactions between entities. Each entity is typically represented by an automaton with few internal states which evolve subject to the state of a narrow range of other entities in the network. Richness of emerging dynamics arises from several factors including the topology of the interactions, the presence of feedback loop, and the concurrency of transitions.

Automata networks are notably used to model biological systems, notably signalling networks or gene regulatory networks (e.g., [START_REF] Abou-Jaoudé | Model checking to assess t-helper cell plasticity[END_REF][START_REF] David | Mathematical modelling of molecular pathways enabling tumour cell invasion and migration[END_REF][START_REF] Grieco | Integrative modelling of the influence of MAPK network on cancer cell fate decision[END_REF][START_REF] Klamt | A methodology for the structural and functional analysis of signaling and regulatory networks[END_REF][START_REF] Saez-Rodriguez | A logical model provides insights into t cell receptor signaling[END_REF][START_REF] Sahin | Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance[END_REF][START_REF] Samaga | The logic of egfr/erbb signaling: Theoretical properties and analysis of high-throughput data[END_REF][START_REF] Weinstein | A network model for the specification of vulval precursor cells and cell fusion control in caenorhabditis elegans[END_REF]). In such a context, it is crucial to confront the dynamics of a model to actual biological knowledge to validate or refute the model, and infer well-founded hypotheses on the important mechanisms controlling the emerging behaviours.

Part of those properties relate to the reachability problem (PSPACE-complete [START_REF] Cheng | Complexity results for 1-safe nets[END_REF]), for instance the (im)possibility of activation of an entity from a given set of initial states with a potential set of perturbations. Due to the increasing precision of biological knowledge, models of networks become larger and larger and can gather hundreds to thousands of interacting entities making the formal analysis of their dynamics a challenging task.

Facing a model too large for a raw exhaustive analysis, a natural approach is to reduce its dynamics while preserving important properties. Multiple approaches, often complementary, have been explored since decades to address such a challenge in dynamical and concurrent systems [START_REF] Sifakis | Property preserving homomorphisms of transition systems[END_REF][START_REF] Robert P Kurshan | Computer-aided verification of coordinating processes: the automata-theoretic approach[END_REF][START_REF] Loiseaux | Property preserving abstractions for the verification of concurrent systems[END_REF]. Among those, structural reductions attempt to reduce the model specification while obtaining bisimulation, e.g., [START_REF] Schnoebelen | Bisimulation and the reduction of Petri nets[END_REF] on Petri nets; or preserving a subset of dynamical features and properties, e.g., the cone of influence reduction [START_REF] Biere | Verifying safety properties of a powerpc microprocessor using symbolic model checking without bdds[END_REF] which delimit the variables of the model having an influence of a given property, or Petri net transition agglomerations which preserve liveness and LTL properties [START_REF] Berthelot | Checking properties of nets using transformations[END_REF][START_REF] Haddad | New efficient Petri nets reductions for parallel programs verification[END_REF]. In the scope of rule-based models of biological networks, efficient static analysis methods have been developed to lump numerous global states of the systems based on the fragmentation of interacting components [START_REF] Feret | Stochastic fragments: A framework for the exact reduction of the stochastic semantics of rule-based models[END_REF]; and to a posteriori compress simulated traces to obtain compact witnesses of dynamical properties [START_REF] Vincent Danos | Graphs, rewriting and pathway reconstruction for rule-based models[END_REF]. Reductions preserving the attractors of dynamics (long-term/steady-state behaviour) have also been studied for chemical reaction networks [START_REF] Madelaine | Attractor Equivalence: An Observational Semantics for Reaction Networks[END_REF] and Boolean networks [START_REF] Naldi | Dynamically consistent reduction of logical regulatory graphs[END_REF]. The latter approach applies to formalisms close to automata networks but does not preserve reachability properties.

Contribution We introduce a reduction of automata networks which identifies transitions that do not contribute to a given reachability property and hence can be ignored. The considered automata networks are finite sets of finite-state machines where transitions between their local states are conditioned by the state of other automata in the network. We use a general concurrent semantics where any number of automata can apply one transition within one step. We call a trace a sequential interleaved execution of steps.

Our reduction preserves all the minimal traces satisfying reachability properties of the form "from state s there exist successive steps that lead to a state where a given automaton g is in local state g ". A trace is minimal if no step nor transition can be removed from it and resulting in a sub-trace that satisfies the concerned reachability property. The complexity of the procedure is polynomial in the number of local transitions, and exponential in the maximal size of automata. Therefore, the reduction is scalable for networks of multiple automata, where each have a few local states.

The identification of the transitions that are not part of any minimal trace is performed by a static analysis of the causality of transitions within automata. It extends previous static analysis of reachability properties by abstract interpretation [START_REF] Paulevé | Static analysis of biological regulatory networks dynamics using abstract interpretation[END_REF][START_REF] Paulevé | Under-approximating cut sets for reachability in large scale automata networks[END_REF]. In [START_REF] Paulevé | Static analysis of biological regulatory networks dynamics using abstract interpretation[END_REF], necessary or sufficient conditions for reachability are derived, but they do not allow to capture all the (minimal) traces towards a reachability goal. In [START_REF] Paulevé | Under-approximating cut sets for reachability in large scale automata networks[END_REF], the static analysis extracts local states, referred to as cut-sets, which are necessarily reached prior to a given reachability goal. The results presented here are orthogonal: we identify transitions that are never part of a minimal trace for the given reachability property. It allows us to output a reduced model where all such transitions are removed while preserving all the minimal traces for reachability. Hence, whereas [START_REF] Paulevé | Under-approximating cut sets for reachability in large scale automata networks[END_REF] focuses on identifying necessary conditions for reachability, this article focuses on preserving sufficient conditions for reachability.

The effectiveness of our goal-oriented reduction is experimented on actual models of biological networks and show significant shrinkage of the dynamics of the automata networks, enhancing the tractability of a concrete verification. Compared to other model reductions, our goal is somehow close to the cone of influence reduction mentioned above, which identifies variables that do not impact a given property. Here, our approach offers a much more fine-grained analysis in order to identify the sufficient transitions and values of variables that contribute to the property.

