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Abstract

This paper investigates the existence and uniqueness of equilibrium in the Vickrey

bottleneck model when each user controls a positive fraction of total traffic. Users simul-

taneously choose departure schedules for their vehicle fleets. Each user internalizes the

congestion cost that each of its vehicles imposes on other vehicles in its fleet. We establish

three results. First, a pure strategy Nash equilibrium (PSNE) may not exist. Second, if a

PSNE does exist, identical users may incur appreciably different equilibrium costs. Finally,

a multiplicity of PSNE can exist in which no queuing occurs but departures begin earlier

or later than in the system optimum. The order in which users depart can be suboptimal

as well. Nevertheless, by internalizing self-imposed congestion costs individual users can

realize much, and possibly all, of the potential cost savings from either centralized traffic

control or time-varying congestion tolls.
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1. Introduction

Individual users of roads and other transportation facilities are usually assumed to be

small in the sense that they control a negligible fraction of total traffic. Yet large users

are prevalent in many settings. Commercial airlines and rail companies often account for

a sizable fraction of total traffic at airports and on rail networks. Postal services and

major freight shippers operate large vehicle fleets that travel long distances each day. For

example, FedEx handles about 150 daily flights out of Memphis International Airport and

its air-cargo operations support tens of thousands of jobs. UPS operates on a similar scale

out of Louisville, Kentucky (The Economist, 2013). Major employers such as government

departments and large corporations can add substantially to traffic on certain roads at

peak times. Large users such as these suffer from the congestion delays their own aircraft,

trains, trucks, or other vehicles impose on each other. Thus, at airports, on rail networks,

on congested roads, and on other transportation infrastructure networks, one would expect

large users to internalize their self-imposed delays, and therefore to make different trip-

related decisions than small users controlling the same aggregate traffic.

Following the terminology of game theory we will refer to small users as non-atomic, and

large users that control a positive fraction of traffic as atomic. This terminology contrasts

with the terminology used in the literature on airport congestion, beginning with Daniel

(1995), in which users that control a negligible fraction of traffic and treat the congestion

levels as parametric are called atomistic users. Somewhat confusingly, atomistic users are

therefore non-atomic, and non-atomistic users are atomic.

There are several branches of literature on congestion with atomic users. In the avia-

tion literature, Daniel (1995) was the first to recognize that airlines with market power and

large shares of total traffic could internalize the delays their aircraft impose on each other.

Brueckner (2002) showed that under Cournot competition airlines fully internalize self-

imposed congestion. Further contributions in this line have been made by Pels and Verhoef

(2004), Brueckner (2005), Zhang and Zhang (2006), Basso and Zhang (2007), Brueckner and

Van Dender (2008), and Silva and Verhoef (2013). In the context of road transportation,

route-choice decisions by atomic users have been studied (e.g., Devarajan, 1981; Marcotte,

1987; Harker, 1988; Catoni and Pallottino, 1991; Miller et al., 1991; Cominetti et al., 2009;

de Palma and Engelson, 2012). There is also a literature in operations research and com-

puter science on atomic congestion games (e.g., Fotakis et al., 2008; Hoefer and Skopalik,

2009).

The above-mentioned studies have used static models of congestion except for Daniel

(1995) who uses a stochastic queuing model empirically. Other studies that use a dynamic

stochastic model of congestion with atomic users include Daniel and Harback (2008) and

Molnar (2013). Except for a few studies described below, traffic congestion with atomic

users has not been studied with deterministic dynamic models. This is surprising because

the timing of trips matters a great deal for both passenger and freight transportation, and

congestion is largely a consequence of peak-period loads.
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The goal of this paper is to investigate the fundamental questions of existence and

uniqueness of equilibrium in trip-timing decisions with atomic users. To focus the analy-

sis on fundamentals while minimizing mathematical complications we use Vickrey’s (1969)

bottleneck model. The essence of the bottleneck model is that users trade off the costs of

queuing delay at the bottleneck with the costs of schedule delay (i.e., arriving earlier or later

than desired). The bottleneck model has been used to study many aspects of trip-timing

decisions with congestion including: congestion pricing, route choice on simple road net-

works, mode choice, trip chaining, parking congestion, staggered work hours, and flextime.

Existence and uniqueness of equilibrium in the bottleneck model have also been established

under relatively general assumptions about trip-timing preferences and heterogeneity of

non-atomic users (e.g., Newell, 1987; Lindsey, 2004). However, very little consideration has

been given to atomic users in studies that use either the bottleneck model or other dynamic

models.

A few studies have employed a variant of the bottleneck model in which time is dis-

cretized, and the number of users is finite, so that each user controls a positive measure of

traffic (e.g., Levinson, 2005; Zou and Levinson, 2006; Otsubo and Rapoport, 2008; Werth

et al., 2014). However, these studies assume that each user controls only one vehicle so that

self-internalization of congestion does not come into play. To the best of our knowledge,

only Daniel (2009) and Silva et al. (2014) have explored the scheduling decisions of atomic

agents in the standard, continuous-time bottleneck model. These studies consider, in the

context of aviation, a sequential competition between a Stackelberg leader with market

power and a group of perfectly competitive airlines (non-atomic users). Both studies show

that, when users have homogeneous preferences, non-atomic users schedule all their flights

during the peak period when passengers prefer to arrive. The Stackelberg leader schedules

a fraction of its flights during the peak as well. Queuing time at the bottleneck evolves

at the same rate as in the standard model of non-atomic players. The leader schedules its

remaining flights earlier and later in the off-peak (and less popular) periods and limits its

departure rate to bottleneck capacity so that no queue develops.

The existence of a unique equilibrium in Daniel (2009) and Silva et al. (2014) hinges

on the sequential nature of the game they consider, and the assumption that there is only

one atomic agent. By contrast, we focus in this paper on settings with two atomic users

who make scheduling decisions simultaneously. The solution concept we employ is pure

strategy Nash equilibrium (PSNE). We establish three major results. First, we show that

a PSNE may not exist. We demonstrate this for an example featuring two identical atomic

users who each control half of the total traffic. The trip-timing preferences of each vehicle

in each fleet are described by parameters {α,β,γ,t∗}, where α is the cost of travel time, β

is the cost of schedule delay early, γ is the cost of schedule delay late, and t∗ is the desired

arrival time. We show that if γ > α, a PSNE does not exist.

Second, for the same example, we show that if γ ≤ α a multiplicity of PSNE exists

in which no queuing occurs and the timing of departures is system optimal. The PSNE

differ according to the departure rates of individual users and the equilibrium costs they
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incur. Depending on parameter values, one of the two users can incur up to three quarters

of total costs. The cases γ > α and γ ≤ α are both of theoretical interest, and each

may be relevant in particular settings. Most empirical studies of scheduling preferences for

automobile drivers have obtained estimates that satisfy γ > α (e.g., Small, 1982; Wardman,

2001; Asensio and Matas, 2008). In addition, de Palma and Fontan (2001) list estimates

from eleven studies and, including their own estimates, there are ten cases with γ > α, and

two cases with γ < α. By contrast, Daniel and Harback (2008) find that γ < α holds for

most airlines at major US airports.

Third, we consider a variant of the example in which the two users differ in their desired

arrival times t∗ and can have fleets of different size. We show that — independent of the

relative size of α and γ — a multiplicity of PSNE can exist in which no queuing occurs but

the timing of departures is not optimal. Depending on parameter values, the PSNE may

begin earlier than, later than, or at the same time as the system optimum. The order in

which users depart can be suboptimal as well. Nevertheless, by internalizing self-imposed

congestion costs the two users realize much, and possibly all, of the potential cost savings

from either centralized traffic control or time-varying congestion tolls.

These examples demonstrate that neither the existence of equilibrium nor the uniqueness

of an equilibrium (if one exists) is guaranteed under conditions where a unique PSNE

does exist if all the traffic were controlled by non-atomic users. Given the central role of

equilibrium models in the analysis of transportation systems, these results are troubling

and highlight the need for further research.

The paper is organized as follows. Section 2 reviews the no-toll equilibrium and the

system optimum in the standard bottleneck model with non-atomic users. Section 3 demon-

strates the possible non-existence of PSNE, and the non-uniqueness of individual departure

rates and costs where a PSNE does exist. Section 4 demonstrates the possible nonunique-

ness of PSNE in the timing of departures when no queuing occurs, and the degree of

inefficiency relative to the system optimum. Section 5 concludes.

2. The bottleneck model with homogeneous non-atomic users

The bottleneck model was developed by Vickrey (1969) and extended by Arnott et al.

(1990, 1993). It is reviewed in Arnott et al. (1998) and de Palma and Fosgerau (2011), and

the summary here is brief. In the model, all users travel from a common origin to a common

destination along a single link that has a bottleneck with fixed flow capacity, s. Without

loss of generality, travel times from the origin to the bottleneck and from the bottleneck

to the destination are normalized to zero. If there is no queue upstream of the bottleneck,

travel time through the bottleneck is also zero and departure time from the origin coincides

with arrival time at the destination. If the departure rate exceeds s, a queue develops. Let

t̂ be the most recent time at which there was no queue, and r(t) the aggregate departure

rate from the origin at time t. The number of vehicles in the queue is then:

Q(t) =

∫ t

t̂
(r(u)− s)du.
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Travel time through the bottleneck is T (t) = Q(t)/s, and a traveler who departs at time t

arrives at time ta = t+ T (t).

Following Small (1982) and de Palma et al. (1983), users are assumed to have a desired

arrival time t∗. They incur a unit cost of β > 0 for arriving early, and a unit cost of γ > 0

for arriving late. Travel time is valued at α, with α > β. The costs of schedule delay and

travel time are additive so that the generalized cost of a trip, c(t), is:

c(t) = α · T (t) +

{
β · (t∗ − t− T (t)) , t+ T (t) ≤ t∗

γ · (t+ T (t)− t∗) , t+ T (t) ≥ t∗
. (1)

The number (or measure) of users, N , is assumed to be exogenous (i.e., independent of

trip cost). Each user decides when to depart from the origin by trading off schedule delay

against travel delay. A pure strategy Nash equilibrium (PSNE) is a set of departure times

such that no user can benefit (i.e., reduce trip cost) by unilaterally changing departure time

while taking the departure times of all other users as given.

2.1. No-toll equilibrium

Let superscript n denote the no-toll non-atomic PSNE, and tns and tne denote the start

and end of the travel period. Let t̃ be the departure time for which a user arrives on time

(i.e., t̃+T (t̃) = t∗). In a PSNE with no toll, c(t) must be constant during the travel period

[tns , t
n
e ]. Users who arrive closer to t∗ must incur longer queuing delays in order to offset

their lower schedule delay costs. The equilibrium aggregate departure rate is derived by

differentiating Eq. (1) and setting the derivative to zero:

rn(t) =

{
α·s
α−β , t ∈

(
tns , t̃

)
α·s
α+γ , t ∈

(
t̃, tne

) . (2)

The assumption α > β assures that the departure rate for early arrivals is positive and

finite. This condition is plausible since a user who is destined to arrive early is likely

to prefer arriving early to prolonging the trip by making a detour. The condition is also

supported by Small’s (1982) estimates for automobile commuting trips. For ease of reference

we will sometimes call the departure rate for early arrivals the early departure rate, and the

departure rate for late arrivals the late departure rate.

