
HAL Id: hal-01149118
https://hal.science/hal-01149118v1

Submitted on 6 May 2015 (v1), last revised 6 May 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Goal-Oriented Reduction of Automata Networks
Loïc Paulevé

To cite this version:
Loïc Paulevé. Goal-Oriented Reduction of Automata Networks. [Research Report] Laboratoire de
recherche en informatique (LRI) UMR CNRS 8623, Université Paris-Sud. 2015. �hal-01149118v1�

https://hal.science/hal-01149118v1
https://hal.archives-ouvertes.fr

Goal-Oriented Reduction of Automata Networks

Loïc Paulevé

CNRS, Laboratoire de Recherche en Informatique UMR CNRS 8623
Université Paris-Sud, 91405 Orsay Cedex, France

loic.pauleve@lri.fr

Abstract

We consider networks of finite-state machines having local transitions conditioned by the current
state of other automata. In this paper, we depict a reduction procedure tailored for a given reachability
property of the form “from global state s, there exists a sequence of transitions leading to a state where
an automaton g is in a local state >”. By exploiting a causality analysis of the transitions within the
individual automata, the proposed reduction removes local transitions while preserving all the minimal
traces that satisfy the reachability property. The complexity of the procedure is polynomial in the
total number of local states and transitions, and exponential in the number of local states within one
automaton. Applied to automata networks modelling dynamics of biological systems, we observe that
the reduction shrinks down significantly the reachable state space, enhancing the tractability of the
model-checking of large networks.

1 Introduction

Automata networks model dynamical systems resulting from simple interactions between entities. Each
entity is typically represented as an automaton with few internal states which evolve subject to the state of
a narrow range of other entities in the network. Richness of emerging dynamics arises from several factors
including the topology of the interactions, the presence of feedback loop, and the concurrency of transitions.

Automata networks are notably used to model biological systems, e.g., signalling networks which detail
the successive, intertwined, and regulated transmission of a signal from the membrane of the cell toward
the activation or inhibition of genes; and gene regulatory networks which model the thresholded up- and
down-regulation circuits between genes. In such a context, it is crucial to confront the dynamics of a model
to actual biological knowledge to validate or refute the model, and infer well-founded hypotheses on the
important mechanisms controlling the emerging behaviours.

Part of those properties can be modelled as reachability properties, for instance for checking the
(im)possibility of activation of an entity from a given set of initial states with a potential set of perturbations.
Due to the increasing precision of biological knowledge, models of networks become larger and larger and
can gather hundreds to thousands of interacting entities making the formal analysis of their dynamics a
challenging task.

Facing a model too large for a raw exhaustive analysis, a natural approach is to reduce its dynamics
while preserving important properties. Multiple approaches, generally complementary, have been explored
since decades to address such a challenge in dynamical and concurrent systems [23, 11, 13]. Among those,
structural reductions attempt to reduce the model specification while obtaining bisimulation, e.g., [22] on
Petri nets; or preserving a subset of dynamical features and properties, e.g., the cone of influence reduction
[4] which delimit the variables of the model having an influence of a given property, or Petri net transition
agglomerations which preserve liveness and LTL properties [3, 8]. In the scope of rule-based models of
biological networks, efficient static analysis methods have been developed to lump numerous global states
of the systems based on the fragmentation of interacting components [7]; and to a posteriori compress
simulated traces to obtain compact witnesses of dynamical properties [6]. Reduction methods focusing on
the preservation of the dynamical attractors (long-term/steady-state behaviour) have also been studied for

1

chemical reaction networks [14] and Boolean networks [15]. The latter approach applies to formalisms close
to automata networks but does not preserve reachability properties.

Contribution In this article, we introduce a reduction technique for automata networks which identifies
transitions that do not contribute to a given reachability property; and hence can be ignored. The considered
automata networks are finite sets of finite-state machines where transitions between their local states are
conditioned by the state of other automata in the network. We use a general concurrent semantics where
any number of automata can apply one transition within one step.

The reduction preserves all the minimal traces (in the sense that no step nor transition can be deleted)
satisfying reachability properties of the form “from state s there exists successive steps that lead to a state
where a given automaton g is in local state g>”. The complexity of the procedure is polynomial in the
total number of local states and transitions, and exponential in the size of one automaton. Therefore, the
reduction is highly scalable for networks between multiple automata, where each have a few local states.

The identification of the transition set that include all the minimal traces is performed by a static analysis
of the causality of local state changes within automata. Such an analysis extends previous static analysis of
reachability properties by abstract interpretation [18, 17]. By exploiting the component decomposition of
the transition system, and the explicit conditions for the transitions between the local states, necessary or
sufficient condition for reachability can be derived, and can be verified very efficiently. The work presented
here widen the impact of such a static analysis of causality to produce reduced model of automata networks
that conserve important dynamical features.

The effectiveness of our goal-oriented reduction is experimented on actual models of biological networks
and show significant shrinkage of the dynamics of the automata networks, enhancing the tractability of a
concrete verification. Compared to other existing reduction techniques, our goal is somehow close to the
cone of influence reduction mentioned above, which identifies variables that do not impact a given property,
except that our approach offers a much fine grained analysis in order to identify the sufficient transitions and
values of variables that contribute to the property.

Outline The paper is structured as follows. Section 2 sets up the definition and semantics of the automata
networks considered in this paper, together with the local causality analysis for reachability properties, based
on prior work. Section 3 first depicts a necessary condition using local causality analysis for satisfying
a reachability property and then introduce the goal-oriented reduction with the proof of minimal traces
conservation. Section 4 shows the efficiency of such a reduction as a pre-processing step for model-checking
of automata networks derived from biological networks. Finally, section 5 discusses the results and motivate
further work.