Outline Section 2 sets up the definition and semantics of the automata networks considered in this paper, together with the local causality analysis for reachability properties, based on prior work. Section 3 first depicts a necessary condition using local causality analysis for satisfying a reachability property and then introduce the goal-oriented reduction with the proof of minimal traces preservation. Section 4 shows the efficiency of the reduction on a range of biological networks. Finally, section 5 discusses the results and motivates further work.

Notations Integer ranges are noted [m; n] ∆ = {m, m + 1, • • • , n}. Given a finite set A, |A| is the cardinality of A; 2 A is the power set of A. Given n ∈ N, x = (x i ) i∈[1;n] is a sequence of elements indexed by i ∈ [1; n]; |x| = n; x m.
.n is the subsequence (x i ) i∈[m;n] ; x :: e is the sequence x with an additional element e at the end; ε is the empty sequence.

Automata Networks and Local Causality

Automata Networks

We declare an Automata Network (AN) by a finite set of finite-state machines having transitions between their local states conditioned by the state of other automata in the network. An AN is defined by a triple (Σ, S, T ) (definition 1) where Σ is the set of automata identifiers; S associates to each automaton a finite set of local states: if a ∈ Σ, S(a) refers to the set of local states of a; and T associates to each automaton its local transitions. Each local state is written of the form a i , where a ∈ Σ is the automaton in which the state belongs to, and i is a unique identifier; therefore given a i , a j ∈ S(a), a i = a j if and only if a i and a j refer to the same local state of the automaton a. For each automaton a ∈ Σ, T (a) refers to the set of transitions of the form t = a i -→ a j with a i , a j ∈ S(a), a i = a j , and the enabling condition of t, formed by a (possibly empty) set of local states of automata different than a and containing at most one local state of each automaton. The pre-condition of transition t, noted • t, is the set composed of a i and of the local states in ; the post-condition, noted t • is the set composed of a j and of the local states in .

Definition 1 (Automata Network (Σ, S, T )). An Automata Network (AN) is defined by a tuple (Σ, S, T ) where

• Σ is the finite set of automata identifiers;

• For each a ∈ Σ, S(a) = {a i , . . . , a j } is the finite set of local states of automaton a; S ∆ = a∈Σ S(a) is the finite set of global states; LS ∆ = a∈Σ S(a) denotes the set of all the local states.

• T = {a → T a | a ∈ Σ}, where ∀a ∈ Σ, T a ⊆ S(a) × 2 LS\S(a) × S(a) with (a i , , a j ) ∈ T a ⇒ a i = a j and ∀b ∈ Σ, | ∩ S(b)| ≤ 1,
is the mapping from automata to their finite set of local transitions.

We note

a i - → a j ∈ T ∆ ⇔ (a i , , a j ) ∈ T (a) and a i → a j ∈ T ∆ ⇔ ∃ ∈ 2 LS\S(a) , a i - → a j ∈ T . Given t = a i - → a j ∈ T , orig(t) ∆ = a i , dest(t) ∆ = a j , enab(t) ∆ = , • t ∆ = {a i } ∪ , and t • ∆ = {a j } ∪ .
At any time, each automaton is in one and only one local state, forming the global state of the network. Assuming an arbitrary ordering between automata identifiers, the set of global states of the network is referred to as S as a shortcut for a∈Σ S(a). Given a global state s ∈ S, s(a) is the local state of automaton a in s, i.e., the a-th coordinate of s. Moreover we write a i ∈ s ∆ ⇔ s(a) = a i ; and for any ls ∈ 2 LS , ls ⊆ s ∆ ⇔ ∀a i ∈ ls, s(a) = a i . In the scope of this paper, we allow, but do not enforce, the parallel application of transitions in different automata. This leads to the definition of a step as a set of transitions, with at most one transition per automaton (definition 2). For notational convenience, we allow empty steps. The pre-condition (resp. post-condition) of a step τ , noted • τ (resp. τ • ), extends the similar notions on transitions: the pre-condition (resp. post-condition) is the union of the pre-conditions (resp. post-conditions) of composing transitions. A step τ is playable in a state s ∈ S if and only if • τ ⊆ s, i.e., all the local states in the pre-conditions of transitions are in s. If τ is playable in s, s • τ denotes the state after the applications of all the transitions in τ , i.e., where for each transition a i -→ a j ∈ τ , the local state of automaton a has been replaced with a j .

Definition 2 (Step). Given an AN (Σ, S, T ), a step τ is a subset of local transitions T such that for each automaton a ∈ Σ, there is at most one local transition T (a) in τ (∀a ∈ Σ, |(τ ∩ T (a))| ≤ 1). We note

• τ ∆ = t∈τ • t and τ • ∆ = t∈τ t • \ {orig(t) | t ∈ τ }. Given a state s ∈ S where τ is playable ( • τ ⊆ s), s • τ denotes the state where ∀a ∈ Σ, (s • τ )(a) = a j if ∃a i → a j ∈ τ , and (s • τ )(a) = s(a) otherwise.
Remark that τ • ⊆ s • τ and that this definition implicitly rules out steps composed of incompatible transitions, i.e., where different local states of a same automaton are in the pre-condition.