There are two further equilibrium conditions. One is that the first and last users to

depart, who encounter no queue, must incur equal schedule delay costs:

β · (t∗ − tns ) = γ · (tne − t∗) . (3)

The other condition is that the travel period lasts for N/s:

tne − tns =
N

s
. (4)
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Together, equilibrium conditions (2), (3) and (4) yield:

tns = t∗ − γ

β + γ
· N
s
, (5a)

tne = t∗ +
β

β + γ
· N
s
, (5b)

t̃ =t∗ − β

α
· γ

β + γ
· N
s
, (5c)

cn(t) = δ · N
s
, t ∈ [tns , t

n
e ] with δ ≡ β · γ

β + γ
. (5d)

Total costs are:

TCn = δ · N
2

s
. (6)

2.2. System optimum

Queuing delay at the bottleneck is a deadweight loss. The system optimum therefore

avoids queuing and minimizes total schedule delay costs. The departure rate is maintained

at s over a continuous time interval chosen so that the first and last users incur the same

schedule delay cost. The departure period is therefore the same as in the laissez-faire PSNE

(cf. Eqs. (5a) and (5b)). Using superscript o to denote the system optimum, these results

are recorded for future reference as:

ro(t) = s, t ∈ (tos, t
o
e) , ro(t) = 0 otherwise, (7a)

tos =t∗ − γ

β + γ
· N
s
, (7b)

toe =t∗ +
β

β + γ
· N
s
. (7c)

Total system costs are only half as large as in Eq. (6) for the no-toll equilibrium:

TCo =
δ

2
· N

2

s
=

1

2
· TCn. (8)

The difference between total costs in the no-toll equilibrium and system optimum, TCn−
TCo, serves as an upper bound on the benefits from self-internalization of congestion by

atomic agents.

3. Existence and non-existence of equilibrium with homogeneous atomic users

In this section we study an example featuring two identical atomic users. We show that

if γ > α, a PSNE in departure schedules does not exist. We then show that if γ ≤ α, a

PSNE does exist that entails no queuing and coincides with the system optimum. During

early departures the two users can depart at somewhat different rates that add up to s. If

γ < α, their late departure rates can also differ. Moreover, with γ ≤ α the users can incur

appreciably different total costs for their fleets. At the end of the section we briefly discuss

how these results extend to more than two users.
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Consider two atomic users, A and B. Each user controls a fleet of N/2 vehicles. trip-

timing preferences for each vehicle defined by the same {α,β,γ,t∗} parameter values. Thus,

the total cost of a user’s fleet is simply the sum of the cost of each of its vehicles. This

assumption seems realistic for delivery vans carrying merchandise or parcels to different

customers. It may be inappropriate for vehicles in a military convoy or emergency vehicles

traveling to an accident. Users A and B simultaneously choose departure schedules for

their fleets. The schedule for user i is a departure rate function, ri (t) ≥ 0. The function

can be seen as a distribution function of the N/2 vehicles over some extended time interval

such as a day. This function is not restricted to be continuous, and the possibility of mass

departures will be considered. Each user recognizes that dispatching a vehicle at time t

may delay vehicles in its fleet that depart after t. A delay occurs if there is a queue at time

t that persists when the later vehicles depart. A delay also occurs if there is no queue prior

to t, but the bottleneck is at capacity so that adding a vehicle to the departure schedule at

t creates a (small) queue.

As noted above, the existence of a PSNE in this example depends on whether γ > α,

or γ ≤ α. The two cases are considered in the following two subsections.

3.1. Non-existence of PSNE with γ > α

When γ > α, a PSNE does not exist. This result is formalized in the following propo-

sition.

Proposition 1. Consider two identical atomic users who each simultaneously schedule

N/2 vehicles with trip-timing preferences for each vehicle defined by the same {α,β,γ,t∗}
parameter values. If γ > α, a PSNE in departure schedules does not exist.

We prove Proposition 1 in four steps. First, we prove that a PSNE without queuing does

not exist (Lemma 1). Second, we prove that mass departures cannot arise in equilibrium

(Lemma 2). With these two results we can restrict attention to cases in which there is

queuing, but no mass departures. Third, we show that there is a unique departure pattern

with queuing such that a user cannot reduce its fleet costs by rescheduling a single vehicle

(Lemma 3). Given this third result, to prove non-existence we only need to find one

deviation from this departure pattern by either user that reduces its total fleet costs. Any

other candidate equilibrium will not be robust against rescheduling a single vehicle. Finally,

we show that this departure pattern is not a PSNE because a user can reduce its fleet costs

by rescheduling a positive measure of vehicles in the fleet (Lemma 4). This establishes that

a PSNE with queuing does not exist either.

Lemma 1. Consider two identical atomic users who each simultaneously schedule N/2 ve-

hicles with trip-timing preferences for each vehicle defined by the same {α,β,γ,t∗} parameter

values. When γ > α, a PSNE without queuing does not exist.

Proof : Consider a pair of departure schedules, {rA (·) , rB (·)}, such that no queuing

occurs. Some vehicles must arrive late since otherwise a user could reduce its fleet costs by
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rescheduling some vehicles to just after t∗. Consider a period (t1, t2) of late arrivals and

assume that both users depart during this period (the case where only one user departs is

considered later). The bottleneck must be used to capacity since otherwise a user could

exploit the residual capacity by advancing departures for vehicles that are scheduled to

depart later.

If user i removes a vehicle from the departure schedule at time t, it saves a cost of

C−i (t) = γ · (t− t∗) . (9)

Removing the vehicle saves the late-arrival cost incurred by the vehicle itself, but it has no

effect on the rest of the fleet because there is no queue. If user i instead adds a vehicle to

the departure schedule, it increases its fleet costs by a marginal private cost (MPC) of

C+
i (t) = γ · (t− t∗) +

α+ γ

s
·
∫ t

t
ri (u) du, (10)

where t is the time when the queue created by the additional vehicle disappears.

The first term on the right-hand side of Eq. (10) matches the right-hand side of Eq.

(9). The second term is the delay cost imposed on user i’s other vehicles that depart from

t to t. Each of them suffers an increase in travel time of 1/s valued at α, and an increase

in late arrival of 1/s valued at γ.

The difference between the cost saved by removing a vehicle given by Eq. (9), and the

cost of adding a vehicle to the same slot given by Eq. (10), arises when the bottleneck is at

capacity but there is no queue. This asymmetry underlies the nonuniqueness of equilibrium

considered later in the paper.

Suppose user i advances the departure of a vehicle from t to t′ where t1 ≤ t′ < t ≤ t2.

User i’s fleet costs change by:

∆Ci = −C−i (t) + C+
i

(
t′
)

= −γ · (t− t∗) + γ ·
(
t′ − t∗

)
+
α+ γ

s

∫ t

t′
ri (u) du. (11)

The queue induced by adding the vehicle at t′ vanishes at t because a departure time slot

opened up at t when the vehicle was removed then. Let λit,t′ =

∫ t

t′
ri (u) du/ (s · (t− t′)) ∈

[0, 1] be an auxiliary variable denoting the average fraction of capacity occupied by user i

during the period [t, t′]. The change in user i’s fleet costs can then be written as:

∆Ci =
α+ γ

s
· λit,t′ · s ·

(
t− t′

)
− γ ·

(
t− t′

)
= ((α+ γ) · λit,t′ − γ) ·

(
t− t′

)
.

For a PSNE to exist, ∆Ci must be nonnegative for both users which requires:

λit,t′ ≥
γ

α+ γ
, t1 ≤ t′ < t ≤ t2, i = A,B. (12)

Since the bottleneck is fully utilized, λAt,t′ + λBt,t′ = 1. This condition is least restrictive

if λAt,t′ = λBt,t′ = 1/2 in which case it reduces to γ ≤ α which is inconsistent with the

assumption γ > α.
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Now consider the possibility that only one user, say user A, departs during (t1, t2). This

is not a PSNE if user B departs after t2 since user B could reduce its costs by rescheduling

some of its later vehicles into (t1, t2). Doing so reduces their late-arrival costs, and the

queue they create disappears during the time slots they vacated. Suppose user B does not

depart after t2. If t1 = t∗, user B does not depart late at all. But this cannot be a PSNE

because user B could gain by rescheduling some of its early-arriving vehicles to just after

t∗, thereby reducing their schedule delay costs without imposing any delay on its other

vehicles. If t1 > t∗, there must exist a late arrival period (t0, t1) during which both users

depart. But this case has already been considered, and shown to be inconsistent with a

PSNE when γ > α. QED

To this point we have assumed that users depart at a finite rate. In theory, a user could

schedule a positive measure of vehicles to depart at a given moment. In practice, this might

be achieved by assembling a convoy of vehicles on a link that has right-of-way over other

links. Moreover, in the bottleneck model with non-atomic users and step tolls a PSNE may

exist only if mass departures (of non-cooperating vehicles) are possible (Arnott et al., 1990;

Lindsey et al., 2012). We now show that in the model with atomic users mass departures

cannot occur in a PSNE, regardless of whether γ > α or γ ≤ α.

Lemma 2. Consider two identical atomic users who each simultaneously schedule N/2 ve-

hicles with trip-timing preferences for each vehicle defined by the same {α,β,γ,t∗} parameter

values. A PSNE cannot exhibit mass departures.

Proof : See Appendix A.

We now turn to the final possibility for a PSNE with γ > α in which departure rates

remain finite and queuing occurs.

Lemma 3. Consider two identical atomic users who each simultaneously schedule N/2

vehicles with trip-timing preferences for each vehicle defined by the same {α,β,γ,t∗} param-

eter values. When γ > α, there is a unique departure pattern with queuing in which a user

cannot reduce its fleet costs by rescheduling a single vehicle.

Proof : Consider a pair of departure schedules, {rA (·) , rB (·)}, and let t̃ denote the

departure time for which a user arrives on time (i.e. t̃ = t∗ − T (t̃)). Assume that a queue

exists during a late-departure period (tl, tqe), where tl is an arbitrary time that satisfies

tl > t̃ and tqe is the time when the queue disappears. Since users A and B are identical, it

suffices to consider the best response of user A to rB (·). The MPC to user A of scheduling

a vehicle at time t ∈ (tl, tqe) is

CA (t) = α · T (t) + γ · (t+ T (t)− t∗) +
α+ γ

s
·
∫ tqe

t
rA (u) du. (13)

Eq. (13) has a similar interpretation to Eq. (10). The first two terms on the right-hand

side comprise the cost incurred by the vehicle itself, and the third term is the delay cost

imposed on user A’s other vehicles that depart from t to tqe.
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User A could reschedule a vehicle from t to another time t′ ∈ (tl, tqe). This would leave

tqe unchanged because the additional queuing time caused by inserting the vehicle at t′ is

offset by the reduction in queuing time due to removing the vehicle at t. Eq. (13) therefore

holds if t is replaced by any t′ ∈ (tl, tqe). Hence, a necessary condition for rA (·) to be a

best response to rB (·) is that CA (t) in Eq. (13) is constant during the interval (tl, tqe).

Differentiating Eq. (13) with respect to t, and setting the derivative to zero, yields

∂CA(t)

∂t
= γ + (α+ γ) · ∂T (t)

∂t
− α+ γ

s
· rA (t) = 0.

Using the relationship ∂T (t)/∂t = (rA (t) + rB (t)− s) /s, this condition simplifies to

rB (t) =
α · s
α+ γ

, t ∈ (tl, tqe) . (14)

According to Eq. (14), user A is willing to schedule a vehicle for late arrival when there

is a queue if, and only if, user B is departing at exactly the rate α · s/ (α+ γ). This is none

other than the equilibrium aggregate departure rate for the model with non-atomic users

(cf. Eq. (2)). Eq. (14) also holds for user B with rA (t) in place of rB (t). The aggregate

departure rate during an interval of late arrivals must therefore be r (t) = rA (t) + rB (t) =

2 · α · s/ (α+ γ). With γ > α, r (t) < s and the queue must be shrinking for late arrivals.

Consequently, a queue must exist at time t̃ and it is possible to set tl = t̃, where t̃+T (t̃) = t∗.

This in turn implies

rA (t) = rB (t) =
α · s
α+ γ

, t ∈
(
t̃, tqe

)
.