Notations Integer ranges are noted [m; n] = {m,m+ 1, · · · , n}. Given a finite set A, #A is the cardinality
of A; ℘(A) is the power set of A; ⊂ denotes the subset inclusion (possibly equal). Given n ∈ N, x = (x i)i∈[1;n]

is a sequence of elements indexed by i ∈ [1; n]; #x = n; xm..n is the subsequence (x i)i∈[m;n]; ε is the empty
sequence. ∧ and ∨ are the usual logical and and or connectors.

2 Automata Networks and Local Causality

The definition and semantics of automata networks is presented in section 2.1. The local causality analysis
for reachability properties on which relies the reduction is defined in section 2.2.

2.1 Automata Networks

We consider an Automata Network (AN) as a finite set of finite-state machines having transitions between
their local states conditioned by the state of other automata in the network. An Automata Network is
defined by a triple (Σ, S, T) (definition 1) where Σ is the set of automata identifiers; S associates to each
automaton a finite set of local states: if a ∈ Σ, S(a) refers to the set of local states of a; and T is the
list of transitions between local states within each automaton. Each local state is written of the form ai ,

2

where a ∈ Σ is the automaton in which the state belongs to, and i is a unique identifier; therefore given
ai , aj ∈ S(a), ai = aj if and only if ai and aj refers to the same local state of the automaton a. For each

automaton a ∈ Σ, T (a) refers to the set of transitions of the form t = ai
`−→ aj with ai , aj ∈ S(a), ai 6= aj ,

and ` is a set (possibly empty) of local states of automata other than a. The pre-condition of transition
t, noted •t, is the set composed of ai and of the local states in `; the post-condition, noted t• is the set
composed of aj and of the local states in `.

Definition 1 (Automata Network (Σ, S, T)). An Automata Network (AN) is defined by a tuple (Σ, S, T)

where

• Σ is the finite set of automata identifiers;

• For each a ∈ Σ, S(a) = {ai , . . . , aj} is the finite set of local states of automaton a; S =
∏
a∈Σ S(a) is

the finite set of global states;
LS =

⋃
a∈Σ S(a) denotes the set of all the local states.

• T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊂ S(a)×℘(LS\S(a))×S(a) with (ai , `, aj) ∈ Ta ⇒ ai 6= aj ,
is the mapping from automata to their finite set of local transitions.

We note ai
`−→ aj ∈ T

∆⇔ (ai , `, aj) ∈ T (a) and ai → aj ∈ T
∆⇔ ∃` ∈ ℘(LS \ S(a)), ai

`−→ aj ∈ T . Given

t = ai
`−→ aj ∈ T , orig(t)

∆
= ai , dest(t)

∆
= aj , Γ(t)

∆
= `, •t ∆

= {ai} ∪ `, and t•
∆
= {aj} ∪ `.

At any time, each automaton is in one and only one local state, forming the global state of the network.
Assuming an arbitrary ordering between automata identifiers, the set of global states of the network is
referred to as S as a shortcut for

∏
a∈Σ S(a). Given a global state s ∈ S, s(a) is the local state of automaton

a in s, i.e., the a-th coordinate of s. Moreover we write ai ∈ s
∆⇔ s(a) = ai ; and for any l s ∈ ℘(LS),

l s ⊂ s ∆⇔ ∀ai ∈ s, s(a) = ai .
In the scope of this paper, we allow, but do not enforce, the parallel application of transitions in different

automata. This lead to the definition of a step as a set of transitions, with at most one transition per
automaton (definition 2). Note that for notational convenience in the next section, we allow empty steps.
The pre-condition (resp. post-condition) of a step τ , noted •τ (resp. τ•), naturally extends to the union of
the pre-conditions (resp. post-conditions) of compositing transitions. A step τ is playable in a state s ∈ S
if and only if •τ ⊂ s, i.e., all the local states in the pre-conditions of transitions are in s. If τ is playable
in s, s · τ denotes the state after the applications of all the transitions in τ , i.e., where for each transition
ai

`−→ aj ∈ τ , the local state of automaton a has been replaced with aj . Remark that τ• ⊂ s · τ and that this
definition implicitly rules out steps composed of incompatible or ill-defined transitions, where different local
states of a same automaton are in the pre-condition.

Definition 2 (Step). Given an AN (Σ, S, T), a step τ is a sub-set of local transitions T such that for each
automaton a ∈ Σ, there is at most one local transition T (a) in τ (∀a ∈ Σ,#(τ ∩ T (a)) ≤ 1).

We note •τ ∆
=

⋃
t∈τ
•t and τ• ∆

=
⋃
t∈τ t

•. Given a state s ∈ S such that •t ⊂ s, s · τ denotes the state
s where local states in •τ have been replaced with τ•: ∀a ∈ Σ, (s · τ)(a) = aj if ∃ai → aj ∈ τ , and
(s · τ)(a) = s(a) otherwise.

A sequence of steps that are successively playable in a state s ∈ S is called a trace (definition 3). The
pre-condition •π of a trace π is the set of local states that have to be in a state s in order to apply π
(•π ⊂ s); and the post-condition π• is the set of local states that are present in the state after the full
application of a trace (π• ⊂ s · π).