A trace (definition 3) is a sequence of successively playable steps from a state s ∈ S. The pre-condition • π of a trace π is the set of local states that are required to be in s for applying π ( • π ⊆ s); and the post-condition π • is the set of local states that are present in the state after the full application of π

(π • ⊆ s • π). Definition 3 (Trace). Given an AN (Σ, S, T ) and a state s ∈ S, a trace π is a sequence of steps such that ∀i ∈ [1; |π|], • π i ⊆ (s • π 1 • • • • π i-1 ).
The pre-condition • π and the post-condition π • are defined as follows: for all n ∈ [1; |π|], for all

a i ∈ • π n , a i ∈ • π ∆ ⇔ ∀m ∈ [1; n -1], S(a) ∩ • π m = ∅; similarly, for all n ∈ [1; |π|], for all a j ∈ π n• , a j ∈ π • ∆ ⇔ ∀m ∈ [n + 1; m], S(a) ∩ π m• = ∅. If π is empty, • π = π • = ∅. The set of transitions composing a trace π is noted tr(π) ∆ = |π| n=1 π n .
Given an automata network (Σ, S, T ) and a state s ∈ S, the local state g ∈ LS is reachable from s if and only if either g ∈ s or there exists a trace π with • π ⊆ s and g ∈ π • . We consider a trace π for g reachability from s is minimal if and only if there exists no different trace reaching g having each successive step being a subset of a step in π with the same ordering (definition 4). Say differently, a trace is minimal for g reachability if no step or transition can be removed from it without breaking the trace validity or g reachability. Definition 4 (Minimal trace for local state reachability). A trace π is minimal w.r.t. g reachability from s if and only if there is no trace from s,

= π, | | ≤ |π|, g ∈ • , such that there exists an injection φ : [1; | |] → [1; |π|] with ∀i , j ∈ [1; | |], i < j ⇔ φ(i ) < φ(j) and i ⊆ π φ(i) .
Automata networks as presented can be considered as a class of 1-safe Petri Nets [START_REF] Bernardinello | A survey of basic net models and modular net classes[END_REF] (at most one token per place) having groups of mutually exclusive places, acting as the automata, and where each transition has one and only one incoming and out-going arc and any number of read arcs. The semantics considered in this paper where transitions within different automata can be applied simultaneously echoes with Petri net step-semantics and concurrent/maximally concurrent semantics [START_REF] Janicki | Concurrent and maximally concurrent evolution of nonsequential systems[END_REF][START_REF] Priese | A uniform approach to true-concurrency and interleaving semantics for petri nets[END_REF][START_REF] Janicki | Step traces[END_REF]. In the Boolean network community, such a semantics is referred to as the asynchronous generalized update schedule [START_REF] Aracena | On the robustness of update schedules in Boolean networks[END_REF].

Local Causality

Locally reasoning within one automaton a, the reachability of one of its local state a j from some global state s with s(a) = a i can be described by a (local) objective, that we note a i a j (definition 5).

Definition 5 (Objective). Given an automata network (Σ, S, T ), an objective is a pair of local states a i , a j ∈ S(a) of a same automaton a ∈ Σ and is denoted a i a j . The set of all objectives is referred to as

Obj ∆ = {a i a j | (a i , a j ) ∈ S(a) × S(a), a ∈ Σ}.
Given an objective a i a j ∈ Obj, local-paths(a i a j ) is the set of local acyclic paths of transitions T (a) within automaton a from a i to a j (definition 6).

Definition 6 (local-paths). For each objective a

i a j ∈ Obj, if i = j, local-paths(a i a i ) ∆ = {ε}; if i = j, a sequence η of transitions in T (a) is in local-paths(a i a j ) if and only if |η| ≥ 1, orig(η 1 ) = a i , dest(η |η| ) = a j , ∀n ∈ [1; |η| -1], dest(η n ) = orig(η n+1 ), and ∀n, m ∈ [1; |η|], n > m ⇒ dest(η n ) = orig(η m ).
As stated by property 1, any trace reaching a j from a state containing a i uses all the transitions of at least one local acyclic path in local-paths(a i a j ).

Property 1. For any trace π, for any a ∈ Σ, a i , a j ∈ S(a), 1 ≤ n ≤ m ≤ |π| where a i ∈ • π n and a j ∈ π m• , there exists a local acyclic path η ∈ local-paths(a i a j ) that is a sub-sequence of π n..m , i.e., there is an injection

φ : [1; |η|] → [n; m] with ∀u, v ∈ [1; |η|], u < v ⇔ φ(u) < φ(v ) and η u ∈ π φ(u) .
A local path is not necessarily a trace, as transitions may be conditioned by the state of other automata that may need to be reached beforehand. A local acyclic path being of length at most |S(a)| with unique transitions, the number of local acyclic paths is polynomial in the number of transitions T (a) and exponential in the number of local states in a. Example 1. Let us consider the automata network (Σ, S, T ), graphically represented in figure 1, where:

Σ = {a, b, c, d} S(a) = {a 0 , a 1 } T (a) = {a 0 {b0} --→ a 1 , a 1 ∅ - → a 0 } S(b) = {b 0 , b 1 } T (b) = {b 0 {a1} --→ b 1 , b 1 {a0} --→ b 0 } S(c) = {c 0 , c 1 , c 2 } T (c) = {c 0 {a1} --→ c 1 , c 1 {b1} --→ c 0 , c 1 {b0} --→ c 2 , c 0 {d1} --→ c 2 } S(d) = {d 0 , d 1 } T (d) = ∅
The local paths for the objective c 0 c 2 are local-paths(c 3 Goal-Oriented Reduction

0 c 2 ) = {c 0 {a1} --→ c 1 {b0} --→ c 2 , c 0 {d1} --→ c 2 }. From the state a 0 , b 0 , c 0 , d 0 , instances of traces are {a 0 {b0} --→ a 1 } :: {b 0 {a1} --→ b 1 , c 0 {a1} --→ c 1 } :: {a 1 ∅ - → a 0 } :: {b 1 {a0} --→ b 0 } :: {c 1 {b0} --→ c 2 } ; {a 0 {b0} --→ a 1 } :: {c 0 {a1} --→ c 1 } :: {c 1 {b0} --→ c
Assuming a global AN (Σ, S, T ), an initial state s ∈ S and a reachability goal g where g ∈ Σ and g ∈ S(g), the goal-oriented reduction identifies a subset of local transitions T that are sufficient for producing all the minimal traces leading to g from s. The reduction procedure takes advantage of the local causality analysis both to fetch the transitions that matter for the reachability goal and to filter out objectives that can be statically proven impossible.

