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From multi-level to auxiliary variables (1)

Most engineering and physical systems are described at different 
parameterization levels.

entire city 
(coarser level)

districts
v

cost , efficiency 
tradeoffs

buildings 
(finer level)

x
which heater & 

insulation chosen 
from a catalog

Example : heat consumption , f ,  in cities

scale change



  

From multi-level to auxiliary variables (2)

Most engineering and physical systems are described at different 
parameterization levels.

full structure
(coarser level)

meso-scale
v

local stiffness

micro-scale 
(finer level)

x
fiber position

Example : composite structure performance , f 

scale change



  

 v

 x

y(x)  numerical simulator of the structure (stress, strains, 
strength, mass, ...) , numerically expensive

min
x∈S

f ( y (x))  or, in short, min
x∈S

f (x)

( fiber positions in plies, 
discrete because of 
manufacturing tools and 
regulations)

( auxiliary 
variables, plate 
stiffnesses )

v(x)

v(x) is numerically 
inexpensive.

From multi-level to auxiliary variables (3)

We want to optimize the system (here a composite structure)

--- x
1

--- x
n

...

x(v) usually doesn't exist, 
therefore f(v) neither. 
E.g., there are many fiber 
positions for one choice of plate 
stiffnesses.

H1



  

From multi-level to auxiliary variables (4)

Often, x is discrete and 
v is seen (i.e., mathematically approximated) as continuous.

● x ≡ fiber positions, discrete 
because of manufacturing
● v ≡ local plate stiffness or 
lamination parameters

AN : statisticians do such approximations
Binomial law, n sufficiently large, 
~ N(np, np(1-p))

Composite material performance : 

buckling as 
a function of 
v

3
 and v

4 

The continuous approximation is more accurate as n = dim(x) increases

H2

(not necessary but used 
here)



  

Goal : discrete global optimization

min
x∈S⊂ℕn

f (x)

local
optimum

x*xl

neighborhood

f

global 
optimum

S ⊂ℝn  or {ℝn1∪ℕn2 }

but most of what will 
be said could be 
generalized to 
continuous and 
mixed optimization



  

Flow chart of a general stochastic optimizer

● Initialize p(t)(x) sampling dist. for candidate points
λ   number of samples per iteration
t       time counter ( nb. calls to f )

● Sample λ candidates  {xt+1 ,..., xt+λ} ~ p(t)(x) 

● Calculate their performances  f(xt+1) ,..., f(xt+λ)

● Learn the distribution
p(t+λ)(x) = Update( x1, f(x1), … , xt+λ, f(xt+λ) )
 or more often   
p(t+λ)(x) = Update( pt(x), xt+1, f(xt+1) ,…, xt+λ, f(xt+λ) )

● Stop or [ t = t+λ and go back to Sample ]

with different p's if x is continuous or discrete or mixed.



  

Discrete variables : 
The Univariate Marginal Density Algorithm (UMDA) 

( Baluja 1994 – as PBIL –  and Mühlenbein 1996)

x∈S ≡ {1,2 , , A}n  (alphabet of cardinality A  )
e.g. {−45o , 0o , 45o , 90o

}
n  (fiber orientations)

e.g. {matl1 ,  , matlA}
n  (material choice)

p(t)  assumes variables independence (+ drop t ), p x =∏
i=1

n

pi xi

1 2 ... A
0

0.2

0.4

0.6

pi

xi

pi
A

pi
1

pi
2

∑
j=1

A

pi
j
= 1

The algorithm is that of a population based stochastic optimization 
(see before).

The x
i
's follow an A-classes categorical law



  

UMDA (2)

For i=1, n
spin a roulette wheel , 
xi=k , k  designated by ui ~ U [0,1]

 according to the pi
j 's

Sampling

Learning

u

0 p1 p1+p2 ... 1

1 2 Ak

Select the µ best points out of λ  ,

pi
j  is the frequency of j  value at variable i  in the μ  bests

Guarantee pi
j
≥ε  for ergodicity and ∑

j=1

A

pi
j
= 1



  

Application to composite design for frequency (1)

maxx f 1 x1 , , x15 , the first eigenfreq. of a simply supported plate
such that 0.48 ≤ eff x ≤ 0.52

where x i∈{0
o , 15o , , 90o}

the constraint is enforced by 
penalty and creates a narrow 
ridge in the design space

( from Grosset, L.,  Le Riche, R. and Haftka, R.T., A double-distribution statistical 
algorithm for composite laminate optimization, SMO, 2006 )



  

Application to composite design for frequency (2)

density learned by UMDA 
(2D)

contour lines of the 
penalized objective function

Independent densities can neither represent curvatures nor 
variables' couplings.