Since a queue exists at time t̃, it must have built up during a period of early arrivals

before t̃. Let tq be the time at which queuing begins. The MPC to user A of scheduling a

vehicle at any time t ∈
(
tq, t̃

)
is

CA (t) = α · T (t) + β · (t∗ − t− T (t)) +
α− β
s
·
∫ t̃

t
rA (u) du+

α+ γ

s
·
∫ tqe

t̃
rA (u) du. (15)

Again, the first two terms on the right-hand side of Eq. (15) comprise the cost borne by

the vehicle itself. The third term is the cost imposed on user A’s other vehicles that depart

after t but still arrive early. Each of them suffers an increase in travel time of 1/s valued

at α, and benefits from a reduction in early arrival of 1/s valued at β. The last term in

Eq. (15) is the cost imposed on user A’s other vehicles that arrive late.

A necessary condition for rA (·) to be a best response to rB (·) is for CA (t) to be constant

during
(
tq, t̃

)
. Setting the derivative of CA (t) to zero, one obtains a counterpart to Eq.

(14):

rB (t) =
α · s
α− β

, t ∈
(
tq, t̃

)
. (16)

An analogous necessary condition applies for user B. Hence, the aggregate early departure

rate must be r (t) = rA (t) + rB (t) = 2 · α · s/ (α− β).
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In summary, the unique departure rate of the candidate PSNE during the full period of

queuing is

rA (t) = rB (t) =
r (t)

2
=

{
α·s
α−β , t ∈

(
tq, t̃

)
α·s
α+γ , t ∈

(
t̃, tqe

) , (17)

where

t̃+ T (t̃) = t∗. (18)

Because queuing begins at tq, and ends at tqe, cumulative departures during the period

(tq, tqe) match cumulative arrivals:∫ tqe

tq

(r (u)− s) du = 0. (19)

Eqs. (17), (18), and (19) define evolution of the queue for the candidate PSNE with queuing.

By Lemma 1, no vehicles can depart without queuing after tqe, so departures end at time

te = tqe. However, the cost of a vehicle trip at the beginning of the queuing period, c (tq),

is less than the cost at the end of the period, c (te), because the trip at tq imposes a private

delay cost on subsequent vehicles whereas the trip at te does not (if c(tq) = c(te), C
+(tq) >

C+(te) would hold and the user equilibrium condition would be violated). Departures must

therefore occur during some time interval [ts, tq) preceding tq. This interval is defined by

two conditions. First, vehicle trip cost must be the same at ts and te since otherwise a

user could reschedule vehicles from the time with higher cost to the time with lower cost

and reduce its overall fleet costs without causing any queuing. Second, the full departure

period [ts, te] must be long enough for all N vehicles to pass the bottleneck. Eqs. (3) and

(4) for the non-atomic PSNE therefore hold for the candidate PSNE:

β · (t∗ − ts) = γ · (te − t∗) , (20)

te − ts =
N

s
. (21)

The two users each control N/2 vehicles and schedule the same number of vehicles

during the queuing period. Therefore, they must also schedule the same number during

[ts, tq]: ∫ tq

ts

rA (u) du =

∫ tq

ts

rB (u) du, (22)

where

rA (u) + rB (u) = s, u ∈ (ts, tq) . (23)

The early departure schedule defined by Eqs. (22) and (23) is consistent with a PSNE as

far as trip timing by individual vehicles. The first vehicle scheduled at ts creates the same

MPC as all vehicles scheduled during [tq, te]. Vehicles scheduled during (ts, tq) create a

lower MPC, so that rescheduling them to any time outside (ts, tq) would increase total fleet

costs. Rescheduling any vehicle into (ts, tq) would also increase fleet costs because it would

impose a queuing delay on all vehicles departing later until te, and would therefore create

a higher MPC than a vehicle departing at tq. QED
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Together, Eqs. (17)–(23) define the candidate PSNE with queuing. Using superscript c

to denote this candidate, the critical times are:

tcs =t∗ − γ

β + γ
· N
s
, (24a)

tce =t∗ +
β

β + γ
· N
s
, (24b)

t̃c = t∗ − β · (γ − α)

2 · α · (β + γ)
· N
s
, (24c)

tcq = t∗ − β · (γ − α)

(α+ β) · (β + γ)
· N
s
. (24d)

We now show that the candidate PSNE just derived is not a PSNE because either user

can reduce its fleet costs by rescheduling a positive fraction of its vehicles. This result is

formalized as:

Lemma 4. Consider two identical atomic users who each simultaneously schedule N/2

vehicles with trip-timing preferences for each vehicle defined by the same {α,β,γ,t∗} param-

eter values. When γ > α, the unique candidate departure pattern with queuing in which

users cannot reduce costs by rescheduling a single vehicle is not a PSNE with respect to

rescheduling a positive fraction of the fleet.

Proof : The candidate PSNE is depicted in Figure 1. Cumulative departures during

the whole travel period are shown by the piecewise linear schedule OABC. During the

first interval
(
tcs, t

c
q

)
, the two users depart early at rates consistent with Eq. (22). During

the remaining interval
(
tcq, t

c
e

)
, user B contributes to cumulative departures the portion

between schedule ADGE and the horizontal line AF . User A contributes the equally big

portion between schedule ABC and schedule ADGE. During the interval
(
tcq, t̃

c
)
, each

user departs early at rate α · s/ (α− β), and during
(
t̃c, tce

)
each user departs late at rate

α · s/ (α+ γ). At time t̂, each user’s cumulative departures over the interval
(
tcq, t̂

)
match

cumulative bottleneck throughput over the same interval.

Suppose user A reschedules all its vehicles from period
(
tcq, t̂

)
to period

(
t̂, tce
)
, and

maintains a departure rate of γ · s/ (α+ γ) during
(
t̂, tce
)
. As a consequence, the queue

caused by B between tcq and t̂ fully dissipates at t̂. Since user B departs at rate α ·s/ (α+ γ)

during
(
t̂, tce
)
, the total departure rate during this period equals s and the bottleneck is fully

utilized without queuing. Moreover, since user B keeps the bottleneck fully utilized during(
tcq, t̂

)
, all vehicles in both fleets complete their trips by tce. Consequently, with the deviant

schedule, all of user A’s vehicles can complete their trips within the same time period as in

the candidate PSNE, but without queuing. It is straightforward to show (see Appendix B)

that user A’s fleet incurs lower total costs with the deviant schedule than with the candidate

PSNE schedule. Hence the candidate PSNE is not a PSNE. QED

The reader may wonder why the candidate PSNE is robust to deviations in which a user

reschedules a single vehicle, but not robust to rescheduling part of the fleet. The reason is
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Figure 1 Candidate PSNE with γ > α and queuing.

that the first type of deviation comprises a zero measure of traffic whereas the second type

comprises a positive measure. Postponing departures of a positive mass of vehicles in the

fleet reduces queuing delay, and allows subsequent vehicles to arrive early even after the

other user has reduced its departure rate to the late departure rate in anticipation that its

vehicles will arrive late.

Proposition 1 establishes that a PSNE does not exist when γ > α. As noted in the

introduction, most empirical studies of scheduling preferences for automobile drivers have

obtained estimates that satisfy this inequality. However, there is little evidence either on

the trip-timing preferences of users that may control large shares of road traffic (e.g., freight

shippers), or on preferences for travel by other modes of transportation. Daniel and Harback

(2008), without making explicit the role of the passengers’ valuation of time, estimate that

γ < α holds for many US airlines. Thus, it is of interest to study the existence and nature

of PSNE when γ ≤ α.

3.2. Existence and Nature of PSNE with γ ≤ α
In this section we establish two results for the case γ ≤ α. First, we show that there

exists a unique PSNE in the aggregate departure schedule that coincides with the system

optimum (Proposition 2). Second, we show that the two users’ individual departure rates

are not uniquely defined in the PSNE (Proposition 3), and the users can incur different

fleet costs (Section 3.2.3).
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3.2.1. Existence of PSNE with γ ≤ α
Proposition 2. Consider two identical atomic users who each simultaneously schedule

N/2 vehicles with trip-timing preferences for each vehicle defined by the same {α,β,γ,t∗}
parameter values. If γ ≤ α, multiple PSNE exist. All of them have an aggregate departure

schedule that coincides with the system optimum (i.e. rA(t) + rB(t) = s, t ∈ (tos, t
o
e)).

During the late-arrival period, each user’s equilibrium departure rate is bounded in the

range ri(t) ∈
[

γ
α+γ · s,

α
α+γ · s

]
, t ∈ (t∗, toe), i = A,B. During the early-arrival period, each

user’s equilibrium departure rate is bounded below: ri(t) ≥ rE , t ∈ (tos, t
∗) , i = A,B, where

rE ≡
2·α·(β+γ)+γ·(β+2·γ)−

√
β2·γ2+4·α·(β+γ)2·(α+γ)

γ·(α+γ) · s2 ∈
(

0, γ
α+γ · s

)
.

Proof : The proof entails establishing four results: 1) A PSNE with queuing does not

exist. 2) All PSNE without queuing must coincide with the system-optimal departure

pattern given by Eqs. (7a), (7b), and (7c). 3) Given the lower bound on individual

departure rates for late arrivals, neither user can gain by rescheduling a single vehicle.

4) Given the lower bounds on individual departure rates for early and late arrivals, neither

user can gain by rescheduling part of its fleet.

Result 1. A PSNE with queuing does not exist.

By Lemma 2, mass departures cannot be part of a PSNE. Any candidate PSNE with

queuing must satisfy conditions (17), (18), and (19). With γ ≤ α, these conditions cannot

all be satisfied since the aggregate early departure rate exceeds capacity, and the aggregate

late departure rate is no less than capacity. Hence any queue cannot dissipate while users

are departing, which is inconsistent with a PSNE.

Result 2. The system-optimal departure pattern is the only possible PSNE in the

aggregate departure schedule.

Given Result 1, in equilibrium, the aggregate departure rate cannot exceed the bot-

tleneck capacity when γ ≤ α. Therefore, equilibrium departures must occur at rate s

over a connected time interval since otherwise either user could reduce its fleet costs by

rescheduling vehicles into “gaps” in the departure schedule when bottleneck capacity is not

fully utilized. The departure period, [ts, te], must be as given by Eqs. (7b) and (7c) since

otherwise trip costs at ts and te would differ, and at least one user could reduce its fleet

costs by rescheduling vehicles from the higher-cost endpoint to the lower-cost endpoint.

Result 3. A user cannot gain by rescheduling a single vehicle if each user’s departure

rate satisfies the conditions in Proposition 2.

In the candidate PSNE with a system-optimal aggregate departure pattern, there is no

queuing but the bottleneck is used to capacity. As in the proof of Lemma 1, it is therefore

necessary to distinguish between the cost saved by removing a vehicle from the departure

schedule (which does not affect other vehicles’ costs) and the cost of adding a vehicle (which

creates a queue unless the vehicle is added at toe). The respective costs are:

C−i (t) =

{
β · (t∗ − t) , t ∈ [tos, t

∗]

γ · (t− t∗) , t ∈ [t∗, toe]
,
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C+
i (t) =


β · (t∗ − t) + α−β

s ·
∫ t∗

t
ri (u) du + α+γ

s ·
∫ toe

t∗
ri (u) du, t ∈ [tos, t

∗]

γ · (t− t∗) + α+γ
s ·

∫ toe

t
ri (u) du, t ∈ [t∗, toe]

.