Necessary condition for local reachability

Given an objective a i a j and a global state s ∈ S where s(a) = a i , prior work have demonstrated necessary conditions for the existence of a trace leading to a j from s [START_REF] Paulevé | Static analysis of biological regulatory networks dynamics using abstract interpretation[END_REF][START_REF] Paulevé | Under-approximating cut sets for reachability in large scale automata networks[END_REF]. Those necessary conditions rely on the local causality analysis defined in previous section for extracting necessary steps that have to be performed in order to reach the concerned local state. Several necessary conditions have been established in [START_REF] Paulevé | Static analysis of biological regulatory networks dynamics using abstract interpretation[END_REF], taking into account several features captured by the local paths (dependencies, sequentiality, partial order constraints, . . . ). The complexity of deciding most of these necessary conditions is polynomial in the total number of local transitions and exponential in the maximum number of local states within an automaton.

In this section, we consider a generic reachability over-approximation predicate valid s which is false only when applied to an objective that has no trace concretizing it from s: a j is reachable from s with s(a) = a i only if valid s (a i a j ).

Definition 7 (valid s ). Given any objective a i a j ∈ Obj, valid s (a i a j ) if there exists a trace π from s such that ∃m, n ∈ [1; |π|] with m ≤ n, a i ∈ • π m , and a j ∈ π n• .

For the sake of self-consistency, we give in proposition 1 an instance implementation of such a predicate. It is a simplified version of a necessary condition for reachability demonstrated in [START_REF] Paulevé | Static analysis of biological regulatory networks dynamics using abstract interpretation[END_REF]. Essentially, the set of valid objectives Ω is built as follows: initially, it contains all the objectives of the form a i a i (that are always valid); then an objective a i a j is added to Ω only if there exists a local acyclic path η ∈ local-paths(a i a j ) where all the objectives from the initial state s to the enabling conditions of the transitions are already in Ω: 

if b k ∈ enab(η n ) for some n ∈ [1; |η|],
F(Ω) ∆ = {a i a j ∈ Obj | ∃η ∈ local-paths(a i a j ) : ∀n ∈ [1; |η|], ∀b k ∈ enab(η n ), s(b) b k ∈ Ω} . Applied to the AN of figure 1, if s = a 0 , b 0 , c 0 , d 0 , valid s (c 0 c 2 ) is true because c 0 a1 -→ c 1 b0 -→ c 2 ∈ local-paths(c 0 c 2 )
with valid s (a 0 a 1 ) true and valid s (b 0 b 0 ) true. On the other hand, valid s (d 0 d 1 ) is false.

Note that Proposition 1 is an instance of valid s implementation; any other implementation satisfying definition 7 can be used to apply the reduction proposed in this article. In [START_REF] Paulevé | Static analysis of biological regulatory networks dynamics using abstract interpretation[END_REF], more restrictive overapproximations are proposed.

Reduction procedure

This section depicts the goal-oriented reduction procedure which aims at identifying transitions that do not take part in any minimal trace from the given initial state to the goal local state g . The reduction relies on the local causality analysis to delimit local paths that may be involved in the goal reachability: any local transitions that is not captured by this analysis can be removed from the model without affecting the minimal traces for its occurrence.

The reduction procedure (definition 8) consists in collecting a set B of objectives whose local acyclic paths may contribute to a minimal trace for the goal reachability. To ease notations, and without loss of generality, we assume that any automaton a is in state a 0 in s. Given an objective, only the local paths where all the enabling conditions lead to valid objectives are considered (local-paths s ). The local transitions corresponding to the objectives in B are noted tr(B).

Initially starting with the main objective g 0 g (definition 8(1)), the procedure iteratively collects objectives that may be involved for the enabling conditions of local paths of already collected objectives. If a transition b j -→ b k is in tr(B), for each a i ∈ , the objective a 0 a i is added in B (definition 8(2)); and for each other objective b b i ∈ B, the objective b k b i is added in B (definition 8(3)). Whereas the former criteria references the objectives required for concretizing a local path from the initial state, the later criteria accounts for the possible interleaving and successions of local paths within a same automaton: e.g., g reachability may require to reach b k and b i in some (undefined) order, we then consider 4 objectives:

b 0 b k , b k b i , b 0 b i , and b i b k .
Definition 8 (B). Given an AN (Σ, S, T ), an initial state s where, without loss of generality, ∀a ∈ Σ, s(a) = a 0 , and a local state g with g ∈ Σ and g ∈ S(g), B ⊆ Obj is the smallest set which satisfies the following conditions: Theorem 1 states that any trace which is minimal for the reachability of g from initial state s is composed only of transitions in tr(B). The proof is given in appendix A. It results that the AN (Σ, S, tr(B)) contains less transitions but preserves all the minimal traces for the reachability of the goal. Putting aside the tr(local-paths s ) computation, the above steps require a polynomial time and a linear space with respect to the number of transitions and objectives. The computation of tr(local-paths s (a i a j )) requires a time exponential with the number of local states in automaton a (|S(a)|), due to the number of acyclic local paths (section 2.2), but a quadratic space: indeed, each individual local acyclic path does not need to be stored, only its set of local transitions, without conditions. Then, valid s is called at most once per objective. We assume that the complexity of valid s is polynomial with the number of automata and transitions and exponential with the maximum number of local states within an automaton (it is the case of the one presented in section 3.1)

1. g 0 g ∈ B 2. b j - → b k ∈ tr(B) ⇒ ∀a i ∈ , a 0 a i ∈ B 3. b j - → b k ∈ tr(B) ∧ b b i ∈ B ⇒ b k b i ∈ B
Overall, the reduction procedure has a polynomial space complexity (|Obj| + |T |) and time complexity polynomial with the total number of automata and local transitions, and exponential with the maximum number k of local states within an automaton (k = max a∈Σ |S(a)|). Therefore, assuming k |Σ|, the goal-oriented reduction offers a very low complexity, especially with regard to a full exploration of the k |Σ| states.

Experiments

We experimented the goal-oriented reduction on several biological networks and quantify the shrinkage of the reachable state space. Then, we illustrate potential applications with the verification of simple reachability, and of cut sets. In both cases, the reduction drastically increases the tractability of those applications.