( from Grosset, L.,  Le Riche, R. and Haftka, R.T., A double-distribution statistical 
algorithm for composite laminate optimization, SMO, 2006 )



  

Stochastic discrete optimization : 
learning the variables dependencies

More sophisticated discrete optimization methods attempt 
to learn the couplings between variables. For example, with 
pairwise dependencies : 

X
1:n

X
2:n ... X

n:n

p(x) = p (x1 :n) p(x2:n∣x1:n)…p (xn :n∣xn−1:n)

Trade-off : richer probabilistic structures better capture the 
objective function landscape but they also have more parameters 
→ need more f evaluations to be learned.

MIMIC ( Mutual Information Maximizing Input Clustering ) algorithm : De 
Bonnet, Isbell and Viola, 1997.
BMDA ( Bivariate Marginal Distribution Algorithm ) : Pelikan and 
Muehlenbein, 1999.



  

Multi-level parameter optimization with DDOA

( from Grosset, L.,  Le Riche, R. and Haftka, R.T., A double-distribution statistical algorithm for 
composite laminate optimization, SMO, 2006 )

Mathematical motivation : create couplings between 
variables using two distributions (1 independent in x).

Numerical motivation : take into account expert knowledge 
in the optimization to improve efficiency. 
E.g. in composites, the lamination parameters v (the plate 
stiffnesses) make physical sense.



  

Example in composites 
Use of the lamination parameters

 v = lamination parameters = geometric contribution of 
the plies to the stiffness.

 Inexpensive to calculate from x (fiber angles).

 Simplifications : fewer v's than fiber angles. Often, the 
v's are taken as continuous. 

 But f(v) typically does not exist (e.g., ply failure 
criterion).

v{1,2}( x) =
1
n ∑i=1

n

{ cos(2 x i) , cos (4 xi) }

v{3,4}(x) =
1

n3 ∑
i=1

n

( (n−i+1)3
−(n−i )3) { cos(2 xi) , cos(4 x i) }

in-plane

out-of-plane 
or flexural



  

( Liu, Haftka, and Akgün, « Two-level composite wing structural optimization using response 
surfaces », 2000.
Merval, Samuelides and Grihon, « Lagrange-Kuhn-Tucker coordination for multilevel optimization 
of aeronautical structures », 2008. )

Related past work in composites

Optimize a composite structure 
made of several assembled panels
by changing each ply orientation

→ many discrete variables

Structure level
Optimize a composite structure 
made of several assembled panels
by changing the lamination 
parameters of each panel

→ few continuous variables

Laminate level
Minimize the distance to target 
lamination parameters
by changing the ply 
orientations

→ few discrete variables

Decomposed problem : 
Initial problem : 

optimal v's 

BUT for such a sequential approach to make sense,           must exist 
and guide to optimal regions (i.e., prohibits emergence of solutions at 
finer scales). 

f̂ (v )
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does not exist

v(x)

The DDOA stochastic optimization algorithm

pDDOA(x) =
pX  | v(X )=V (x) =
pX  | v(X )=v(x)×pV (v)

v(x) is costless → learn densities in the x AND v spaces at the 
same time.



  

The DDOA algorithm : X | v(X)=V ?

Simple mathematical illustration :

pX (x ) =
1

2π
exp(−1

2
xT x) pV (v ) =

1

√2π
exp(−1

2
(v−1)2)

v = x1+ x2

pX | v(X )=v=1(x)

is a degenerated Gaussian along  

x1+x2 = 1

(cross-section of the 2D bell curve 
along the blue line + normalization)

Intermediate step for a given v :



  

The DDOA algorithm : X | v(X)=V ?

pX |v (X )=V (x ) = pX | v(X )=v pV (v (x )) = ... =

1
2π

exp(−1
4
(x1−x2)

2−
1
2
(x1+x2−1)2)

pX | v(X )=V (x)

is a coupled distribution that 
merges the effects of X and V

Analytical calculation in the 
Gaussian case. In practice, 
use simulations ...