A vehicle can be rescheduled in four ways: (i) late to late, (ii) late to early, (iii) early

to late, and (iv) early to early. Consider each possibility in turn.

i. Rescheduling late to late: Rescheduling a late vehicle to a later time is never beneficial

because the vehicle’s trip cost increases, and other vehicles do not gain. Suppose a vehicle

is rescheduled earlier from t to t′ where t∗ ≤ t′ < t. The change in fleet costs is given by

Eq. (11):

∆Ci = −C−i (t) + C+
i

(
t′
)

= −γ ·
(
t− t′

)
+
α+ γ

s
·
∫ t

t′
ri (u) du

s
= λit′,t −

γ

α+ γ

where
s
= means identical in sign. Given ri (t) ≥ γ · s/ (α+ γ) for t ∈ (t∗, toe), λ

i
t′,t ≥

γ/ (α+ γ), ∆Ci ≥ 0, and the deviation is not beneficial.

ii. Rescheduling late to early : Rescheduling a late vehicle to an early time is clearly

inferior to rescheduling it to t∗ because the vehicle incurs an early-arrival cost and creates

a queue for a longer period. But rescheduling it to t∗ is not beneficial as per case i.

iii. Rescheduling early to late: The best option in this case is to reschedule a vehicle

from tos. However, the gain is the same as for rescheduling a vehicle from toe, and this is not

beneficial as per case i. Rescheduling early to late therefore cannot be beneficial.

iv. Rescheduling early to early : The best option in this case is to reschedule a vehicle

from tos to t∗, but this, too, is not beneficial for the same reason as in case iii.

This establishes that the candidate PSNE in Proposition 2 is robust to deviations in

which a single vehicle is rescheduled.

Result 4. A user cannot gain by rescheduling a positive measure of its fleet.

If user A reschedules vehicles to depart outside [tos, t
o
e], its fleet costs necessarily increase

since the rescheduled vehicles experience greater schedule delay costs without benefiting

the rest of the fleet. If user A instead reschedules vehicles to depart inside [tos, t
o
e], queuing

occurs. The optimal departure rate in the presence of a queue was derived in Section 3.1

and, although with γ ≤ α a PSNE cannot exhibit queuing, we need to check if a deviation

from the candidate to a setting with queuing is cost reducing. For early arrivals, user

A is willing to depart at a positive and finite rate only if condition (16) is satisfied; i.e.

rB (t) = α·s/ (α− β) > s. Since user B departs at a rate less than s in the candidate PSNE,

user A is better off scheduling the vehicles later. For late arrivals, user A is willing to depart

at a positive and finite rate only if condition (14) is satisfied so that rB (t) = α ·s/ (α+ γ) .

Proposition 2 stipulates that rB (t) ≤ α · s/ (α+ γ). If rB (t) = α · s/ (α+ γ), and therefore

rA (t) = γ · s/ (α+ γ), user A is indifferent between departing or not so that the deviation

does not reduce its fleet costs. If rB (t) < α · s/ (α+ γ), user A is better off scheduling

the vehicles later. The only remaining possibility for gainful deviation is one that involves
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mass departures. In Appendix C we prove that a deviation with mass departures is not

gainful if the lower bounds on early and late departure rates stated in Proposition 2 are

both satisfied. QED

The intuition for Proposition 2 is as follows. The only way for user A to gainfully deviate

from the candidate PSNE by rescheduling a single vehicle is to advance its departure during

the late arrival period. Doing so reduces the vehicle’s late-arrival cost, but imposes queuing

delay on user A’s vehicles that depart later. The tradeoff is not worthwhile if enough vehicles

in A’s fleet have yet to depart, and queuing is sufficiently costly relative to late arrival. The

lower bound on the late departure rate stated in Proposition 2 assures this condition is met.

If user A deviates by rescheduling vehicles in mass departures and imposes queuing delays

on its other vehicles, the same argument holds. The tradeoff is not worthwhile because the

lower bound on the late departure rate ensures that there are enough vehicles in the fleet

yet to depart that will be negatively affected.

To avoid delaying other vehicles in its fleet, user A must advance departures for vehicles

that participate in a mass. Since vehicles in the mass suffer queuing delay, user A can benefit

from such a deviation only if the vehicles’ schedule delay costs are reduced enough. This

requires that the vehicles were departing late over a period longer than the time they take

to pass the bottleneck when in the mass. This, in turn, is possible only if user B occupies

a large enough share of bottleneck capacity during the candidate PSNE. The lower bound

on the late departure rate identified in Proposition 2 ensures that this condition is not met.

To see why a lower bound on the early departure rate is also required, suppose that user

A does not depart during some time interval (t, t∗). User A can then reschedule its vehicles

departing in some interval (t∗, t
′
) by launching them in a mass at a time tm ∈ (t, t∗). None

of its fleet departing after t
′

will be delayed by the mass. If tm is chosen to minimize the

total schedule delay costs of vehicles in the mass, their total costs will fall. However, if user

A is scheduling enough departures during (tm, t
∗), the deviation will not be gainful since

the mass departure either imposes queuing delays on its other vehicles, or it has to include

vehicles that were arriving early, which will suffer higher early arrival costs and queuing

costs. If the early departure rate is high enough, such a mass departure is unfavorable.

Proposition 2 identifies a minimum early departure rate to guarantee this when the late

departure rate is held fixed at its minimum value: γ · s/(α+ γ).

3.2.2. Non-uniqueness of PNSE with γ ≤ α
Although the aggregate departure schedule in the PSNE described in Proposition 2 is

unique when γ ≤ α, many pairs of departure schedules {rA (·) , rB (·)} are consistent with

the aggregate pattern. Thus, the PSNE is not unique in terms of individual departure

rates. This result is formalized in the following proposition:

Proposition 3. Consider two identical atomic users who each simultaneously schedule

N/2 vehicles with trip-timing preferences for each vehicle defined by the same {α,β,γ,t∗}
parameter values. During the late departure period t ∈ (t∗, toe), the two users depart at
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the same rate rA(t) = rB(t) = s/2 if α = γ, but they can depart at different rates if

γ < α. During the early departure period t ∈ (tos, t
∗), a continuum of departure schedules

{rA (·) , rB (·)} are consistent with the PSNE.

Proof : By Proposition 2, for t ∈ (t∗, toe), γ/(α + γ) ≤ rA(t)/s ≤ α/(α + γ) and

rB(t) = s− rA(t). If γ = α, γ/(α+ γ) = 1/2 and therefore rA(t) = rB(t) = s/2. If γ < α,

there is a continuum of pairs of {rA(t), rB(t)} that satisfy the equilibrium condition while

assuring that all vehicles depart during the interval [tos, t
o
e]. For t ∈ (tos, t

∗), the constraint

ri(t) ≥ rE is less strict because rE < s/2. Any pair of departure schedules {rA (·) , rB (·)}
that satisfies rE ≤ rA(t) ≤ s − rE and rB(t) = s − rA(t) satisfies the aggregate PSNE

condition. QED

The non-uniqueness of individual departure rates in a PSNE implies that, unlike in the

model for identical non-atomic users, users can experience different fleet costs in a PSNE.

This prospect is examined further in the next subsection.

3.2.3. Asymmetric equilibrium costs with γ ≤ α
Clearly, if users A and B depart at the same rate throughout the departure period

they incur the same fleet costs. In addition, there are many asymmetric PSNE departure

schedules that result in the same average schedule delay costs for the two users and hence

the same fleet costs. However, there are also many asymmetric departure schedules that

result in different fleet costs.

Figure 2 depicts an illustrative example of a PSNE in which user A incurs lower fleet

costs than user B. In the example, user A’s departures are concentrated near t∗ so that

user A has lower average schedule delay costs than B. User A’s departure rate is shown

by solid lines and user B’s by broken lines. During the interval (tos, tBA), user A departs

at the minimum rate rE defined in Proposition 2. During the next interval (tBA, t
∗), user

B departs at rate rE and user A at the complementary rate s − rE . During the first part

(t∗, tAB) of the late-arrival period, user A departs at the maximum rate consistent with

a PSNE for user B, α · s/ (α+ γ). During the remaining part (tAB, t
o
e) of the departure

period, user A departs at the minimum rate consistent with a PSNE for itself, γ ·s/ (α+ γ).

The transition times tBA and tAB are such that each user dispatches a total of N/2 vehicles.

Expressed in terms of user A’s fleet, the requisite condition is

rE ·(tBA − tos)+(s− rE)·(t∗ − tBA)+
α

α+ γ
·s·(tAB − t∗)+

γ

α+ γ
·s·(toe − tAB) =

N

2
. (25)

Total costs in the PSNE, TCo, are a given; i.e. independent of users A’s and B’s individual

departure rates. The maximum difference between the users’ costs, TCB − TCA, can

therefore be found by minimizing TCA with respect to tBA and tAB. As described in

Appendix D, user A’s costs as a fraction of total costs work out to

f ≡ TCA
TCo

=
3 + z

4
− 1

2

√
α

α+ γ
+ z2,
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where z ≡ β · γ/ ((α+ γ) · (β + γ)). The fraction f depends on α, β, and γ only through

the ratios β/α < 1 and γ/α ≤ 1. It is readily shown that f is a monotonically increasing

function of β/α and γ/α. At the upper limits with β/α ∼= 1 and γ/α = 1, f ∼= 0.4535. As

β/α and γ/α approach their lower limits of 0, f approaches 1/4.

t0s tBA t∗ tAB toe t

s

rA(t) = rE rB(t) = rE

rB(t) = s− rE rA(t) = s− rE rA(t) =
α
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· s
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γ
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γ
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Figure 2 A PSNE with asymmetric costs: γ ≤ α, no queuing.

This example illustrates that although there exists a unique PSNE in terms of the

aggregate departure rate, individual user departure rates can differ substantially and so

can their costs. If the unit schedule delay cost parameters, β and γ, are small compared

to the cost of travel time, α, one user’s fleet costs can be as little as one third the other

user’s costs. This is because one user can concentrate its departures around t∗ without the

other user wanting to reschedule its fleet because the gain from reducing schedule delay

costs would be outweighed by the high costs of queuing delay. This suggests that equity of

access to a bottleneck can be an issue with atomic users.

3.3. Extension to multiple users

The analysis in this section can be generalized to m > 2 homogeneous users. Propo-

sitions 1 and 2 can be extended in a straightforward manner by following similar lines

of reasoning. For example, condition (12) for existence of a PSNE without queuing,

λit,t′ ≥ γ/ (α+ γ), still holds. In the least restrictive case in which all m users depart

at equal rates, this condition implies that 1/m ≥ γ/ (α+ γ), or (m− 1) · γ ≤ α. The intu-

ition is similar to the case with m = 2. In a symmetric candidate PSNE, each user departs

at rate s/m and contributes a fraction 1/m of the traffic. If user i reschedules one vehicle

∆T units of time earlier, it reduces the vehicle’s late arrival cost by γ · ∆T . The vehicle

imposes a delay of 1/s on the (s/m) ·∆T of user i’s other vehicles that depart during the

time interval. The unit cost of the delay is α + γ. User i benefits from rescheduling the

vehicle unless γ ·∆T ≤ (α+ γ) ·∆T/m, which is equivalent to (m− 1) · γ ≤ α.
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The nonexistence of a PSNE with queuing can also be established using the same

approach for m > 2 as for m = 2. Candidate equilibrium departure rates for other users

during early and late departures are still given by Eqs. (16) and (14) respectively. The

candidate equilibrium is well-defined and unique, and it breaks down because any user

can reduce its costs by rescheduling a portion of its fleet. Clearly, the condition (m − 1) ·
γ ≤ α becomes more stringent as m increases so that a PSNE without queuing becomes

progressively less plausible. Indeed, given any fixed values of γ > 0 and α > 0, condition

(m − 1) · γ ≤ α necessarily fails if m is large enough. Thus, as m → ∞ the bottleneck

model with atomic users does not converge in behavior to the non-atomic model which has a

unique PSNE. The reason for this divergence is that even for large values of m, users in the

atomic model take into account how they affect queuing times. The gains from deviation

decrease in magnitude as m rises, but they remain positive. By contrast, in the standard

bottleneck model users treat queuing times as given.