Definition 3 (Trace). Given an AN (Σ, S, T) and a state s ∈ S, a trace π is a sequence of steps such that
∀i ∈ [1; #π], •πi ⊂ (s · π1 · · · ·πi−1).
The pre-condition •π and the post-condition π• are defined as follows: for all n ∈ [1; #π], for all ai ∈ •πn,
ai ∈ •π

∆⇔ ∀m ∈ [1; n − 1], S(a) ∩ •πm = ∅; similarly, for all n ∈ [1; #π], for all aj ∈ πn•, aj ∈ π•
∆⇔ ∀m ∈

[n + 1;m], S(a) ∩ πm• = ∅. If π is empty, •π = π• = ∅.
The set of transitions composing a trace π is noted tr(π)

∆
=

⋃#π
n=1 π

n.

3

Given an Automata Network (Σ, S, T) and a state s ∈ S, the local state g> ∈ LS is reachable from s if
and only if either g> ∈ s or there exists a trace π with •π ⊂ s and g> ∈ π•. We consider a trace π for g>
reachability from s is minimal if and only if there exists no other trace reaching g> with a strict sub-sequence
of steps, or with strict subset of steps of π (definition 4). Equivalently, a trace is minimal for g> reachability
if no steps or transitions can be removed from it without breaking the trace validity or g> reachability.

Definition 4 (Minimal trace for local state reachability). A trace π is minimal w.r.t. g> reachability from
s if and only if there is no trace $, $ 6= π, #$ ≤ #π, g> ∈ $•, such that there exists an injection
φ : [1; #$]→ [1; #π] with ∀i , j ∈ [1; #$], i < j ⇔ φ(i) < φ(j) and $i ⊆ πφ(i).

Automata networks as presented can be considered as a class of 1-safe Petri Nets [2] (at most one token
per place) having groups of mutually exclusive places, acting as the automata, and where each transition has
one and only one in-going and out-going arc and any number of read arcs. The semantics considered in
this paper where transitions within different automata can be applied simultaneously echoes with Petri net
step-semantics and concurrent/maximally concurrent semantics [10, 19]. In the Boolean network community,
such a semantics is referred to as the asynchronous generalized update schedule [1].

2.2 Local Causality

Locally reasoning within one automaton a, we call the reachability of one of its local state aj from s with
s(a) = ai an objective, noted ai →∗ aj (definition 5).

Definition 5 (Objective). Given an Automata Network (Σ, S, T), the reachability of local state aj from ai

is called an objective and is denoted ai →∗ aj . The set of all objectives is referred to as Obj ∆
= {ai →∗ aj |

(ai , aj) ∈ LS× LS}.

Given an objective ai →∗ aj ∈ Obj, local-paths(ai →∗ aj) (definition 6) is the set of all the acyclic local
paths of transitions T (a) within automaton a from ai to aj . A local path is not necessarily a trace, as
transitions may be conditioned by the state of other automata in the network; however, any trace reaching
first ai and then aj uses all the transitions of one local path in local-paths(ai →∗ aj), as stated by property 1.
One can remark that the number of local acyclic paths within an automaton a is polynomial in the number
of transitions T (a) and exponential in the number of local states in a.

Definition 6 (local-paths). For each objective ai →∗ aj ∈ Obj, if i = j , local-paths(ai →∗ ai)
∆
= {ε}; if

i 6= j , a sequence η of transitions in T (a) is in local-paths(ai →∗ aj) if and only if #η ≥ 1, orig(η1) = ai ,
dest(η#η) = aj , ∀n ∈ [1; #η − 1], dest(ηn) = orig(ηn+1), and ∀n,m ∈ [1; #η], n 6= m ⇒ orig(ηn) 6=
dest(ηm).

Property 1. For any trace π, for all a ∈ Σ, for all ai , aj ∈ S(a), for all n,m ∈ [1; #π], ai ∈ •πn and
aj ∈ πm• only if ∃η ∈ local-paths(ai →∗ aj) such that exists an injection φ : [1; #η] → [n;m] with
∀u, v ∈ [1; #η], u < v ⇔ φ(u) < φ(v) and ηu ∈ πφ(u).

Example 1. Let us consider the automata network (Σ, S, T), graphically represented in figure 1, where:

Σ = {a, b, c, c}

S(a) = {a0, a1} T (a) = {a0
{b0}−−→ a1, a1

∅−→ a0}

S(b) = {b0, b1} T (b) = {b0
{a1}−−→ b1, b1

{a0}−−→ b0}

S(c) = {c0, c1, c2} T (c) = {c0
{a1}−−→ c1, c1

{b1}−−→ c0, c1
{b0}−−→ c2, c0

{d1}−−→ c2}

S(d) = {d0, d1} T (d) = ∅

The local paths for the objective c0 →∗ c2 are local-paths(c0 →∗ c2) = {c0
{a1}−−→ c1

{b0}−−→ c2, c0
{d1}−−→ c2}.

From the state 〈a0, b0, c0, d0〉, instances of traces are
{a0

{b0}−−→ a1}, {b0
{a1}−−→ b1, c0

{a1}−−→ c1}, {a1
∅−→ a0}, {b1

{a0}−−→ b0}, {c1
{b0}−−→ c2} ;

{a0
{b0}−−→ a1}, {c0

{a1}−−→ c1}, {c1
{b0}−−→ c2} ;

the latter only being a minimal trace for c2 reachability.