Results on model reduction

We conducted experiments on Automata Networks (ANs) that model dynamics of biological networks. For different initial states, and for different reachability goals, we compared the number of local transitions in the AN specifications (|T |), the number of reachable states, and the size of the so-called complete finite prefix of the unfolding of the net [START_REF] Esparza | Unfoldings: A Partial-Order Approach to Model Checking (Monographs in Theoretical Computer Science[END_REF]. This latter structure is a finite partial order representation of all the possible traces, which is well studied in concurrency theory. It aims at offering a compact representations of the reachable state spaces by exploiting the concurrency between transitions: if t 1 and t 2 are playable in a given state and are not in conflict (notably when • t 1 ∩ • t 2 = ∅), a standard approach would consider 4 global transitions (t 1 then t 2 , and t 2 then t 1 ), whereas a partial order structure would simply declare t 1 and t 2 as concurrent, imposing no ordering between them. Hence, unfoldings drop part of the combinatorial explosion of the state space due to the interleaving of concurrent transitions.

The selected networks are models of signalling pathways and gene regulatory networks: two Boolean models of Epidermal Growth Factor receptors (EGF-r) [START_REF] Sahin | Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance[END_REF][START_REF] Samaga | The logic of egfr/erbb signaling: Theoretical properties and analysis of high-throughput data[END_REF], one Boolean model of tumor cell invasion (Wnt) [START_REF] David | Mathematical modelling of molecular pathways enabling tumour cell invasion and migration[END_REF], two Boolean models of T-Cell receptor (TCell-r) [START_REF] Klamt | A methodology for the structural and functional analysis of signaling and regulatory networks[END_REF][START_REF] Saez-Rodriguez | A logical model provides insights into t cell receptor signaling[END_REF], one Boolean model of Mitogen-Activated Protein Kinase network (MAPK) [START_REF] Grieco | Integrative modelling of the influence of MAPK network on cancer cell fate decision[END_REF], one multi-valued model of fate determination in the Vulval Precursor Cells (VPC) in C. elegans [START_REF] Weinstein | A network model for the specification of vulval precursor cells and cell fusion control in caenorhabditis elegans[END_REF], one Boolean model of T-Cell differentiation (TCell-d) [START_REF] Abou-Jaoudé | Model checking to assess t-helper cell plasticity[END_REF], and one Boolean models of cell cycle regulation (RBE2F) [START_REF]RB/E2F pathway[END_REF]. The ANs result from automatic translation from the logical network specifications in the above references; for most models using the logicalmodel tool [START_REF]Colomoto group[END_REF]. Note that the obtained ANs are bisimilar to the logical networks [START_REF] Chatain | Characterization of reachable attractors using Petri net unfoldings[END_REF]. For each of these models, we selected initial states and nodes for which the activation will be the reachability goal 1 .

Table 1 sums up the results before and after the goal-oriented reduction. The number of reachable states is computed with its-reach [START_REF]LIP6/Move. Its tools[END_REF] using a symbolic representation, and the size of the complete finite prefix (number of instances of transitions) is computed with Mole [START_REF] Schwoon | Mole[END_REF]. The goal-oriented reduction is performed using Pint [START_REF] Paulevé | PINT -Static analyzer for dynamics of automata networks[END_REF]. In each case, the reduction step took less than 0.1s, thanks to its very low complexity when applied to logical networks.

There is a substantial shrinkage of the dynamics for the reduced models, which can turn out to be drastic for large models. In some cases, the model is too large to compute the state space without reduction. For some large models, the unfolding is too large to be computed, whereas it can provide a very compact representation compared to the state space for large networks exhibiting a high degree of concurrency (e.g., TCell-d, RBE2F). In the case of first profile of TCell-d and EGF-r (104) the reduction removed all the transitions, resulting in an empty model. Such a behaviour can occur when the local causality analysis statically detect that the reachability goal is impossible, i.e., the necessary condition of section 3.1 is not satisfied. On the other hand, a non-empty reduced model does not guarantee the goal reachability. Appendix B show additional results with the reduction made without the filtering valid s (section 3.1). property not E [ (not a 1 and not b 1 ) U g ] (U being the until operator). The property states that there exists no trace where none of the local state of the cut set is reached prior to the goal. It is therefore required that all the minimal traces to the goal reachability are present in the model: if one is missing, a set of local states could be validated as cut set whereas it may not be involved in the missed trace.

Verification of goal reachability

Table 2 compares the model-checking of cut sets properties using NuSMV and its-ctl [START_REF]LIP6/Move. Its tools[END_REF] on a range of the biological networks used in the previous sections. Because the dynamical property is much more complex, its-reach cannot be used. The cut sets have been computed beforehand with Pint. Because the goal-oriented reduction preserves all the minimal traces to the goal, the results are equivalent in the reduced models. Similarly to the simple reachability, the goal-oriented reduction drastically improves the tractability of large models.

Discussion

This paper introduces a new reduction for automata networks parametrized by a reachability property of the form: from a state s there exists a trace which leads to a state where a given automaton g is in state g .

The goal-oriented reduction preserves all the minimal traces satisfying the reachability property under a general concurrent semantics which allows at each step simultaneous transitions of an arbitrary number of automata. Hence, the minimal trace preservation is ensured for any stricter semantics, ranging from the fully asynchronous to maximally parallel transitions.

Its time complexity is polynomial in the total number of transitions and exponential with the maximal number of local states within an automaton. Therefore, the procedure is extremely scalable when applied on networks between numerous automata, but where each automaton has a few local states.

Applied to logical models of biological networks, the goal-oriented reduction can lead to a drastic shrinkage of the reachable state space with a negligible computational cost. We illustrated its application for the model-checking of simple reachability properties, but also for the validation of cut sets, which requires the completeness of minimal traces in the reduced model. It results that the goal-oriented reduction can increase considerably the scalability of the formal analysis of dynamics of automata networks.