In this section we have shown that a PSNE may not exist when symmetric atomic users

schedule vehicles simultaneously. In particular, if there are two identical users and γ > α,

a PSNE does not exist. By contrast, if γ ≤ α, multiple PSNE exist and in all of them

no queuing occurs. We now turn to the case where users are not identical and study the

existence and uniqueness of PSNE.

4. Nonuniqueness of equilibrium with heterogeneous atomic users

In this section we consider a modified version of the model in which users A and B

differ in their preferred arrival times and can have fleets of different size. Arnott et al.

(1987) studied this setting for the case of non-atomic users, and we draw on some of their

results. We show that, regardless of the relative size of parameters α and γ, a multiplicity

of PSNE without queuing can exist with two atomic users if preferred arrival times differ

within a certain range. The PSNE differ both in the timing of aggregate departures and

total costs. Departures can begin earlier than, later than, or at the same time as in the

system optimum. Thus, a PSNE can be inefficient even if there is no queuing.

Suppose user i, i = A,B, has a fleet of Ni vehicles, each with a preferred arrival time of

t∗i . Assume without loss of generality that t∗B > t∗A. To begin, assume t∗B >> t∗A so that the

users can schedule their fleets at individually optimal time windows that do not overlap.

Let tis and tie denote the first and last departure times for user i, and let superscript d

denote the PSNE with disjoint arrival times. Each user departs at a rate s during the

interval that minimizes the total schedule delay costs of its fleet:(
tdAs, t

d
Ae

)
=

(
t∗A −

γ

β + γ
· NA

s
, t∗A +

β

β + γ
· NA

s

)
, (26a)(

tdBs, t
d
Be

)
=

(
t∗B −

γ

β + γ
· NB

s
, t∗B +

β

β + γ
· NB

s

)
. (26b)

To rule out this uninteresting case we hereafter assume tdBs < tdAe, which is equivalent to
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assuming that:

t∗B − t∗A <
β

β + γ
· NA

s
+

γ

β + γ
· NB

s
. (27)

Define the auxiliary variable

x ≡ β

β + γ
· NA

s
+

γ

β + γ
· NB

s
− (t∗B − t∗A) > 0. (28)

Variable x measures how much the users’ preferred departure schedules overlap, and thus

the degree of “conflict”between them.

In addition to condition (27) we assume

t∗B − t∗A >
∥∥∥∥ γ

β + γ
· NB

s
− β

β + γ
· NA

s

∥∥∥∥ . (29)

Condition (29) assures that in the system optimum, derived next, some of user A’s fleet

arrives late and some of user B’s fleet arrives early.

4.1. System optimum

In the system optimum, vehicles depart at an aggregate rate of s over a connected

time interval. In general, the optimal individual departure rates, r∗A (t) and r∗B (t), are not

unique. However, given condition (29), there is a unique optimum in which all of user A’s

fleet is dispatched before any of user B’s fleet. Some of user A’s fleet arrives late, and

some of user B’s fleet arrives early. Let tAs be the time at which user A starts to depart.

User A departs over the interval (tAs, tAs +NA/s), and user B departs over the interval

(tAs +NA/s, tAs + (NA +NB)/s). Total costs are:

TC =
β · s

2
· (t∗A − tAs)

2 +
γ · s

2
·
(
tAs +

NA

s
− t∗A

)2

+
β · s

2
·
(
t∗B −

(
tAs +

NA

s

))2

+
γ · s

2
·
(
tAs +

NA +NB

s
− t∗B

)2

. (30)

The first-order condition for minimizing TC with respect to tAs yields:

toAs =
t∗A + t∗B

2
− γ

2 · (β + γ)
· NA +NB

s
− 1

2
· NA

s
, (31)

where superscript o again refers to the system optimum. Given condition (29), t∗A < toAe <

t∗B.

Substituting Eq. (31) into Eq. (30), total costs in the system optimum can be written

as:

TCo =
δ

2
·
N2
A +N2

B

s
+
β + γ

4
· s · x2, (32)

where x is defined in Eq. (28). The first term in Eq. (32) equals total costs if condition

(27) did not hold and the two users traveled in disjoint intervals. The second term in Eq.

(32) is the additional costs incurred due to overlap in the users’ preferred arrival times.

This term is an increasing, quadratic function of the degree of conflict, x.
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4.2. No-toll equilibrium with heterogeneous non-atomic users

Before considering the PSNE with users A and B, we briefly discuss the analogous

no-toll PSNE with heterogeneous non-atomic users. In this case there is a measure NA of

non-atomic users with a preferred arrival time t∗A, and a measure NB of non-atomic users

with a preferred arrival time t∗B. Arnott et al. (1987) show that when conditions (27) and

(29) both hold, the equilibrium queuing pattern has two peaks. The first peak corresponds

to on-time arrival for users with preferred arrival time t∗A, and the second peak to on-time

arrival for users with preferred arrival time t∗B. Total costs are

TCn = δ ·
N2
A +N2

B

s
+
βNA + γNB

2
· x. (33)

The first term in (33) gives total costs if the equilibrium departure schedules of the two

user groups do not conflict. This term is twice the first term in (32), just as total costs

with homogeneous users in Eq. (6) are twice total costs in the system optimum in Eq. (8).

The second term in (33) is a linear function of x. This contrasts with the second term in

(32) which is a quadratic function of x. Thus, a small degree of conflict between the two

user groups raises total costs disproportionately more in the no-toll equilibrium than in the

system optimum. In the next subsection we use the difference between total costs in the

no-toll equilibrium and system optimum as a metric to assess the efficiency achieved from

self-internalization of congestion by atomic users.

4.3. PSNE

A PSNE without queuing exists if tAe < t∗B since the two users then do not arrive late

at the same time and do not compete to complete their trips as soon as possible. Indeed,

a continuum of PSNE exists. To see this, assume that both users depart in the period

[t∗A, tAe] and capacity is fully used. Suppose user A advances a vehicle’s departure from t2

to t1, where t∗A ≤ t1 < t2 ≤ tAe. User A’s fleet costs change by:

∆CA = −C−A (t2) + C+
A (t1) = −γ · (t2 − t∗A) + γ · (t1 − t∗A) +

α+ γ

s
·
∫ t2

t1

rA(u)du

=
(
(α+ γ) · λAt1,t2 − γ

)
· (t2 − t1).

User A does not benefit from the rescheduling if

λAt1,t2 ≥
γ

α+ γ
.

This condition is satisfied for any choice of t1 and t2 as long as:

rA(t) ∈
[

γ

α+ γ
· s, s

]
, t ∈ [t∗A, tAe]. (34)

User B’s departure rate is then rB(t) = s−rA(t) ∈ [0, α · s/ (α+ γ)]. There is no restriction

on rB(t) because user B arrives early throughout [t∗A, tAe]. Thus, any departure profile sat-

isfying Eq. (34) is consistent with a PSNE. However, different departure profiles generally

result in different total costs.
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An exhaustive treatment of all PSNE in this example would be tedious. Attention is

limited to two illustrative cases. In Case 1, user A schedules its entire fleet during the

same interval it would choose if user B did not exist. Hence, rA(t) = s during the interval

(tdAs, t
d
Ae) given by Eq. (26a). User B departs at rate s during the ensuing interval (tdAe, tBe).

In Case 2, user A departs at rate s during the interval (tAs, t
∗
A). During the next interval

(t∗A, tAe), userA departs at the minimum rate consistent with Eq. (34), rA(t) = γ·s/ (α+ γ).

User B departs at the complementary rate rB(t) = α · s/ (α+ γ). During the final interval

(tAe, tBe), user B departs at rate s. Cases 1 and 2 are now examined in turn.

4.3.1. PSNE for Case 1

Figure 3 depicts a PSNE conforming with Case 1, using the following parameter values:

NA = 1, NB = 1, s = 1, α = 2, β = 1, γ = 2, t∗A = 0, and t∗B = 2/3.

t1As t∗A t1Ae = t1Bs t∗B t1Be
t

NA

NA +NB

SDCE

SDCL

SDCE

SDCL

User A User B

Figure 3 PSNE for Case 1 with t∗B > t∗A, NA = 1, NB = 1, s = 1, α = 2, β = 1, γ = 2, t∗A = 0, and t∗B = 2/3.

Since all of user A’s fleet departs before any of user B’s fleet,

t1Ae − t1As =
NA

s
, (35)

where superscript 1 denotes Case 1. User A can schedule a vehicle either just before t1As or

just after t1Ae without imposing a congestion delay on other vehicles in its fleet. The first

and last vehicles must therefore incur equal schedule delay costs:

β ·
(
t∗A − t1As

)
= γ ·

(
t1Ae − t∗A

)
. (36)
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Together, Eqs. (35) and (36) imply:

t1As =t∗A −
γ

β + γ
· NA

s
, (37a)

t1Ae =t∗A +
β

β + γ
· NA

s
. (37b)

As noted above, the departure interval
(
t1As, t

1
Ae

)
coincides with the interval

(
tdAs, t

d
Ae

)
given

by Eq. (26a). User B departs in a connected time interval immediately after user A. Hence,

t1Bs = t1Ae = t∗A +
β

β + γ
· NA

s
, (38a)

t1Be = t∗A +
β

β + γ
· NA

s
+
NB

s
. (38b)

A notable feature of the departure schedule given by Eqs. (37a)-(38b) is that it does not

depend on t∗B. To be consistent with the assumption that some of user B’s fleet arrives

early we require t1Ae < t∗B, or:

t∗B − t∗A >
β

β + γ
· NA

s
. (39)

Case 1 is a PSNE if neither user has an incentive to deviate from it. User A clearly has

no incentive to deviate because its fleet costs are the minimum possible. Two conditions

must be satisfied for user B. First, user B cannot gain by rescheduling its last vehicle from

t1Be to some time t̂ between t1As and t1Ae. This condition is satisfied since rescheduling would

impose queuing delay on all vehicles that depart after t̂ without reducing schedule delay

costs for user B’s fleet.

Second, user B cannot gain by rescheduling its last vehicle from t1Be to just before the

beginning of the travel period at t1As. The condition is β ·
(
t∗B − t1As

)
> γ ·

(
t1Be − t∗B

)
, which

reduces to:

t∗B − t∗A ≥
γ

β + γ
· NB

s
. (40)

Conditions (39) and (40) together guarantee that condition (29) is satisfied.

The timing of departures in Case 1 and the system optimum can be compared using

Eqs. (37a) and (31):

t1As − toAs =
1

2
·
(

β

β + γ
· NA

s
+

γ

β + γ
· NB

s
− (t∗B − t∗A)

)
=
x

2
.

Since x > 0, t1As > toAs: departures in Case 1 begin later than in the system optimum.

To see why, note that while early and late arrivals are balanced optimally for user A, user

B’s arrivals begin inefficiently late because user A occupies the bottleneck until t1Ae and

effectively squeezes user B out. As shown in Appendix E, total costs in Case 1 can be

written as:

TC1 =
δ

2
·
N2
A +N2

B

s
+
β + γ

2
· s · x2 = TCo +

β + γ

4
· s · x2. (41)
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Total costs are an increasing quadratic function of the degree of conflict, x. This is

similar to the system optimum (cf. Eq. (32)), but unlike the non-atomic equilibrium where

the dependence is linear (cf. Eq. (33)). The last expression in Eq. (41) , (β + γ) sx2/4,

measures inefficiency of the PSNE in Case 1. This inefficiency can be expressed as a price

of anarchy, PA, using the ratio

PA =
TC1 − TCo

TCo
. (42)

PA is bounded below by 0. As shown in Appendix E, it is bounded above by 1/5. Thus,

despite the fact that there is no queuing in the PSNE for Case 1, total costs can exceed the

system-optimal level by up to 20 percent.