4

a

0

1

b

0

1

c

0

1

2

d

0

1

b0 a1

b0

b1

d1

a1 a0

Figure 1: An example of Automata Network. Automata are represented by labelled boxes, and local states by
circles where ticks are their identifier within the automaton – for instance, the local state a0 is circle ticked
0 in the box a. A transition is a directed edge between two local states within the same automaton. It can
be labelled with a set of local states of other automata. In this example, all the transitions are conditioned
by at most one other local state.

3 Goal-Oriented Reduction

Assuming a global Automata Network (Σ, S, T), an initial state s ∈ S and a reachability goal g> where
g ∈ Σ and g> ∈ S(g), the goal-oriented reduction identifies a subset of local transitions T that are sufficient
for reproducing all the minimal traces leading to g> from s. The reduction procedure takes advantage of the
local causality analysis both to fetch the transitions that matters for the reachability goal and to filter out
objectives that can be proven impossible.

3.1 Necessary condition for local reachability

Given an objective ai →∗ aj and a global state s ∈ S where s(a) = ai , prior work have demonstrated
necessary conditions that need to be satisfied by the network for the existence of a trace leading to aj from
s [18, 17]. Those necessary conditions rely on the local causality analysis defined in previous section which
extract necessary steps that have to be performed in order to reach the concerned local state.

Several necessary conditions have been demonstrated in [18] that take into account several informations
extracted from local paths (dependencies, sequentiality, partial order constraints, . . .). The complexity of
deciding most of these necessary conditions is polynomial in the total number of local states and exponential
in the number of local states within one automaton.

In the remaining of this section, we consider a generic predicate valids which is false only when an applied
to an objective such that there exists no trace concretizing it from s.

Definition 7 (valids). Given any objective P ∈ Obj, valids(P) if there exists a trace π from s such that
∃m, n ∈ [1; #π] with m ≤ n, ai ∈ •πm, and aj ∈ πn•.

For the sake of self-consistency, we give in proposition 1 an implementation of such a predicate which is
a simplified version of a necessary condition demonstrated in [18]. Essentially, an objective is valid if there
exists a local path for the objective where all the objectives from the initial state to any of the condition of
the compound transitions are valid. Such a set of valid objective can be computed iteratively, starting from
objectives of the form ai →∗ ai , and progressively add objectives having a local path where conditions lead
to already validated objectives.

Proposition 1. For all objective P ∈ Obj, valids(P)
∆⇔ P ∈ Ω where Ω is the least fixed point of the

monotonic function F : ℘(Obj)→ ℘(Obj), with

F(Ω)
∆
= {ai →∗ aj ∈ Obj | ∃η ∈ local-paths(ai →∗ aj) : ∀n ∈ [1; #η], ∀bk ∈ Γ(ηn),

s(b)→∗ bk ∈ Ω} .

Applied to the Automata Network of figure 1, if s = 〈a0, b0, c0, d0〉, valids(c0 →∗ c2) because c0
a1−→

c1
b0−→ c2 ∈ local-paths(c0 →∗ c2) with valids(a0 →∗ a1) and valids(b0 →∗ b0); but not valids(d0 →∗ d1).
More restrictive implementations of valids may be defined, for instance following [18], which is considered

out of the scope of this paper.

5

3.2 Reduction procedure

With this section, we introduce the goal-oriented reduction procedure which aims at identifying transitions
that do not take part in any minimal trace leading from the given initial state to the goal local state.
Essentially, the goal-oriented reduction exploits the local causality analysis to focus only on objectives involved
in the goal reachability while redacting objectives that do not satisfy necessary condition for concretizability.

The reduction procedure we propose consists in collecting a set B of objectives that may contribute to
a minimal trace for the goal reachability. The construction of B from s and g> is detailed in definition 8.
To ease notations, and without loss of generalization, we assume that any automaton a is in state a0 in s.
Initially starting with the main objective g0 →∗ g>, the procedure iteratively collects objectives that may be
involved in the undergoing local paths of already collected objectives. The considered local paths are only
those where all transition conditions rely on valid objectives (definition 7). The transitions composing such

local paths are noted tr(B). The involved objectives are identified as follows: if a transition bj
`−→ bk is in

tr(B), for each transition condition ai ∈ `, the objective a0 →∗ ai is added in B, and for each other objective
b? →∗ bi ∈ B of automaton b, the objective bk →∗ bi is added in B. Whereas the first criteria references
the objectives required to concretize a local path, the second criteria accounts for the possible interleaving
and successions of objectives for a same automaton.

Definition 8 (B). Given an Automata Network (Σ, S, T), an initial state s where, without loss of generality,
∀a ∈ Σ, s(a) = a0, and a local state g> with g ∈ Σ and g> ∈ S(g), B ⊂ Obj is the smallest set which
satisfies the following conditions:

1. g0 →∗ g> ∈ B

2. bj
`−→ bk ∈ tr(B)⇒ ∀ai ∈ `, a0 →∗ ai ∈ B

3. bj
`−→ bk ∈ tr(B)⇒ ∀b? →∗ bi ∈ B, bk →∗ bi ∈ B

with

tr(B)
∆
=

⋃
P∈B

tr(local-pathss(P)) ,

where, ∀P ∈ Obj,

local-pathss(P)
∆
= {η ∈ local-paths(P) | ∀n ∈ [1; #η],∀bk ∈ Γ(ηn), valids(b0 →∗ bk)} .

Theorem 1 states the main property emerging from definition 8: any trace which is minimal for the
reachability of g> from initial state s is composed only of transitions in tr(B). The proof is given in section 3.3.
Therefore, the Automata Network (Σ, S, tr(B)) contains less transitions but preserves all the minimal traces
for the goal reachability.