The goal is expressed as a single local state reachability, which also allows to to support sequential reachability properties between (sub)states using an extra automaton. For instance, the property "reach a 1 and b 1 , then reach c 1 " can be encoded using one extra automaton g, where g 0 {a1,b1} ----→ g 1 and g 1 {c1} --→ g . Further work consider performing the reduction on the fly, during the state space exploration, expecting a stronger pruning. Although the complexity of the reduction is low, such approaches would benefit from heuristics to indicate when a new reduction step may be worth to apply.

given that a z a k ∈ B.

The idea is then to remove the transitions forming the loop within automaton a. However, transitions in other automata may depend causally on the transitions that compose the local loop in automaton a within steps m and n, following the notations in lemma 3.

Lemma 4 establishes that we can always find m and n such that none of the transitions within these steps with an enabling condition depending on automaton a are in tr(B). Indeed, if a transition in tr(B) depends on a local state of a, let us call it a p , the objectives a 0 a p and a p a k are in B, due to the second and third condition in definition 8. Lemma 3 can then be applied on the subpart of π that contains the transition a i → a j not in tr(B) and that concretizes either a 0 a p or a p a k to identify a smaller loop containing a i → a j . Lemma 4. Let us assume a ∈ Σ and q ∈ [1; |π|] with a i → a j ∈ π q \ tr(B). There exists m, n ∈

[1; |π|] with m ≤ q ≤ n such that ∀t ∈ tr(π m+1..n ), enab(t) ∩ S(a) = ∅ ⇒ t / ∈ tr(B), and, if a = g or ∃t ∈ tr(π n+1..|π| ) ∩ tr(B) with enab(t) ∩ S(a) = ∅, then (π 1..m-1 ) • ∩ S(a) = (π 1..n ) • ∩ S(a) .
Proof. First, let us assume that a = g and for any t ∈ π q+1..|π| , enab(t) ∩ S(a) = ∅ ⇒ t / ∈ tr(B): the lemma is verified with m = q and n = |π|.

Then, let us assume there exists v ∈ [q + 1; |π|] such that ∃t ∈ tr(π v ) ∩ tr(B) with a k ∈ enab(t). By definition 8, this implies a 0 a k ∈ B. By lemma 3, there exists m, n ∈

[1; v -1] with m ≤ q ≤ n such that (π 1..m-1 ) • ∩ S(a) = (π 1..n ) • ∩ S(a).
Otherwise, a = g, and by lemma 3 with a k = g , there exists m, n ∈ [1; |π|] with m ≤ q ≤ n and m = n such that (π 1..m-1 ) • ∩ S(a) = (π 1..n ) • ∩ S(a). Remark that it is necessary that n < |π|: if n = |π|, g ∈ (π 1..m-1 ) • , so π would be not minimal.

In both cases, if there exists r ∈ [m + 1; n] such that ∃a p ∈ S(a) and ∃t ∈ π r with a p ∈ enab(t), then t ∈ tr(B) implies that a 0 a p ∈ B and a p a k ∈ B (definition 8). If r > q, by lemma 3 with a k = a p and v = r , there exists m , n ∈

[m+1; n] such that m ≤ q ≤ n < r ≤ n with (π 1..m -1 ) • ∩S(a) = (π 1..n ) • ∩S(a).
If r ≤ q, by lemma 3 with a 0 = a p and u = r , there exists m , n ∈

[m + 1; n] such that r ≤ m ≤ q ≤ n with (π 1..m -1 ) • ∩ S(a) = (π 1..n ) • ∩ S(a)
. Therefore, by induction with lemma 3, there exists m, n ∈

[1; |π|] such that ∀t ∈ tr(π m+1..n ), enab(t) ∩ S(a) = ∅ ⇒ t / ∈ tr(B).
Using lemma 4, we show how we can identify a subset of transitions in π that can be removed to obtain a sub-trace for g reachability. In the following, we refer to the couple (m, n) of lemma 4 with cb(π, a, q) (definition 9). Definition 9 (cb(π, a, q)). Given a ∈ Σ, q ∈ [1; |π|] with t ∈ π q \ tr(B) and Σ(t) = a, we define cb(π, a, q) = (m, n) where m, n ∈ [1; |π|] such that:

• ∀t ∈ tr(π m+1..n ), enab(t) ∩ S(a) = ∅ ⇒ t / ∈ tr(B); • a = g ∨ ∃t ∈ tr(π n+1..|π| ) ∩ tr(B) with enab(t) ∩ S(a) = ∅ =⇒ (π 1..m-1 ) • ∩ S(a) = (π 1..n ) • ∩ S(a).
Moreover, if a = g, then n < |π|.

We use lemma 4 to collect the portions of π to redact according to each automaton. We start from the last transition in π that is not in tr(B): if tr(π) ⊆ tr(B), there exists l ∈ [1; |π|] such that π l ⊆ tr(B) and ∀n > l, π n ⊆ tr(B). By lemma 2, we know that l < |π|. Let us denote by b i → b j one of the transitions in π l which is not in tr(B).

We define Ψ ⊆ Σ × [1; |π|] × [1; |π|] the smallest set which satisfies:

• (b, m, n) ∈ Ψ if cb(π, l, b) = (m, n)
• ∀(a, m, n) ∈ Ψ, ∀q ∈ [m + 1; n], ∀t ∈ π q , enab(t) ∩ S(a) = ∅ =⇒ (Σ(t), m , n ) ∈ Ψ where cb(π, q, Σ(t)) = (m , n ).

Finally, let us define the sequence of steps as the sequence of steps π where the transitions delimited by Ψ are removed: for each (a, m, n) ∈ Ψ, all the transitions of automaton a occurring between π m and π n are removed. Formally, | | = |π| and for all q ∈ [1; |π|], q ∆ = {t ∈ π q | (a, m, n) ∈ Ψ : a = Σ(t) ∧ m ≤ q ≤ n}.

From lemma 4 and Ψ definition, is a valid trace. Moreover, by lemma 4, there is no q ∈ [1; |π|] such that (g, q, |π|) ∈ Ψ, hence g ∈ • . Therefore, π is not minimal, which contradicts our hypothesis. In conclusion, if π is a minimal trace for g reachability from state s, then, tr(π) ⊆ tr(B).