  

The DDOA algorithm (flow chart)

Choose λ, μ, ρ such that ρ>>1 and λ>μ
Initialize p

V
(v)and p

X
(x)

For i=1,λ  do

Sample vtarget from p
V
(v)

Sample ρ>>1  x's from p
X
(x)

x(i) = the closest x to vtarget

Calculate f(x(i))

end For

Rank   x(1:λ), … , x(λ:λ) the proposed points
Update pV(v) and pX(x) from x(1:λ), … , x(μ:λ)

Stop ? 
If no, go back to top ...

sampling 
of 
X | 

v(x)=V



  

The DDOA algorithm (implementation)

pX   :  cf. UMDA algorithm

pV   :  isotropic gaussian kernel density estimation

         pV (v) =
1
μ ∑

i=1

μ
1

(2π)d /2σd exp(−1

2σ2 (v−v i
)
T
(v−v i

))
         σ  tuned by maximum likelihood

p
V
(v) for various σ's

(illustration from wikipedia)

d < n , 
d = 2 or 4  in composite applications



  

● p
X
(x) and p

V
(v) can be simple densities, without variables couplings (→ 

easy to learn), yet p
DDOA

(x) is a coupled density.

f(x) and selected points p X  x =∏i=1

n
pi  xi p

DDOA
(x)

 One half of the algorithm searches in a low dimension space.

Application of DDOA 
to composite design for frequency



  

Applications of DDOA to composite design (1)

A large number of tests were carried out in L. Grosset's PhD thesis (2004). 
Multi-modal problems, A=5, x

i
 in { 0 , 22.5 , 45 , 67.5 , 90 }

● Problems with coupled variables were created by enforcing constraints s.a.
lower bound ≤ effective Poisson's ratio ≤ upper bound 

through penalty functions. 

● Extensional problem : 
● max transverse stiffness such that low. bnd. ≤ Poisson's ratio ≤ upp. bnd.
● all information in 2 in-plane lamination parameters v

1
, v

2

● Extensional-flexural problem :
● min CTE

x
 such that 1st eigenfrequency ≥ ω

min
 

● all information capture by 4 lamination parameters v
1
, v

2
 (in-plane)  v

3
, v

4
 

(flexural)

● Strength problem :
● max load at 1st ply failure (at any x

i
)

● not all information in the 2 in-plane lamination parameters v
1
, v

2
 

and now a summary of results ...



  

● Performance measure : 
reliability over 50 runs = probability of finding the optimum

● DDOA has an increasing advantage over a Genetic Algorithm 
(GA) and UMDA as the number of variables n increases. 

● Ex : extensional-flexural problem

n = 6 n = 12

size(S) = 56 = 15625 size(S) = 512 ≈ 244 millions

Applications of DDOA to composite design (2)



  

Comparison of 3 algorithms whose parameters have been 
optimized on the laminate strength problem

Applications of DDOA to composite design (3)



  

L. Grosset's work showed the potential of DDOA.

The sampling algorithm was not implementing the theory,
p

DDOA
(x) = p

X | v(X) = v 
(x) . p

V
(v)

sample ν ≥ λ  xi 's from p
X
(x)

sample λ   vi 's from p
V
(v)

for i=1,λ  do
choose xi = arg min

i 
min

j
 ||  v(xi) - vj ||

remove xi and associated vj from the sets 
end

pair and 
discard

→ We are further investigating this algorithm with F.X. Irisarri 
and A. Lasseigne (on-going)

Applications of DDOA to composite design (4)



  

Generalization of the use of Double Densities : DDEA

Like DDOA but instead of “sample p
X
(x)”, do

crossover + mutation + permutation of an x in the
EA population

Optimization and comparison of many algorithms

UMDA, Evolutionary Algorithm (EA) specialized for 
composites (notably through a permutation operator), 
DDOA and DDEA (new).

First tests on a buckling load maximization problem, 
n=32 , A=12

Double Densities for composite design (1)



  

Double Densities for composite design (2)

frequencies of variables values, buckling problem, n=32 , A=12

UMDA DDOA



  

Double Densities for composite design (3)
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SLEA: λ = 40, N
a
 = 1, P

c
 = P

m
 = P

p
 = 0.3

SLUMDA v12a: λ = 40, µ = 10, p
min

 = 0.05, N
a
 = 1

SLDDOA v1a: λ = 40, µ = 10, p
min

 = 0.05, N
a
 = 1

SLDDEA: λ = 40, N
a
 = 1, P

c
 = P

m
 = P

p
 = 0.3

Random Search

Confirms the efficiency gain on the buckling problem for both 
EA and UMDA but this was not observed on in-plane problems 
(under investigation).

median entropy 
of p

X
(t)

median normalized buckling 
load (1 is optimal)



  

End of the episode ...
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