Efficiency of the PSNE can also be measured relative to the non-atomic equilibrium

using the index

w ≡ TCn − TC1

TCn − TCo
. (43)

The numerator of (43) is the reduction in total costs achieved by self-internalization of

congestion by the atomic users. The denominator is the reduction in total costs realized at

the system optimum. Index w reaches its maximum value of 1 when x = 0. Appendix E

establishes that it is bounded below by 6/7. Self-internalization of congestion by the atomic

users independently therefore achieves most of the potential benefits from coordinating

departure times centrally.

4.3.2. PSNE for Case 2

Figure 4 depicts an example of a PSNE in Case 2 using the same parameter values as

for Figure 3. During the initial interval,
(
t2As, t

∗
A

)
, user A departs at rate s. User B begins

to depart immediately after t∗A, and during the interval (t∗A, t
2
Ae) the two users depart

simultaneously with an aggregate rate of s. User A departs at rate rA(t) = γ · s/ (α+ γ),

and user B departs at rate rB(t) = α · s/ (α+ γ). During the final interval, (t2Ae, t
2
Be), user

B departs at rate s.

The PSNE for Case 2 is solved in Appendix E. The three transition times work out to:

t2As =t∗A −
α+ γ

α+ β + γ
· NA

s
, (44a)

t2Ae = t∗A +
β · (α+ γ)

γ · (α+ β + γ)
· NA

s
, (44b)

t2Be = t∗A +
β

α+ β + γ
· NA

s
+
NB

s
. (44c)

Similar to Case 1, the timing of the PSNE given by Eqs. (44a)-(44c) does not depend on

t∗B. As shown in Appendix E, departures in the PSNE of Case 2 can begin either earlier

or later than in the system optimum. As t∗B decreases, the system optimum begins earlier

(cf. Eq. (31)), whereas the PSNE does not (cf. Eq. (44a)). Hence, as user B’s preferred
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t2As t2Bs = t∗A t2Ae t∗B t2Be
t

NA +NB

SDCE

SDCL

SDCE

SDCL

User A User BUsers A & B

Figure 4 PSNE for Case 2 with t∗B > t∗A, NA = 1, NB = 1, s = 1, α = 2, β = 1, γ = 2, t∗A = 0, and t∗B = 2/3.

schedule moves closer to user A’s and the conflict between them grows, the PSNE in Case

2 shifts from beginning too early to beginning too late.

Unlike for Case 1, there is no simple formula for total costs in Case 2. Also unlike

Case 1, total costs do not reach the system-optimal minimum value at the point where t2As
coincides with toAs. Thus, the price of anarchy is always positive. This is because both users

depart during the interval (t∗A, t
2
Ae), with user A arriving late and user B arriving early.

To see that simultaneous departure is inefficient, consider a vehicle of user B arriving at

t1 and a vehicle of user A arriving at t2 > t1. If the two vehicles exchanged slots, user A’s

vehicle would arrive less late and user B’s vehicle would arrive less early. The two users

might agree to such an exchange if they cooperated, but the switch cannot occur in a Nash

equilibrium.

We conclude this section with a numerical example featuring the same parameter values

as those used to construct Figures 3 and 4: NA = 1, NB = 1, s = 1, α = 2, β = 1, γ = 2,

t∗A = 0, and t∗B = 2/3. Departures and arrivals last for two hours. The system optimum

begins at toAs = −5/6, and total costs are TCo = 3/4. The PSNE for Case 1 begins at t1As =

−2/3, and total costs are TC1 = 5/6 which is 11.1% higher than TCo. User A’s total costs

are 1/3, and user B’s total costs are 1/2. User B’s total costs are 50% higher than user A’s

total costs even though the two users have the same size of fleet and the same unit costs

α, β, and γ. The PSNE for Case 2 begins at t2As = −4/5, and total costs are TC2 = 0.81

which is 8.4% higher than TCo but 2.4% lower than TC1. User A’s total costs are 2/5, and

user B’s total costs are 0.413. User B’s total costs are just 3.3% higher than user A’s total
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costs so that the PSNE in Case 2 is both more efficient and more equitable than in Case 1.

Finally, note that if user B’s desired arrival time is increased from t∗B = 2/3 to t∗B = 4/5,

toAs increases to −23/30 while t2As remains at −4/5. The PSNE in Case 2 then begins later

than the system optimum.

5. Conclusion

In this paper we have explored the existence and uniqueness of pure strategy Nash

equilibrium (PSNE) in the bottleneck model with atomic users. We consider a simple case

featuring two users with piecewise linear and independent trip-timing preferences for each

vehicle in their fleets. We show that if users are identical, and γ > α, a PSNE does not

exist. By contrast, if γ ≤ α, multiple PSNE do exist in which no queuing occurs. The

aggregate departure profile is unique. However, there exists a continuum of departure-time

schedules for the two users that differ in the share of total costs borne by each user. We

also consider a setting in which the two users differ in their preferred arrival times, t∗A and

t∗B. For a range of values of t∗B − t∗A, there exists a continuum of PSNE that differ in the

timing of trips, total costs, and the relative burden of costs borne by each user. Table 1

summarizes the main results of the paper.

Main case Subcase Existence Inefficiency Comments

Homogeneous

users

γ > α
No

PSNE
— —

γ ≤ α
Multiple

PSNE
0%

One user can incur up to 75% of the

total costs.

Heterogeneous

users in t∗

and fleet size

t∗B > t∗A
Multiple

PSNE
≤ 20%

There is no queuing. Departures

may start earlier or later than op-

timal.

Table 1 Summary of results. The inefficiency is measured as the price of anarchy (see Eq. (42)). The results

for heterogeneous users are valid only for the range of t∗B − t∗A described by Eqs. (27), (39) and (40).

The potential nonexistence of PSNE with atomic users is, we believe, the most significant

of the results. In the standard bottleneck model a PSNE exists under relative general

assumptions. It fails to exist only if trip-timing preferences have discontinuities such as

discrete penalties for late arrival or discontinuities in the cost of travel time as a function

of duration (Lindsey, 2004). In the model with non-atomic users nonexistence is a problem

even with smooth preferences because atomic users face conflicting incentives. On the

one hand they prefer to spread out departures of their fleets in order to avoid self-imposed

queuing delays. If there is only one user, this results in a system-optimal departure schedule

with no queuing. But when other users are present, an atomic user has an incentive to force

vehicles into the departure stream near the peak in order to reduce its fleet’s schedule delay

costs. A user’s best response can be to preempt other users by scheduling a mass departure
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near t∗ and hogging bottleneck capacity. Yet mass departures are inconsistent with PSNE,

as we have shown.

The out-of-equilibrium behaviour in the bottleneck model bears some resemblance to

firm behaviour in one-dimensional (Hotelling) spatial competition models (see Anderson

et al. (1992), chapter 8). In location-choice games with parametric prices, firms leapfrog

each other to gain market share. The outcome depends on the number of firms. With two

or four firms a unique PSNE exists. But with five firms there are multiple PSNE, and with

three firms a PSNE does not exist. In simultaneous location- and price-choice games with

two firms, a PSNE does not exist. Firms face conflicting location-choice incentives that are

broadly similar to the incentives of atomic users picking departure times in the bottleneck

model. Moving closer to the centre (analogous to departing close to t∗) gains firms market

share, but moving away softens price competition.

Preliminary analysis suggests that the difference between the standard bottleneck model

and the model with atomic users remains as the number of atomic users increases because

each user still recognizes how its scheduling choices affect queuing delays. Thus, simple

congestion-prone systems with atomic users can exhibit fundamentally different dynamic

behavior than with non-atomic users. Dynamic systems with non-atomic users have been

well studied in the literature using the bottleneck model as well as various flow-congestion

models. Yet, to our knowledge, this paper is the first to examine the existence and unique-

ness of equilibrium in dynamic systems with atomic users that make scheduling decisions

simultaneously.

Our analysis is exploratory and can be extended in various directions. One obvious

priority is to determine how the bottleneck model can be modified to restore existence

of equilibrium without restricting parameter values. One possibility is to consider both

atomic and non-atomic users scheduling vehicles simultaneously. Although this setting may

be more realistic in some markets, our preliminary analysis indicates that the presence of

non-atomic agents does not restore existence of PSNE. Indeed, the conditions for existence

of a PSNE are more stringent in the setting considered here even if atomic users control

only a small share of traffic.

Another option to restore equilibrium is to consider mixed-strategy Nash equilibrium.

However, since the strategy space in our setting allows discontinuous functions that may

take a positive value only at a finite number of points, there is no guarantee that a Nash

equilibrium in mixed strategies exists. It does not appear that the strategy space satisfies

the necessary conditions for theorems of existence for infinite strategy spaces (e.g. a compact

Hausdorff space as described in Reny (1999)). A discrete version of the bottleneck model

with finite time steps and discrete vehicles is guaranteed to have a Nash equilibrium in

mixed strategies because the strategy space is finite. Such an extension is beyond the scope

of this paper. Moreover, studies that have used the discrete bottleneck model have found

that a Nash equilibrium in pure strategies may not exist even if each player controls only

one vehicle. Deriving pure or mixed strategy equilibria is also computationally-demanding

for more than a few players. Adopting the discrete version of the bottleneck model therefore
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does not appear to be a promising approach.

A third option is to consider equilibrium under centralized pricing. In our setting,

charging the first-best tolls for the model with non-atomic users restores equilibrium, but

it is an open question whether a PSNE exists under more realistic step-tolling. Further

possibilities for restoring equilibrium include: sequential decision-making (e.g. Stackelberg),

consideration of repeated games, heterogeneity in unit values of time and schedule delay,

and a more general specification of scheduling preferences.

Another direction for future research is to investigate more fully the benefits of coor-

dination or other forms of cooperation. Self-internalization of congestion externalities by

an atomic agent is one form of coordination, and its potential for welfare gains is apparent

from Section 4. Cooperation between atomic agents can also be beneficial as shown by the

examples in which the price of anarchy is positive. Major freight shippers might cooper-

ate by harmonizing their delivery schedules although doing so without triggering concerns

about illegal collusion might be tricky. Governments can also implement or encourage coop-

erative behavior. One example are staggered work hours and flextime programs that entail

coordination on target arrival times (i.e., t∗). Staggered work hours were introduced in

the 1970s in Washington, D.C., and Ottawa, Canada. Gutiérrez-i-Puigarnau and Van Om-

meren (2012) report that one in three German firms uses staggered working hours. Mun

and Yonekawa (2006) note that in Japan, in 1998, 8% of employees worked at a firm with

flexible working hours, and in the US, in 1994-1997, less than 6% of employees had a formal

flexible working arrangement, but 28% of all full-time workers varied their working times

to some degree.
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Appendix A. Proof of Lemma 2

Suppose that user A schedules a mass departure at time t. Clearly, user B will not

depart either at t or immediately after t since it would be better to depart either just

before the mass or some time after t when the queue caused by the mass departure has

diminished or disappeared. To prove that a mass cannot be part of a PSNE we will show

that user A will never schedule a mass departure at t unless user B is scheduling vehicles

either at t or immediately after t, which, as just argued, user B is not willing to do.
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Thus, suppose that user A is considering a mass departure of M vehicles at time t, and

assume that user B does not depart during the period
[
t, t̆
]
, where t̆ > t. Variables M , t,

and t̆ are held fixed throughout the proof. The logic of the proof depends on whether or

not a queue exists at t.

Appendix A.1. A queue exists at t

Assume Q (t) > 0. Pick any time t′ ∈
(
t, t̆
]

such that Q (t′) > 0. We will show that user

A is better off postponing the mass departure from t to t′. Let m ∈ [0,M ] index vehicles

in the order they are positioned in the mass, and let c(m, t) denote the cost incurred by

vehicle m when the mass departs at t:

c(m, t) = α ·
(
T (t) +

m

s

)
+

{
β ·
(
t∗ − t− T (t)− m

s

)
if t+ T (t) + m

s ≤ t
∗

γ ·
(
t+ T (t) + m

s − t
∗) if t+ T (t) + m

s ≥ t
∗ .

If the mass is rescheduled to depart at t
′

instead, vehicle m incurs a cost:

c(m, t′) = α ·
(
T (t′) +

m

s

)
+

{
β ·
(
t∗ − t′ − T (t′)− m

s

)
if t′ + T (t′) + m

s ≤ t
∗

γ ·
(
t′ + T (t′) + m

s − t
∗) if t′ + T (t′) + m

s ≥ t
∗ .

Now, vehicle m arrives at the same time whether the mass is scheduled at t or t
′

since a

queue remains at t′ and user B does not depart between t and t′. Hence t′+T (t′) = t+T (t),

and c(m, t′) can be written:

c(m, t′) = α ·
(
T (t) +

m

s

)
−α · (t′ − t) +

{
β ·
(
t∗ − t− T (t)− m

s

)
if t+ T (t) + m

s ≤ t
∗

γ ·
(
t+ T (t) + m

s − t
∗) if t+ T (t) + m

s ≥ t
∗

= c(m, t)− α · (t′ − t) < c(m, t).

Postponing the mass departure therefore reduces costs for all M vehicles in the mass.

Appendix A.2. No queue exists at t

Assume Q (t) = 0 and set t′ = t̆. If M ≤ s · (t′ − t), vehicles provisionally scheduled in

the mass can instead be rescheduled to depart at rate s for a period of duration M/s. The

M vehicles arrive at the same time as with the mass departure, but without incurring a

queuing delay. If M > s ·(t′ − t), then s ·(t′ − t) of the vehicles can be rescheduled to depart

at rate s for a period t′− t, and the remaining M −s · (t′ − t) vehicles can be rescheduled to

depart in a mass at t
′
. All M vehicles will arrive at the same time as they do in the mass

departure at t. The first s · (t′ − t) vehicles do not queue at all, and the last M − s · (t′ − t)
vehicles do not queue during [t, t′]. Total queuing costs are therefore reduced, and total

schedule delay costs are unchanged. Postponing the mass departure again reduces fleet

costs, so that the mass departure is not optimal. QED

Appendix B. Proof of Lemma 4

It suffices to show that user A’s vehicles that depart after tq incur lower total costs in

the revised schedule than in the candidate PSNE schedule.
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Appendix B.1. Costs in the candidate equilibrium

Total queuing time in the candidate PSNE is measured by area ABC in Figure 1. User A

incurs half of this delay. User A’s queuing time costs are therefore α ·
(
t∗ − t̃

)
·s ·(te − tq) /4.

The number of user A’s vehicles that queue and arrive early is s · (t∗ − tq) /2, and their

average schedule delay cost is β · (t∗ − tq) /2. The number of vehicles that queue and arrive

late is s · (te − t∗) /2, and their average schedule delay cost is γ · (te − t∗) /2. User A’s

queuing vehicles therefore incur total costs of

TCe =
α · s

4
·
(
t∗ − t̃

)
· (te − tq) +

β · s
4
· (t∗ − tq)2 +

γ · s
4
· (te − t∗)2 , (B.1)

where superscript e denotes the candidate PSNE. Substituting Eqs. (24b), (24c), and (24d)

into Eq. (B.1) gives

TCe =
β2 ·

(
α2 + α · (γ − β) + 3 · β · γ

)
8 · s · (α+ β)2 · (β + γ)

·N2. (B.2)

Appendix B.2. Costs in the revised schedule

Time t̂ in Figure 1 is defined by the condition

α

α− β
· s ·

(
t̃− tq

)
+

α

α+ γ
· s ·

(
t̂− t̃

)
= s ·

(
t̂− tq

)
.

This solves to yield

t̂ = t∗ − β · (γ − α) · (γ − β)

2 · γ · (α+ β) · (β + γ)
· N
s
< t∗, (B.3)

where the inequality follows from γ > α > β.

The number of user A’s vehicles that depart after t̂ and arrive early in the revised

schedule is γ · s ·
(
t∗ − t̂

)
/(α + γ). These vehicles incur an average schedule delay cost

of β ·
(
t∗ − t̂

)
/2. The number of user A’s vehicles that depart after t̂ and arrive late is

γ · s · (te − t∗) /(α+ γ) and their average schedule delay cost is γ · (te − t∗) /2. Total costs

are therefore

TCd =
β · γ · s

2 · (α+ γ)
·
(
t∗ − t̂

)2
+

γ2 · s
2 · (α+ γ)

· (te − t∗)2 , (B.4)

where superscript d denotes the deviant schedule. Substituting Eqs. (B.3) and (24b) into

Eq. (B.4) gives

TCd =
α2 ·

(
β2 − 3 · β · γ + 4 · γ2

)
+ 2 · α · β · γ · (3 · γ − β) + β · γ2 · (β + γ)

8 · γ · (α+ β)2 · (α+ γ) · (β + γ) · s
· β2 ·N2.

(B.5)

Given Eqs. (B.2) and (B.5), the costs saved by deviating from the candidate PSNE

work out to

TCe − TCd =
β2 · (α− γ)2 ·

(
α · γ − β2 + 2 · β · γ

)
8 · s · γ · (α+ β)2 · (α+ γ) · (β + γ)

·N2 > 0.

Since the cost saving is positive, the candidate PSNE is not a PSNE. QED
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Appendix C. Proposition 2: Proof of Result 4 for mass departures

Suppose that user A deviates from the candidate PSNE by scheduling multiple mass

departures. We prove that such a deviation cannot reduce user A’s costs. The proof is

done in two steps. We first show that any deviation with multiple mass departures does

not achieve lower costs than a deviation with a single mass departure launched before t∗

(Appendix C.1). We then show that this deviation is not gainful if the bounds on departure

rates stated in Proposition 2 are satisfied (Appendix C.2).

Appendix C.1. Optimality of the single mass departure deviation

We show that any deviation from the PSNE involving multiple mass departures is

dominated by a single mass departure. The proof involves establishing the following three

results for either user: (i) Fleet costs can be (weakly) reduced by rescheduling any vehicles

that suffer queuing delay, but are not part of a mass, to a period without queuing. (ii)

Fleet costs can be (weakly) reduced by rescheduling any vehicles in a mass departure after

t∗ to a period without queuing. (iii) Any deviation with multiple mass departures launched

before t∗ entails strictly higher fleet costs than a deviation with a single mass departure.

These three results establish that the candidate PSNE need only be tested against a single

mass departure launched before t∗.

Result i: When a queue exists, user A is willing to depart at a positive and finite rate

only if condition (17) is satisfied. For early arrivals this requires rB (t) = α · s/ (α− β) > s.

Since rB (t) < s in the candidate PSNE, condition (17) is violated, and user A will not

deviate by departing early when there is a queue. For late arrivals, user A is willing to

depart at a positive and finite rate when there is a queue only if rB (t) = α · s/ (α+ γ).

Proposition 2 stipulates that rB (t) ≤ α · s/ (α+ γ). If rB (t) < α · s/ (α+ γ), user A is

better off scheduling its vehicles later. If rB (t) = α·s/ (α+ γ), user A is indifferent between

departing or not, and would not gain by rescheduling vehicles late when there is a queue.

Result ii: Assume that the last mass departure is launched at a time of late arrivals.

We show that rescheduling vehicles in the mass to a later period in which they do not incur

queuing delay is beneficial. By induction, it then follows that all mass departures launched

at times of late arrivals can be gainfully rescheduled.

Suppose the last mass departure is launched at time tL and comprises M vehicles.

Assume first that there is a queue at tL. We show that postponing the mass departure

to the moment when the queue disappears (weakly) reduces fleet costs. Let m ∈ [0,M ]

index vehicles in the order they are positioned in the mass, and let c(m, tL) denote the cost

incurred by vehicle m:

c(m, tL) = α ·
(
T (tL) +

m

s

)
+ γ ·

(
tL + T (tL) +

m

s
− t∗

)
.

Now suppose the mass is postponed to t
′
L > tL when a queue still exists. Vehicle m now

incurs a cost of:

c(m, t
′
L) = α ·

(
T (t

′
L) +

m

s

)
+ γ ·

(
t
′
L + T (t

′
L) +

m

s
− t∗

)
. (C.1)
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Since only user B departs during (tL, t
′
L),

T (t
′
L) = T (tL) +

∫ t
′
L

tL

rB(u)− s
s

du = T (tL)− (t
′
L − tL) ·

(
1− λB

tL,t
′
L

)
. (C.2)

Substituting (C.2) in (C.1), we get:

c(m, t
′
L) = c(m, tL)− α · (t′L − tL) ·

(
1− λB

tL,t
′
L

)
+ γ · (t′L − tL) · λB

tL,t
′
L

.

Postponing the mass departure changes costs by:

c(m, t
′
L)− c(m, tL) = (t

′
L − tL) ·

[
λB
tL,t
′
L

· (α+ γ)− α
]
≤ 0 ,

where the inequality follows from the condition rB (t) ≤ α · s/(α+ γ) in Proposition 2.

We conclude that if there is a queue when the last mass departs, the mass departure can

be postponed to the time where the queue just disappears without increasing costs (later

vehicles are not affected by postponing the mass).

Now assume there is no queue at tL when the last mass is launched. We show that

vehicles in the mass can be rescheduled later to a time when they do not face a queue, and

that doing so does not increase user A’s fleet costs. Consider the cost of the last (i.e., M-th)

vehicle in the mass:

c(M, tL) = γ · (tL − t∗) + (α+ γ) · M
s
.

Because user A does not depart until the queue has disappeared (result i), the queue

produced by the mass departure disappears at time t
′
L where:

M

s
+

∫ t
′
L

tL

rB(u)− s
s

du =
M

s
− (t

′
L − tL) ·

(
1− λB

tL,t
′
L

)
= 0 . (C.3)

A vehicle that departs at t
′
L incurs a cost:

c(t
′
L) = γ · (t′L − t∗) = γ · (t′L − tL) + γ · (tL − t∗) = γ · (tL − t∗) + γ · M

s ·
(

1− λB
tL,t
′
L

) ,
where the last equality uses Eq. (C.3). As removing a vehicle from the mass opens up a

(queue-free) slot at t
′
L, rescheduling the last vehicle to t

′
L yields a change in cost of:

c(t
′
L)− c(M, tL) =

M

s
·

 γ

1− λB
tL,t
′
L

− (α+ γ)

 ≤ 0 ,

where the inequality follows from condition rB (t) ≤ α · s/(α+ γ) in Proposition 2.

This shows that, in any deviation from the candidate PSNE, the last mass departure

launched at a time of late arrivals can be eliminated without increasing fleet costs. By

induction, any mass departure launched at a time of late arrivals can be rescheduled without

increasing fleet costs.
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Next, we show that any deviation entailing multiple mass departures at times of early

arrivals is dominated by scheduling a single mass departure before t∗.

Result iii: Suppose that more than one mass departure is scheduled before t∗. Assume

the first mass is launched at time tE with M vehicles, and the second mass is launched

at time t
′
E > tE . If the queue from the first mass disappears before t

′
E , fleet costs can

be reduced by rescheduling vehicles in the first mass to depart at a rate equal to residual

capacity (s− rB(t)). Since user A does not depart in the original deviation until the queue

has dissipated, the rescheduled vehicles in the alternative deviation escape queuing and

arrive less early – thereby reducing both their queuing and schedule delay costs. If the

queue from the first mass does not disappear before t
′
E , user A can still reduce its fleet

costs by rescheduling s · (t′E − tE) · (1− λB
tE ,t

′
E

) vehicles at a rate s− rB(t) during (tE , t
′
E),

and letting the remaining M − s · (t′E − tE) · (1−λB
tE ,t

′
E

) vehicles join the head of the second

mass at t
′
E . The first set of vehicles rescheduled at residual capacity avoid queuing and

incur lower early arrival costs because they arrive closer to t∗. The second set of vehicles

also incur lower schedule delay costs since they arrive later. They also incur lower queuing

costs as well since they no longer queue between tE and t
′
E . Vehicles in the original mass

that departs at t
′
E still depart and arrive at the same time because the same number of

vehicles depart before them and the bottleneck operates at capacity throughout.

By induction, all but one of the mass departures launched before t∗ can be eliminated in

a way that decreases fleet costs. Thus, results (i)–(iii) show that a deviation with a single

mass departure launched before t∗ is the most viable deviation, of deviations entailing

mass departures, from the candidate PSNE. In the following section we show that the

cost-minimizing deviation does not reduce fleet costs with respect to the candidate PSNE.

Appendix C.2. The optimal mass departure

Following the logic of Appendix C.1, suppose user A launches a single mass departure

of M vehicles at tm < t∗. User A will not include in the mass vehicles that were scheduled

to depart before tm because this would create a queue that lasts until after te, and the

cost of the delay imposed on A’s later vehicles would outweigh any benefit. User A will

include in the mass all vehicles scheduled to depart after tm that would be delayed by the

mass. However, as discussed above, this would be counterproductive if all these vehicles

were scheduled to depart before t∗ because they would suffer not only queuing delay but

also greater early-arrival costs (the queue would disappear before t∗).

The mass departure is potentially beneficial only if it includes vehicles scheduled to

depart both early and late. Therefore, the mass must be launched at a time tm < t∗, and

the queue must persist until a time tM > t∗, where tM is defined by the condition:∫ tM

tm

rA (u) du = M, (C.4)

where rA (·) is user A’s departure schedule in the candidate PSNE. Since the queuing

costs incurred by the mass do not depend on when it is launched, tm should be chosen
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to minimize total schedule delay costs for vehicles in the mass. The first and last vehicles

should therefore incur the same schedule delay cost:

β · (t∗ − tm) = γ ·
(
tm +

M

s
− t∗

)
.

This implies

tm = t∗ − γ

β + γ
· M
s
.

Vehicles in the mass incur total queuing time costs of α ·M2/ (2 · s), and total schedule

delay costs of δ ·M2/ (2 · s). Total costs for the mass are therefore:

TCm =
α+ δ

2
· M

2

s
. (C.5)

In the candidate PSNE, where rA(t)+rB(t) = s for t ∈ (tm, tM ), the M vehicles incur total

costs of

TCe = β ·
∫ t∗

tm

rA (u) · (t∗ − u) du+ γ ·
∫ tM

t∗
rA (u) · (u− t∗) du.

To complete the proof we must show that TCe ≤ TCm. User A’s departure rate over the

period (tm, tM ) must be consistent with condition (C.4). As shown in proving Result 3 of

Proposition 2, during late arrivals rA (u) is bounded below by γ · s/(α+ γ). Let rE denote

the minimum departure rate of user A prior to t∗. It follows by straightforward algebra

that

TCe ≤

M2 ·

(
β · γ2 · rE · s+ (α+ γ) ·

(
(β + γ)2 · s2 + r2E · γ2 − 2 · (β + γ) · γ · s · rE

))
2 · (β + γ)2 · s3

. (C.6)

Setting the right-hand side of inequality (C.6) equal to Eq. (C.5) one obtains

rE =
s

2
·

2 · α · (β + γ) + γ · (β + 2 · γ)−
√
β2 · γ2 + 4 · α · (β + γ)2 · (α+ γ)

γ · (α+ γ)
.

If user A’s departure rate during early arrivals is at least rE , departing in a mass cannot

reduce its fleet costs. The candidate PSNE is therefore robust to mass departure deviations.

Straightforward algebra leads to:

0 < rE <
γ

α+ γ
· s,

which shows that in the limit γ → 0, rE → 0. QED
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Appendix D. Asymmetric equilibrium costs with γ ≤ α

User A’s fleet costs in the PSNE depicted in Figure 2 are

TCA = rE · (tBA − tos) · β ·
(
t∗ − tos + tBA

2

)
+ (s− rE) · (t∗ − tBA) · β · t

∗ − tBA
2

+

α

α+ γ
· s · (tAB − t∗) · γ ·

tAB − t∗

2
+

γ

α+ γ
· s · (toe − tAB) · γ ·

(
tAB + toe

2
− t∗

)
=

β · rE
2
·
(

(t∗ − tos)
2 − (t∗ − tBA)2

)
+
β

2
· (s− rE) · (t∗ − tBA)2

+
α · γ · s

2 · (α+ γ)
· (tAB − t∗)2 +

γ2 · s
2 · (α+ γ)

·
(

(toe − t∗)
2 − (tAB − t∗)2

)
. (D.1)

Differentiating TCA with respect to tBA and tAB, and using Eqs. (7b), (7c) and condi-

tion (25) in the text, one obtains for the cost-minimizing transition times:

tBA = t∗ − γ

2 · (β + γ)
· N
s
, tAB = t∗ +

β

2 · (β + γ)
· N
s
. (D.2)

Substituting Eqs. (7b), (7c), and (D.2) into Eq. (D.1) gives

TCA =

(
3 + z

4
− 1

2
·
√

α

α+ γ
+ z2

)
· TCo,

where z ≡ β · γ/ ((α+ γ) · (β + γ)).

Appendix E. Heterogeneous desired arrival times

Appendix E.1. Case 1

User A’s fleet costs in Case 1 are:

TC1
A =

β · s
2
·
(
t∗A − t1As

)2
+
γ · s

2
·
(
t1As +

NA

s
− t∗A

)2

=
β · γ

2 (β + γ)
·
N2
A

s
.

User B’s fleet costs are:

TC1
B =

β · s
2
·
(
t∗B − t1Ae

)2
+
γ · s

2
·
(
t1Be − t∗B

)2
=

β · s
2
·
(
t∗B − t∗A −

β

β + γ
· NA

s

)2

+
γ · s

2
·
(
t∗A +

β

β + γ
· NA

s
+
NB

s
− t∗B

)2

=
β · s

2
·
(

γ

β + γ
· NB

s
− x
)2

+
γ · s

2

(
x+

β

β + γ
· NB

s

)2

=
β · γ

2 · (β + γ)

N2
B

s
+
β + γ

2
· s · x2,

where x ≡ t∗A − t∗B + (β/(β + γ)) · (NA/s) + (γ/(β + γ)) · (NB/s). Total system costs are:

TC1 = TC1
A + TC1

B =
β · γ

2 · (β + γ) · s
·
(
N2
A +N2

B

)
+
β + γ

2
· s · x2.

35



The price of anarchy is

PA =
TC1 − TCo

TCo
=

β+γ
4 · s · x

2

β·γ
2·(β+γ)·s ·

(
N2
A +N2

B

)
+ β+γ

4 · s · x2
. (E.1)

PA is an increasing function of x. Condition (40) in the text, t∗B−t∗A ≥ (γ/(β+γ))·(NB/s),

implies that x ≤ (β/(β + γ)) · (NA/s). Substituting this value for x into Eq. (E.1), and

simplifying, yields

PA ≤
β ·N2

A

2 · γ ·
(
N2
A +N2

B

)
+ β ·N2

A

. (E.2)

Condition (39) in the text, t∗B − t∗A > (β/(β + γ)) · (NA/s), implies that x ≤ (γ/(β +

γ)) · (NB/s). This in turn implies (β/(β + γ)) · (NA/s) ≤ (γ/(β + γ)) · (NB/s), or NA ≤
(γ/β) ·NB. Substituting this inequality into Eq. (E.2) yields

PA ≤
β
γ

2 + β
γ + 2 · β

2

γ2

. (E.3)

In the model variant in Section 4.1 the relative magnitudes of parameters β and γ are

unrestricted so there is no upper or lower bound on β/γ. The formula in Eq. (E.3) reaches

a maximum at β/γ = 1, for which PA = 1/5.

The lower bound on the efficiency index w is derived in the same way as the upper bound

on PA. Imposing conditions (39) and (40) as equalities yields x = (β/(β + γ)) · (NA/s) =

(γ/(β + γ)) · (NB/s). Substituting these equalities into Eq. (43) gives

w ≥ β · γ + β2 + γ2

3
2β · γ + β2 + γ2

. (E.4)

Eq. (E.4) achieves a minimum value of 6/7 with β = γ.

Appendix E.2. Case 2

The three transition times in Case 2, t2As, t
2
Ae, and t2Be, are solved using three conditions.

First, Eq. (36) for Case 1 continues to apply, as otherwise user A could decrease its fleet

costs by rescheduling a vehicle from t2As to t2Ae, or vice versa (cf Eq. (E.5a) below). Second,

the bottleneck is fully utilized from t2As to t2Be (cf Eq. (E.5b)). Finally, user B’s entire fleet

must depart during the period [t∗A, t
2
Be] (cf Eq. (E.5c)).

β ·
(
t∗A − t2As

)
= γ ·

(
t2Ae − t∗A

)
, (E.5a)

t2Be − t2As =
NA +NB

s
, (E.5b)

α

α+ γ
· s
(
t2Ae − t∗A

)
+ s ·

(
t2Be − t2Ae

)
= NB. (E.5c)

Equations (E.5) resolve to Eqs. (44a)-(44c) in the text. Three consistency conditions must

be satisfied. First, as in Case 1, user B cannot gain by rescheduling its last vehicle to t2As.

The requisite condition is:
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t∗B − t∗A ≥
γ

β + γ
· NB

s
− α · β

(β + γ) · (α+ β + γ)
· NA

s
. (E.6)

Second, user B cannot gain by rescheduling a vehicle at t∗A to t2Be. Thus, β · (t∗B − t∗A) ≤
γ ·
(
t2Be − t∗B

)
which reduces to:

t∗B − t∗A ≤
β · γ

(β + γ) · (α+ β + γ)
· NA

s
+

γ

β + γ
· NB

s
. (E.7)

Condition (E.7) is more stringent than condition (27). Third, user A must stop departing

before user B starts to arrive late (i.e., t2Ae < t∗B) since otherwise the PSNE does not exist

unless γ ≤ α.This follows from the proof of Proposition 1. In particular, Lemma 1 holds

and the only possible PSNE entails queuing. Using a similar reasoning as in Lemmas 3 and

4 it is possible to show that a PSNE will not exist.Given Eq. (44b) this implies

t∗B − t∗A ≥
β · (α+ γ)

γ · (α+ β + γ)
· NA

s
. (E.8)

Using Eqs. (31) and (44a), the difference in timing of the system optimum and the PSNE

in Case 2 can be written as

t2As − toAs =
−β · α

(β + γ) · (α+ β + γ)
· NA

s
+
x

2
. (E.9)

Condition (E.7) implies a minimum value of x = (β·(α+ β) /((β + γ)·(α+ β + γ)))·(NA/s).

Condition (E.6) implies a maximum value of x = (β · (2α+ β + γ) /((β + γ) · (α+ β + γ))) ·
(NA/s). Finally, Condition (E.8) implies a maximum value of x = (γ/(β + γ)) · (NB/s)−
(α · β2/(γ · (β + γ) · (α+ β + γ))) · (NA/s). Applying these values to Eq. (E.9) yields the

feasible range for t2As − toAs:

t2As − toAs ∈

 −β·(α−β)
2·(β+γ)·(α+β+γ) ·

NA
s ,

Min
(

β
2·(α+β+γ) ·

NA
s ,

γ
2·(β+γ) ·

NB
s −

α·β·(β+2γ)
2·γ·(β+γ)·(α+β+γ) ·

NA
s

)  .
The lower bound applies with t∗B−t∗A at its maximum value consistent with condition (E.7).

The upper bound applies with t∗B−t∗A at its minimum value consistent with conditions (E.6)

and (E.8).
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