B Experiments with partial reduction

The goal-oriented reduction relies on two intertwined analyses of the local causality in ANs: (1) the computation of potentially involved objectives (section 3.2) and ( 2) the filtering of objective that can be proven impossible (section 3.1). The second part can be considered optional: one could simply define the predicate valid s to be always true. In order to appreciate the effect of this second part, we show here the intermediary results of model reduction without the filtering of impossible objectives. It is shown in table below, in the lines in italic. As we can see, for some models it has no effect on the reduction, for some others the filtering parts is necessary to obtained important reduction of the state space (e.g., MAPK, TCell-r (94), TCell-d). 

Model

Figure 1 :

 1 Figure 1: An example of automata network. Automata are represented by labelled boxes, and local states by circles where ticks are their identifier within the automaton -for instance, the local state a 0 is the circle ticked 0 in the box a. A transition is a directed edge between two local states within the same automaton. It can be labelled with a set of local states of other automata. In this example, all the transitions are conditioned by at most one other local state.

Proposition 1 .

 1 then the objective b 0 b k is already in the set, assuming s(b) = b 0 . For all objective P ∈ Obj, valid s (P ) ∆ ⇔ P ∈ Ω where Ω is the least fixed point of the monotonic function F : 2 Obj → 2 Obj with

  -paths s (P )) , where, ∀P ∈ Obj, local-paths s (P ) ∆ = {η ∈ local-paths(P ) | ∀n ∈ [1; |η|], ∀b k ∈ enab(η n ), valid s (b 0 b k )} , enab(t) being the enabling condition of local transition t (definition 1).

Theorem 1 .

 1 For each minimal trace π reaching g from s, tr(π) ⊆ tr(B).

Figure 2 Figure 2 :

 22 Figure 2 shows the results of the reduction on the example AN of figure 1 for the reachability of c 2 from the state where all automata start at 0. Basically, the local path from c 0 to c 2 using d 1 being impossible to concretize (because valid s (d 0 d 1 ) is false), it has been removed, and consequently, so are the transitions involving b 1 as b 1 is not required for c 2 reachability. Because the number of objectives is polynomial (|Obj| = a∈Σ |S(a)| 2 ), the computation of B and tr(B) is very efficient, both from a time and space complexity point of view. The sets B ⊆ Obj and tr(B) ⊆ T can be built iteratively, from the empty sets: when a new objective b b i is inserted in B, each transition

Example 2 .π = {a 0 {b0}--→ a 1 } :: {b 0 {a1}--→ b 1 , c 0 {a1}--→ c 1 } :: {a 1 ∅- → a 0 } :: {b 1 {a0}--→ b 0 }:: {c 1 {b0}--→ c 2 1 {a0}--→ b 0 at step 4 . 1 {b0}--→ c 2 }

 2010011010121412 Let us consider the reachability of c 2 in the AN of figure 1 from state a 0 , b 0 , c 0 , d 0 . The transitions tr(B) preserved by the reduction for that goal are listed in figure 2. Let π be the following trace in the AN of figure 1: } . The latest transition not in tr(B) is b One can compute cb(π, 4, b) = (2, 4), and as there is no transition involving b between steps 3 and 4, Ψ = {(b, 2, 4)}; therefore, the sequence = {a 0 {b0} --→ a 1 } :: {c 0 {a1} --→ c 1 } :: {a 1 ∅ -→ a 0 } :: {} :: {c is a valid sub-trace of π reaching c 2 , proving π non-minimality.

Table 1 :

 1 Comparisons before (normal font) and after (bold font) the goal-oriented AN reduction. Each model is identified by the system, the number of automata (within parentheses), and a profile specifying the initial state and the reachability goal. |T | is the number of local transitions in the AN specification; "#states" is the number of reachable global states from the initial state; "|unf|" is the size of the complete finite prefix of the unfolding. "KO" indicates an execution running out of time (30 minutes) or memory. When applied to goal reachability, we show the total execution time and memory used by the tools NuSMV and its-reach. Computation times where obtained on an Intel R Core TM i7 3.4GHz CPU with 16GB RAM. For each case, the reduction procedure took less than 0.1s.

	Model		|T |	# states	|unf|	NuSMV	its-reach
	EGF-r (20)	68 43	4,200 722	1,749 0.2s 10Mb 336 0.1 8Mb	0.17 7Mb 0.1s 5Mb
	Wnt (32)	197 117	7,260,160 241,060 217,850 0.9s 32Mb KO 30s 48Mb	0.3s 18Mb 0.5s 17Mb
	TCell-r (40)	90 ≈ 1.2 • 10 11 46 25,092 14,071 3.8s 36Mb KO KO	1.1s 52Mb 0.6s 15Mb
	MAPK (53)	173 ≈ 3.8 • 10 12	KO	KO	0.9s 60Mb
	profile 1		113 ≈ 4.5 • 10 10	KO	KO	2s 48Mb
	MAPK (53)	173	8,126,465	KO	63s 83Mb	0.2s 15Mb
	profile 2		69	269,825 155,327 1.5s 36Mb	0.4s 18Mb
	VPC (88)	332 219	KO 1.8 • 10 9 43,302 236s 156Mb 0.8s 21Mb KO KO 1s 50Mb
	TCell-r (94)	217 42	KO 54.921	KO 1,017	KO 0.4 23Mb 0.26s 14Mb KO
	TCell-d (101) 384 ≈ 2.7 • 10 8	257	3s 40Mb	0.5s 24Mb
	profile 1		0	1	1	
	TCell-d (101) 384	KO	KO	KO	0.5s 23Mb
	profile 2		161 75,947,684	KO 474s 260Mb 0.3s 19Mb
	EGF-r (104)	378	9,437,184	47,425	7s 35Mb	0.6s 23Mb
	profile 1		0	1	1	
	EGF-r (104)	378 ≈ 2.7 • 10 16	KO	KO	1.36s 60Mb
	profile 2		69 62,914,560	KO	11s 33Mb	0.3s 17Mb
	RBE2F (370)	742 56	KO 2,350,494 28,856 KO	KO 5s 377Mb	KO 5s 170Mb
		Wnt (32) TCell-r (40) EGF-r (104) TCell-d (101) RBE2F (370)
	NuSMV	44s 55Mb 9.1s 27Mb 2.4s 34Mb KO	KO 13s 33Mb 600s 360Mb KO	KO 6s 29Mb
	its-ctl	105s 2.1Gb 492s 10Gb 16s 720Mb 11s 319Mb 21s 875Mb KO	KO KO	KO 179s 1.8Gb

Table 2 :

 2 Comparisons before (normal font) and after (bold font) the goal-oriented AN reduction for CTL model-checking of cut sets.