Theorem 1. For each minimal trace π reaching g> from s, tr(π) ⊂ tr(B).

The construction of B is done by a progressive exploration of related objectives and local paths. Noting
that there is at most

∑
a∈Σ #S(a)2 objectives, and that the number of acyclic local paths is exponential in

the number of local states in the automaton, the overall complexity of the reduction, including the necessary
condition checking in proposition 1, is polynomial in the total number of local states and transitions, and
exponential in the size of one automaton.

Figure 2 shows the results of the reduction of the example Automata Network of figure 1 for the
reachability of c2 from the state where all automata start at 0. Basically, the local path from c0 to c2 using
d1 being impossible to concretize (because valids(d0 →∗ d1) is false), it has been removed, and consequently,
so are the transitions involving b1 as b1 is not required for c2 reachability.

6

a

0

1

b

0

1

c

0

1

2

d

0

1

b0 a1

b0

Figure 2: Reduced Automata Network from figure 1 for the reachability of c2 from initial state indicated in
grey.

3.3 Proof of minimal traces conservation

Let us consider any trace π that is minimal for g> reachability from s ∈ S.
From property 1 and definition 7, any trace reaching first ai and then aj uses all the transitions of one

local path in local-pathss(ai →∗ aj).
We first prove with lemma 2 that the last transition of π, of the form π#π = {gi → g>}, is necessarily in

tr(B). Indeed, by definition of B, g0 →∗ g> ∈ B; therefore by lemma 1, gi → g> /∈ local-pathss(g0 →∗ g>)

implies that reaching gi requires to reach g> beforehand.

Lemma 1. If aj → ai /∈ tr(local-pathss(a0 →∗ ai)), for any trace π from s such that ∃v ∈ [1; #π] with
aj ∈ πv •, there exists u ∈ [1; v − 1] such that ai ∈ πu•.

Proof. If there exists an acyclic sequence η ∈ local-pathss(a0 →∗ aj) where ai does not belong to, the
sequence η ::aj → ai is acyclic and, by definition, belongs to local-pathss(a0 →∗ ai), which is a contradiction.

Lemma 2. If π is a minimal trace for g> reachability from state s, then, necessarily, π#π ⊂ tr(B).

Proof. As π is minimal for g> reachability, without loss of generality, we can assume that π#π = {gi → g>}.
By definition, tr(local-pathss(g0 →∗ g>)) ⊂ tr(B). By lemma 1, if gi → g> /∈ tr(local-pathss(g0 →∗ g>)),
then there exists u < #π such that g> ∈ πu•; hence, π would be non minimal.

The rest of the proof of theorem 1 can be derived by contradiction: the main idea is to demonstrate that
if a transition in π is not in tr(B), we can remove a set of transitions from π while preserving g> reachability;
therefore π is not minimal.

Given a transition ai → aj in the q-th step of π that is not in tr(B), removing ai → aj from πq would
imply to remove any further transition that is causally dependent on aj . Two cases arise from this fact: either
all further transitions that depends on aj must be removed; or ai → aj is part of loop, and it is sufficient to
remove the loop from π.

Lemma 3 ensures that if an objective az →∗ ak is in B and if az occurs before the q-th step and ak after
the q-th step, then ai → aj /∈ tr(local-pathss(az →∗ ak)) only if ai → aj is part of a loop, i.e., there are two
steps surrounding q where the automaton a is in the same state after their application.

Lemma 3. Given q ∈ [1; #π] and a ∈ Σ such that ∃ai → aj ∈ πq with ai → aj /∈ tr(B) and ∃u, v ∈ [1; #π]

where u ≤ q < v , az ∈ •πu, ak ∈ πv , with az →∗ ak ∈ B, then there exists m, n ∈ [u; v] with m ≤ q ≤ n
such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a). Moreover, if ak ∈ •πv , n < v .

Proof. As ai → aj /∈ tr(B) and tr(local-pathss(az →∗ ak)) ⊂ tr(B), it results that ai → aj /∈ tr(local-pathss(az →∗
ak)). Therefore ai → aj belongs to a loop of a local path from az (at index u in π) to ak (at index v in π).
Hence, ∃m, n ∈ [u; v] with m ≤ q ≤ n and ah, ax , ay ∈ S(a) such that ah → ax ∈ πm and ay → ah ∈ πn;
therefore (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a) = ah. In the case where ak ∈ •πv , ak 6= ah, hence n < v .

Redacting such a loop from π may, again, enforce to remove other transitions from π that depend
on those transitions occurring during the loop. Lemma 4 establishes that we can always delimit a loop
of automaton a such that any transition that depend on the automaton a during the loop is not in tr(B).

7

Basically, such a property derives from the fact that if a transition in tr(B) depends on a local state of a, let
us call it ap, the objectives a0 →∗ ap and ap →∗ ak are in B: lemma 3 can then be applied on the subpart of
π that contains the transition ai → aj not in tr(B) and that concretizes either a0 →∗ ap or ap →∗ ak to
identify a smaller loop containing ai → aj .

Lemma 4. Given q ∈ [1; #π] and a ∈ Σ with ai → aj ∈ πq but ai → aj /∈ tr(B), there exists m, n ∈ [1; #π]

with m ≤ q ≤ n such that ∀t ∈ tr(πm+1..n), Γ(t) ∩ S(a) 6= ∅ =⇒ t /∈ tr(B). Moreover, if there exists
v ∈ [n+ 1; #π] such that ∃t ∈ tr(πv)∩ tr(B) with Γ(t)∩S(a) 6= ∅, then (π1..m−1)•∩S(a) = (π1..n)•∩S(a);
otherwise if a = g, then (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a) with n < #π.

Proof. First, let us assume that a 6= g and for any t ∈ πq+1..#π, Γ(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B): the lemma
is verified with m = q and n = #π.

Then, let us assume there exists v ∈ [q + 1; #π] such that ∃t ∈ tr(πv) ∩ tr(B) with ak ∈ Γ(t). By
definition 8, this implies a0 →∗ ak ∈ B. By lemma 3, there exists m, n ∈ [1; v − 1] with m ≤ q ≤ n such
that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).

Otherwise, a = g, and by lemma 3 with ak = g>, there exists m, n ∈ [1; #π] with m ≤ q ≤ n and
m 6= n such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a). Remark that it is necessary that n < #π: if n = #π,
g> ∈ (π1..m−1)•, so π would be not minimal.

In both cases, if there exists r ∈ [m + 1; n] such that ∃ap ∈ S(a) and ∃t ∈ πr with ap ∈ Γ(t), then
t ∈ tr(B) implies that a0 →∗ ap ∈ B and ap →∗ ak ∈ B (definition 8). If r > q, by lemma 3 with ak = ap and
v = r , there exists m′, n′ ∈ [m+1; n] such that m′ ≤ q ≤ n′ < r ≤ n with (π1..m′−1)•∩S(a) = (π1..n′)•∩S(a).
If r ≤ q, by lemma 3 with a0 = ap and u = r , there exists m′, n′ ∈ [m + 1; n] such that r ≤ m′ ≤ q ≤ n′
with (π1..m′−1)• ∩S(a) = (π1..n′)• ∩S(a). Therefore, by induction with lemma 3, there exists m, n ∈ [1; #π]

such that ∀t ∈ tr(πm+1..n), Γ(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B).

Given a ∈ Σ and q ∈ [1; #π] such that ∃t ∈ πq with Σ(t) = a and t /∈ tr(B), let us refer to the couple
m, n ∈ [1; #π] from lemma 4 with cb(π, a, q): cb(π, a, q) = (m, n) ⇒ ∀t ∈ tr(πm+1..n),Γ(t) ∩ S(a) =

∅ ∨ t /∈ tr(B), and n 6= #π ⇒ (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).
We use lemma 4 to collect the portions of π to redact according to each automaton. We start from the

last transition in π that is not in tr(B): if tr(π) 6⊂ tr(B), there exists l ∈ [1; #π] such that πl 6⊂ tr(B) and
∀n > l, πn ⊂ tr(B). By lemma 2, we know that l < #π. Let us denote by bi → bj one of the transitions in
πl which is not in tr(B). Let us define Ψ ⊂ Σ× [1; #π]× [1; #π] the smallest set which satisfies:

• (b,m, n) ∈ Ψ if cb(π, l , b) = (m, n)

• ∀(a,m, n) ∈ Ψ, ∀q ∈ [m + 1; n], ∀t ∈ πq, Γ(t) ∩ S(a) 6= ∅ =⇒ (Σ(t), m′, n′) ∈ Ψ where
cb(π, q,Σ(t)) = (m′, n′).

Finally, let us define the sequence of steps $ as the sequence of steps π where the portion of transitions
referenced in Ψ are removed: for each step q ∈ [1; #π], the transition ai → aj is removed if and
only if there exists (a,m, n) ∈ Ψ with m ≤ q ≤ n. Formally, #$ = #π and for all q ∈ [1; #π],

$q ∆
= {t ∈ πq | @(a,m, n) ∈ Ψ : a = Σ(t) ∧m ≤ q ≤ n}.
From lemma 4 and Ψ definition, $ is a valid trace. Moreover, by lemma 4, there is no q ∈ [1; #π] such

that (g, q,#π) ∈ Ψ, hence g> ∈ $•. Therefore, π is not minimal, which contradicts our hypothesis.
For instance, consider the reachability of c2 in the Automata Network of figure 1 from state 〈a0, b0, c0, d0〉

with the reduced Automata Network in figure 2. Given the trace

π = {a0
{b0}−−→ a1}, {b0

{a1}−−→ b1, c0
{a1}−−→ c1}, {a1

∅−→ a0}, {b1
{a0}−−→ b0}, {c1

{b0}−−→ c2},
the latest transition not in tr(B) is b1

{a0}−−→ b0 at step 4; cb(π, 4, b) = (2, 4), and as there is no transitions
involving b between steps 3 and 4, Ψ = {(b, 2, 4)}; therefore, the sequence

$ = {a0
{b0}−−→ a1}, {c0

{a1}−−→ c1}, {a1
∅−→ a0}, {}, {c1

{b0}−−→ c2}
is valid sub-trace of π reacing c2, hence π is not minimal.

In conclusion, if π is a minimal trace for g> reachability from state s, then, tr(π) ⊂ tr(B).

8

NuSMV ITS
Model # tr # states time mem time mem

Egf-r (20)
normal 68 4.200 0.1s 15Mb 0.35s 19Mb
reduced 43 722 0.03s 11Mb 0.13s 8Mb

EGF-r (104) normal 378 ≈ 107 75s 2.1Gb 0.8s 750Mb
profile 1 reduced 0 1
EGF-r (104) normal 378 > 8.1014 KO KO 540s 1.5Gb
profile 2 reduced 211 ≈ 6.107 52s 100Mb 3.4s 100Mb

TCell-r (94)
normal 217 ? KO KO KO KO
reduced 42 60.000 10s 190Mb 0.25s 15Mb

Table 1: Experiments for goal-oriented reduction as pre-precessing for model-checking reachability properties.
Each model is identified by the system, the number of automata (within parentheses), and a profile specifying
the initial state and the reachability goal. “#tr” is the number of transitions in the automata network
specification; “#states” the number of reachable states from the specified initial state; “KO” indicates an
execution running out of time (30 minutes). Computation times where obtained on an Intel R© CoreTM i7
3.4GHz CPU.

4 Experiments

In this section, we show potential practical applications of the goal-oriented reduction introduced by this
paper.

We conducted experiments on automata networks encoding Boolean networks that model dynamics
of biological networks extracted from the literature in systems biology. For different initial states, and for
different reachability goal, we compared the size of the reachable state space, and the time and memory
consumption of classical model-checking tools.

The selected networks are models of signalling pathways, namely of the Epidermal Growth Factor
receptors (EGF-r) with two different models, one comprising 20 interacting components [20] and another,
more detailed, gathering 104 automata [21]; and of the T-Cell receptors (TCell-r) with a network between
94 automata. The automata networks result from automatic translations from Boolean network specification
in the mentioned references. All the automata have 2 local states (modelling the inactivity and activity of
related component) and local transitions within each automaton typically depends on the state of a few
others automata, generally between 1 and 5 other automata. The mentioned models contain feedback
circuits that make their transient dynamics non-trivial. In those models, we selected different initial states,
acting for different state of the receptors, and selected a component (typically at the bottom of the signalling
pathways) for checking the reachability of its activation.

The model-checking for the reachability properties is performed with two softwares relying on symbolic
computations of the reachable state space: NuSMV [5] which combines BDD and SAT approaches for
synchronous systems; and ITS (using libddd) [9, 12] which implements efficient decision diagram data
structures and efficient handling of formalisms like Petri nets. It is worth noting that NuSMV implements
the cone of influence reduction [4] which removes variables not involved in the property. In both cases, the
transition systems specified as input of these tools is an encoding of the asynchronous semantics of the
automata networks, where steps (definition 2) are always composed of only one transition.

Table 1 summarizes the results on the reachable state space, time and memory consumptions of the
model checkers on the selected models and properties, before and after goal-oriented reduction1. The
reduction is performed using a prototype implementation provided as part of the Pint software [16]. Because
automata have very few internal states, the complexity of the reduction is low, computations took around a
few tenth of a seconds.

Experiments show a remarkable gain in tractability for the model checking of models after reduction
due to the removal of numerous transitions from the automata. In the case of the model EGF-r (104),
the reduction removed all the transitions for first profile, resulting in an empty model. Such a behaviour
can occur when the local causality analysis statically concludes that the reachability goal is impossible, i.e.,

1Scripts and models available at http://loicpauleve.name/gored-experiments.tbz2

9

http://loicpauleve.name/gored-experiments.tbz2

the necessary condition of section 3.1 is not satisfied. In the case of TCell-r model, the dynamics before
reduction is too broad for a raw exhaustive analysis, whereas the dynamics after reduction makes the model
checking almost instantaneous with ITS.

5 Discussion

This paper introduces a new reduction for automata networks parametrized by a reachability property of
the form: from a state s there exists a trace which lead to a state where a given automaton g is in state
g>. The reduction is achieved by a static analysis of the local causality in the automata network to remove
transitions within individual automata. Our goal-oriented reduction takes advantage of the component-based
(automata) specification of the model and of the explicit transitions between their local state to efficiently
decompose the reachability properties locally to each automaton. The overall complexity is polynomial in
the total number of local states and transitions and exponential with the number of local states within one
automaton. Therefore, the procedure can be extremely efficient when applied on automata networks that
gathers numerous automata, but where each automaton has a few local states.

We demonstrated that the reduction preserves all the minimal traces satisfying the reachability property
under a general concurrent semantics which allows at each step simultaneous transitions of an arbitrary
number of automata. Hence, the minimal trace preservation is ensured for any stricter semantics, ranging
from the fully asynchronous to maximally parallel transitions. The reachability properties considered here
focus on the reachability of a local state of a single automaton. One can remark that reachability properties
accounting for sequential reachability properties between (sub)states of the network can be straightforwardly
encoded using an extra automaton where a local state > is reached if and only if the former reachability
property is satisfied.

Applied to models of biological networks, the reduction reveals a significant shrinkage of the reachable
state space, enhancing the scalability of analysis like model checking. In the performed experiments, the
reduction has been used as a simple pre-processing step for the model checking. Part of the efficiency of
the reduction depends on the ability to detect impossible intermediate reachability properties. For that
purpose, our current implementation uses a simple static analysis, based on prior work, and further work may
embed the checking for stronger necessary conditions, which may further increase the effectiveness of the
goal-oriented reduction. One could also think about performing the reduction on the fly, during the state
space exploration, expecting a stronger pruning. Although the complexity of the reduction is low, such an
on-the-fly reduction would benefit from heuristics to indicate when a new reduction step may be worth to
apply.

Finally, as the reduction procedure removes local transitions, it can be easily combined with other
reduction techniques. In the scope of applications to systems biology, impact of the reduction on the
topology of the network and its combination with Boolean and multi-valued network reductions is yet to be
explored.

References

[1] Julio Aracena, Eric Goles, Andrés Moreira, and Lilian Salinas. On the robustness of update schedules in
boolean networks. Biosystems, 97(1):1 – 8, 2009.

[2] Luca Bernardinello and Fiorella De Cindio. A survey of basic net models and modular net classes. In
Grzegorz Rozenberg, editor, Advances in Petri Nets 1992, volume 609 of Lecture Notes in Computer
Science, pages 304–351. Springer Berlin / Heidelberg, 1992.

[3] G. Berthelot and Lri-Iie. Checking properties of nets using transformations. In G. Rozenberg, editor,
Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 19–40. Springer
Berlin Heidelberg, 1986.

[4] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu. Verifying safety properties of a powerpc
microprocessor using symbolic model checking without bdds. In In Proc. 11 th Int. Conf. on Computer
Aided Verification, pages 60–71. Springer-Verlag, 1999.

10

[5] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco
Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In Computer Aided Verification, volume 2404 of Lecture Notes in Computer Science, pages
241–268. Springer Berlin / Heidelberg, 2002.

[6] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jonathan Hayman, Jean Krivine,
Christopher D. Thompson-Walsh, and Glynn Winskel. Graphs, rewriting and pathway reconstruction
for rule-based models. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2012, volume 18 of LIPIcs, pages 276–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2012.

[7] Jerome Feret, Heinz Koeppl, and Tatjana Petrov. Stochastic fragments: A framework for the exact
reduction of the stochastic semantics of rule-based models. International Journal of Software and
Informatics, 7(4):527 – 604, 2013.

[8] Serge Haddad and Jean-François Pradat-Peyre. New efficient Petri nets reductions for parallel programs
verification. Parallel Processing Letters, 16(1):101–116, March 2006.

[9] Alexandre Hamez, Yann Thierry-Mieg, and Fabrice Kordon. Building efficient model checkers using
hierarchical set decision diagrams and automatic saturation. Fundam. Inf., 94(3-4):413–437, 2009.

[10] Ryszard Janicki, Peter E. Lauer, Maciej Koutny, and Raymond Devillers. Concurrent and maximally
concurrent evolution of nonsequential systems. Theoretical Computer Science, 43(0):213 – 238, 1986.

[11] Robert P Kurshan. Computer-aided verification of coordinating processes: the automata-theoretic
approach. Princeton university press, 1994.

[12] LIP6/Move. the libDDD environment, libDDD. http://ddd.lip6.fr.

[13] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, Saddek Bensalem, and David Probst.
Property preserving abstractions for the verification of concurrent systems. Formal methods in system
design, 6(1):11–44, 1995.

[14] Guillaume Madelaine, Cédric Lhoussaine, and Joachim Niehren. Attractor Equivalence: An Observational
Semantics for Reaction Networks. In First International Conference on Formal Methods in Macro-Biology,
Lecture Notes in Bioinformatics, Nouméa, New Caledonia, September 2014. Springer-Verlag.

[15] Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya. Dynamically consistent reduction
of logical regulatory graphs. Theoretical Computer Science, 412(21):2207 – 2218, 2011.

[16] Loïc Paulevé. PINT - Static analyzer for dynamics of automata networks, http://loicpauleve.name/
pint.

[17] Loïc Paulevé, Geoffroy Andrieux, and Heinz Koeppl. Under-approximating cut sets for reachability in large
scale automata networks. In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification,
volume 8044 of Lecture Notes in Computer Science, pages 69–84. Springer Berlin Heidelberg, 2013.

[18] Loïc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of biological regulatory networks
dynamics using abstract interpretation. Mathematical Structures in Computer Science, 22(04):651–685,
2012.

[19] Lutz Priese and Harro Wimmel. A uniform approach to true-concurrency and interleaving semantics for
petri nets. Theoretical Computer Science, 206(1–2):219 – 256, 1998.

[20] Ozgur Sahin, Holger Frohlich, Christian Lobke, Ulrike Korf, Sara Burmester, Meher Majety, Jens
Mattern, Ingo Schupp, Claudine Chaouiya, Denis Thieffry, Annemarie Poustka, Stefan Wiemann, Tim
Beissbarth, and Dorit Arlt. Modeling ERBB receptor-regulated G1/S transition to find novel targets for
de novo trastuzumab resistance. BMC Systems Biology, 3(1), 2009.

11

http://ddd.lip6.fr
http://loicpauleve.name/pint
http://loicpauleve.name/pint

[21] Regina Samaga, Julio Saez-Rodriguez, Leonidas G. Alexopoulos, Peter K. Sorger, and Steffen Klamt.
The logic of egfr/erbb signaling: Theoretical properties and analysis of high-throughput data. PLoS
Comput Biol, 5(8):e1000438, 08 2009.

[22] Philippe Schnoebelen and Natalia Sidorova. Bisimulation and the reduction of petri nets. In Application
and Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science, pages 409–423.
Springer Berlin Heidelberg, 2000.

[23] Joseph Sifakis. Property preserving homomorphisms of transition systems. In Edmund Clarke and
Dexter Kozen, editors, Logics of Programs, volume 164 of Lecture Notes in Computer Science, pages
458–473. Springer Berlin Heidelberg, 1984.

12

	Introduction
	Automata Networks and Local Causality
	Automata Networks
	Local Causality

	Goal-Oriented Reduction
	Necessary condition for local reachability
	Reduction procedure
	Proof of minimal traces conservation

	Experiments
	Discussion