Scripts and models available at http://loicpauleve.name/gored-suppl.zip

Example of application: goal reachability

In order to illustrate practical applications of the goal-oriented model reduction, we first systematically applied model-checking for the goal reachability on the initial and reduced model (table 1).

We compared two different softwares: NuSMV [START_REF] Cimatti | NuSMV 2: An opensource tool for symbolic model checking[END_REF] which combines Binary Decision Diagrams and SAT approaches for synchronous systems, and its-reach [START_REF]LIP6/Move. Its tools[END_REF] which implements efficient decision diagram data structures [START_REF] Hamez | Building efficient model checkers using hierarchical set decision diagrams and automatic saturation[END_REF]. In both cases, the transition systems specified as input of these tools is an exact encoding of the asynchronous semantics of the automata networks, where steps (definition 2) are always composed of only one transition. For NuSMV, the reachability property is specified with CTL [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF] ("EF g ", g being the goal local state, and EF the exists eventually CTL operator). It is worth noting that NuSMV implements the cone of influence reduction [START_REF] Biere | Verifying safety properties of a powerpc microprocessor using symbolic model checking without bdds[END_REF] which removes variables not involved in the property. its-reach is optimized for checking if a state belongs to the reachable state space, and cannot perform CTL checking.

Experiments show a remarkable gain in tractability for the model-checking of reduced networks. For large cases, we observe that the dynamics can be tractable only after model reduction (e.g., TCell-r (94), RBE2F (370)). its-reach is significantly more efficient than NuSMV because it is tailored for simple reachability checking, whereas NuSMV handles much more general properties.

Because the goal-reduction preserves all the minimal traces for the goal reachability, it preserves the goal reachability: the results of the model-checking is equivalent in the initial and reduced model.

Example of application: cut set verification

The above application to simple reachability does not requires the preservation of all the minimal traces. Here, we apply the goal-oriented reduction to the cut sets for reachability, where the completeness of minimal traces is crucial.

Given a goal, a cut set is a set of local states such that any trace leading to the goal involves, in some of its transitions, one of these local states. Therefore, disabling all the local states of a cut set should make the reachability of the goal impossible. This disabling could be implemented by the knock-out/in of the corresponding species in the biological system: cut sets predict mutations which should prevent a concerned reachability to occur (e.g., active transcription factor). Such cut sets have been studied in [START_REF] Sahin | Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance[END_REF][START_REF] Paulevé | Under-approximating cut sets for reachability in large scale automata networks[END_REF] and are close to intervention sets [START_REF] Klamt | A methodology for the structural and functional analysis of signaling and regulatory networks[END_REF] (although those latter are not defined on traces but on pseudo-steady states).

We focus here on verifying if a (predicted) set of local states is, indeed, a cut set for the goal reachability. In the scope of this experiment, we consider cut sets that are disjoint with the initial state. The cut set property can be expressed with CTL: {a 1 , b 1 } is a cut set for g reachability if the model satisfies the CTL

A Proof of minimal traces preservation

We assume a global AN (Σ, S, T ) where g ∈ Σ, g ∈ S(g), and s ∈ S with s(g) = g .

From property 1 and definition 7, any trace reaching first a i and then a j uses all the transitions of at least one local path in local-paths s (a i a j ).

We first prove with lemma 2 that the last transition of a minimal trace π for g reachability, of the form π |π| = {g i → g }, is necessarily in tr(B). Indeed, by definition of B, g 0 g ∈ B; and by lemma 1, g i → g / ∈ local-paths s (g 0 g ) implies that reaching g i requires to reach g beforehand.

Lemma 1. Given a j → a i ∈ T , if a j → a i / ∈ tr(local-paths s (a 0 a i )), then for any trace π from s with a j ∈ π v • and a i ∈ π w • for some v , w ∈ [1; |π|], there exists u < v with a i ∈ π u • .

Proof. Let η ∈ local-paths s (a 0 a j ) be an acyclic local path such that ∀n ∈ [1; |η|], a i = dest(η n ). The sequence η :: a j → a i is then acyclic and, by definition, belongs to local-paths s (a 0 a i ), which is a contradiction.

Lemma 2. If π is a minimal trace for g reachability from state s, then, necessarily, π |π| ⊆ tr(B).

Proof. As π is minimal for g reachability, without loss of generality, we can assume that π |π| = {g i → g }. By definition, tr(local-paths s (g 0 g )) ⊆ tr(B). By lemma 1, if g i → g / ∈ tr(local-paths s (g 0 g )), then there exists u < |π| such that g ∈ π u • ; hence, π would be non minimal.

The rest of the proof of theorem 1 is derived by contradiction: if a transition of π is not in tr(B), we can build a sub-trace of π which preserves g reachability, therefore π is not minimal.

Given a transition a i → a j in the q-th step of π that is not in tr(B), removing a i → a j from π q would imply to remove any further transition that depend causally on it. Two cases arise from this fact: either all further transitions that depend on a j must be removed; or a i → a j is part of loop within automaton a, and it is sufficient to remove the loop from π.

Lemma 3 ensures that if a z a k is in B and if a z occurs before the q-th step and a k after the q-th step of π, then a i → a j / ∈ tr(local-paths s (a z a k )) only if a i → a j is part of a loop, i.e., there are two steps surrounding q where the automaton a is in the same state before their application.

Intuitively, lemma 3 imposes that π has the following form: