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Neutrino-production of a charmed meson and the transverse spin structure of the
nucleon

B. Pire! and L. Szymanowski?
! CPHT, Ecole Polytechnique, CNRS, 91128 Palaiseau, France

* National Centre for Nuclear Research (NCBJ), Warsaw, Poland
(Dated: May 5, 2015)

We calculate the amplitude for exclusive neutrino production of a charmed meson on an unpolarized
target, in the colinear QCD approach where generalized parton distributions (GPDs) factorize from

perturbatively calculable coefficient functions.

We demonstrate that the transversity chiral odd

GPDs contribute to the transverse cross section if the hard amplitude is calculated up to order
me/Q. We show how to access these GPDs through the azimuthal dependence of the vN — y~ DTN

differential cross section.

PACS numbers:

Introduction. The transverse spin structure of the
nucleon - that is the way quarks and antiquarks spins
share the polarization of a nucleon, when it is polarized
transversally to its direction of motion - is almost com-
pletely unknown. The transversity distributions which
encode this information have proven to be among the
most difficult hadronic quantities to access. This is due
to the chiral odd character of the quark operators which
enter their definition; this feature enforces the decoupling
of these distributions from most measurable hard ampli-
tudes. After the pioneering works [1], much effort [2] has
been devoted to the exploration of many channels but ex-
perimental difficulties have challenged the most promis-
ing ones.

It is now well established that generalized parton dis-
tributions (GPDs) give access to the internal structure
of hadrons in a much more detailed way than parton dis-
tributions (PDFs) measured in inclusive processes. The
study of exclusive reactions mediated by a highly virtual
photon in the generalized Bjorken regime benefits of the
factorization properties of the leading twist QCD am-
plitudes [3] for reactions such as deeply virtual Comp-
ton scattering. A welcome feature of this formalism is
that spin related quantities such as helicity or transver-
sity GPDs may be accessed in reactions on an unpolarized
nucleon.

Neutrino production is another way to access (gener-
alized) parton distributions [4]. Neutrino induced cross
sections are orders of magnitudes smaller than those for
electroproduction and neutrino beams are much more dif-
ficult to handle than charged lepton beams; nevertheless,
they have been very important to scrutinize the flavor
content of PDFs and the advent of new generations of
neutrino experiments will open new possibilities. We
want here to stress that they can help to access the elu-
sive chiral-odd generalized parton distributions. Some
effort has already been dedicated to this question within
the domain of virtual photon mediated processes [5], but
the main result is that the studies are likely to be out of
the abilities of present accelerators; future electron-ion
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FIG. 1: Feynman diagrams for the factorized amplitude for
the v,N — u~ DTN’ process; the thick line represents the
heavy quark.

colliders [6] may help. The only exception is the pro-
posal [7] that pion electroproduction data are sensitive
to transversely GPDs thanks to their interplay with the
chiral-odd twist 3 Distribution Amplitude (DA) of the
pseudo scalar mesons.

In this paper we consider the exclusive reactions

v(k)N(p1) — 17 (K)D*(pp)N'(p2), (1)
7(k)N(p1) — 17 (K)D™(pp)N'(p2),

in the kinematical domain where collinear factorization
leads to a description of the scattering amplitude in terms
of nucleon GPDs and the D—meson distribution ampli-
tude, with the hard subprocess (¢ = k' — k; Q® = —¢?):

W*(q)d — Dtd' W~ (q)u — D™, (2)

described by the handbag Feynman diagrams of Fig. 1.

We will demonstrate that the transverse amplitude
Wrq — Dq' gets its leading term in the collinear QCD
framework as a convolution of chiral odd leading twist
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GPDs with a coefficient function of order 05 (to be com-

pared to the O(2}) longitudinal amplitude) and that it
should be measurable in near future experiments at neu-
trino factories.




The azimuthal dependence of neutrinoproduction.
The dependence of a leptoproduction cross section on az-
imuthal angles is a well documented [8] and widely used
way to analyze the scattering mechanism. This proce-
dure is helpful as soon as one can define an angle ¢ be-
tween a leptonic and a hadronic plane, as for deeply vir-
tual Compton scattering [9] and related processes. In the
neutrino case, it reads :

4 -N'/ ~ —e?
d*c(vN — " N'D) :F{1+\/217€0__+€000 (3)

dxp dQ? dt dy
+ve(V1+e+ V1 —¢€)(cosp Reo_g + sinp Imo_) },

with
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(2m)4 1625 \/1 + 423m3,/Q? (s — m3)21—e’

and the “cross-sections” oy, = e;‘“ W€y, are product
of amplitudes for the process W (e, )N — DN’, averaged
(sommed) over the initial (final) hadron polarizations. In
the anti-neutrino case, one gets a similar expression with
O__ — 044 ,0_0— 040, 1+V1—e2 - 1—-v1—¢?and
V1+e+v1—¢e— /1+e—+/1—¢e. Weuse the standard
notations of deep exclusive leptoproduction, namely P =
(P14 p2)/2, A=pa—p1, t =A% ap = Q%/2p1.q, y =
p1.q/p1.k and € ~ 2(1—y)/[1+(1—y)?]. p and n are light-
cone vectors (v.n = v, v.p = p~ for any vector v) and
& = —A.n/2P.n is the skewness variable. The azimuthal
angle ¢ is defined [8] in the initial nucleon rest frame as:

f:
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while the final nucleon momentum lies in the zz plane
(AY =0) and 12 = —1.

We now focus on the evaluation of the longitudinal and
transverse amplitudes which will (in the neutrino case)
contribute respectively to ggp and o__, while their inter-
ference will construct o_g. Two ingredients need first to
be defined, namely the D—meson distribution amplitude
and the transversity GPDs.

D—meson distribution amplitude. In the colinear fac-
torization framework, the hadronization of the quark-
antiquark pair is described by a distribution ampli-
tude(DA) which obeys a twist expansion and evolution
equations. Much work has been devoted to this subject
[10]. Here, we shall restrict ourselves to a leading twist
description of the D—meson DA, defined as (we omit the
path-ordered gauge link):

1
0ld(y)v s e(~9)|D(pp)) = ifoP" / D ()

where fol dz ¢p(z) =1 and fp = 0.223 GeV.

Transversity GPDs. The twist 2 transversity GPDs
have been defined [11] and their experimental access
much discussed [5]. They correspond to the tensorial
Dirac structure )7 o 9. In the nucleon case, there are
four twist 2 transversity GPD defined as:

1 dz~ ie Pt 2= - R
5 [ e X042 it w(de) )

Z+=ZT=0
1 i mo PYAT - ATPI
= —2P+u(p2,)\') |:H%’LO'+ + HY —
A + i + pi .y
YTA' = ATy = TP =Py
Bl B A).
+E7 S + bp . u(p1, ). (5)

The leading GPD Hp(z,&,t) is equal to the transversely
PDF in the £ = t = 0 limit, which has recently been
argued [12] to be sizable and negative for the d—quark,
which is contributing to the process under study here.

The longitudinal amplitude. The longitudinal leading
twist leading order amplitude has been computed previ-
ously [13] for a pseudo scalar light meson and the cal-
culation for the D—meson case is but a slight modifi-
cation of this result. It is a convolution of chiral-even
GPDs H%(x,&,t), HY (2, &,t), E4(x,£,t) and E4(x, £ t)
and reads:

—iC
Q

— 1
Ty = N (p2) |:HD’fL + ——Epioc™
2mN
- An
—Hphys — ——E& N 6
Hpnys S D75:| (p1), (6)
with C = %’Tostdc and (Z=1-2):

F(x,&,1)
x—&+ie’

Fp(&t) = fo dz¢D2(Z) / dx (7)
for any chiral even d—quark GPD in the nucleon
Fd(x,&,t); g is the weak interaction coupling constant
and V. the CKM matrix element.

The transverse amplitude up to O(m./Q?). Tt is
straightforward to show that the transverse amplitude
vanishes at the leading twist level. For chiral-even GPDs,
this comes from the colinear kinematics appropriate to
the calculation of the leading twist coefficient function;
for chiral-odd GPDs, this comes from the odd number of
~ matrices in the Dirac trace.

To estimate the transverse amplitude, one thus needs
to evaluate next to leading twist contributions. This is
quite a hard task if one wants to get all contributions,
and we shall restrict ourselves to a self-consistent (and
gauge invariant) part, namely the heavy quark mass cor-
rections in the coefficient function. Indeed, it has been
demonstrated [14] that hard-scattering factorization is
valid with the inclusion of heavy quark masses in the
hard amplitude. This proof is applicable independently
of the relative sizes of the heavy quark masses and @), and
the size of the errors is a power of A/Q independently



of the mass scale. In our case, this means including the
me

part ;57— in the off-shell heavy quark propagator in the
Feynnian éraph depicted on Fig. 1la. We keep the term
in m?2 in the denominator since it will help us to under-
stand precisely how to perform the integration around
the point x = £. Adding this part of the heavy quark
propagator has no effect on the calculation of the longitu-
dinal amplitude (because of the odd number of v matrices
in the Dirac trace) but leads straightforwardly to a non-
zero transverse amplitude when a chiral-odd transversity
GPD is involved.

In the Feynman gauge, the non-vanishing
me—dependent part of the Dirac trace in the hard
scattering part depicted in Fig. la reads:

: m sy . 1
Tr [ o"yboy Wiz —— (1 =1")é5)] (8)

C C

QN

= —2622 € [ie“pm - gm} e !
= i : —
a kZ —m2 +ie k2 +ie

where k. (kg) is the heavy quark (gluon) momentum and
e the polarization vector of the W—boson (we denote
p = puy* for any vector p). The fermionic trace vanishes
for the diagram shown on Fig. 1b thanks to the identity
7”0“‘5% = 0. The denominators of the propagators read:

K2 = nggmz oy ©)
2 2
k2 = z[zm? + Q%mc(az Ik

The transverse amplitude is then written as (7 = 1 —142):

szmC = @ . v AT
N Hyio"" + Hy—5

V202 (p2) { Tto " + Mg m2

N
pNAT +2697 5o 77 1y 1
"’ST Imn ngN] (p1)7 ( 0)

Tr =

in terms of transverse form factors that we define as :

T fD/ z (x—§+ie)(x—§+a2+ie)’( )
where HY is any d-quark transversity GPD, o = Q2§_:n53

and we shall denote Fr = £Ep — Er .

A remark may be done about the calculation of the
transverse form factors of Eq.11. Had we neglected the
aZz term, we would have a double pole structure which is
undefined if the derivative of the GPD is not continuous
at the x = ¢ point, which indeed occurs in some mod-
els which do not contradict any basic principle. Simple
algebra leads for the imaginary part of Eq.11:

(Z) H%(f,f,t) _ H%(g — azv§7t)

z az

9

ImHr = —7TfD/dz(ZS

which has a legitimate limit provided the GPD has a
continuous derivative on the left of the point (z = &,§).

Observables. We now calculate from T, and Tt the
quantities ogg, o__ and o_g which enter into the observ-
ables defined by Eq.3. The longitudinal cross section ogg
is straightforwardly obtained by squaring the amplitude
Ty; at zeroth order in Ap, it reads :

C? - O Ry
o = o { SR+ (BN - )+ 1831155 b2y

At zeroth order in Ar, o__ reads:
4€2C%*m?
= T

52
1—¢
—26Re[H}F" } (13)

o Fzds

{ (1 )P +

The interference cross section o_q vanishes at zeroth or-
der in Ap, so we give its expression at first order in
Ar/mpy; it reads (with A = 7% =14 42):

—&vV2C? m, o wy A "
o_p = i:L/; % {—@HT¢5D§(1 + &) ePnAA
2
AN 1+ )8p] + FPAN2Hp — = 6]
+EPAMN(1 = &Y Hp — £%Ep] (14)

+FEPIAMN( 4 ) Hp + EEp] +i(1 + €)M Hp]|] }

Let us finally estimate the magnitudes of the quantities
Re(o_p) and Zm(o_g) which are directly related to the
observables < cosp > and < sing > through

dp d* Reo_
<Cos<p>:fcos<p<p U:K€ eao’
[ de d*o 000
. Ima,o
<sinp> = K , (15)
000

With KE = Y-y = 1+;J&E" 1—c

glected the O(mg) contribution of o__ in the denomina-
tor. It should be noted that since Eq. 12 has a legitimate
limit for small «, the dependence on the heavy meson DA
effectively factorizes in the transverse form factors H?,
5?, ﬂ?, 5‘? as it does in Fp (Eq. 7), and thus disap-
pears in the ratios of Eq. 15. If we take for granted that
the H(&,t) form factor dominates among the chiral even
form factors, we get quite simple approximate results:

and where we consistently ne-

KRe[Hp(2Hr + (1 — )& + (1 + &) Fr)*]
8/HD| 7
KImHp(2Hr + (1 — €2)Er + (1 + &) Fr)*]
8|H3p| ’
VIFe+VI—¢ 2v2%m, Ar
2,/€ Q
In our kinematics, Al = A® = Ap, AY = 0, A =
—iAr.

< cosp >~

< stnp >~

K = (16)

mN'



Conclusion. We thus have defined a new way to get
access to the transversity chiral-odd generalized parton
distributions, the knowledge of which would shed a new
light on the quark structure of the nucleons. Our main
results are

e Collinear QCD factorization allows to calculate

neutrino production of D—mesons in terms of
GPDs.

e Chiral-odd and chiral-even GPDs contribute to the
amplitude for different polarization states of the W
(Eq.6 and Eq.11).

e The azimuthal dependence of the cross section al-
lows to get access to chiral-odd GPDs (Eq.3).

e There is no small factor preventing the measure-
ment from being feasible, provided &, ™e, AT are
not too small (Eq.14 and Eq.16).

Q> mn

Planned high energy neutrino facilities [15] which have
their scientific program oriented toward the understand-
ing of neutrino oscillations or elusive inert neutrinos may
thus allow - without much additional equipment - some
important progress in the realm of hadronic physics. We
do not claim that the experimental measurement of the
observables proposed in Eq.15 and Eq.16 will be an easy
task. One may advocate that the factor K in Eq. 16 is
not small if we focus on @ in the range of 1 —3 GeV and
Ar/mpy = 0.5. However, one may anticipate that the
measurement, of ¢ will be difficult since the reconstruc-
tion of the D—meson will not be complete, and that the
exclusivity of the reaction will not be easy to prove since
a neutrino beam has a wide energy spread and the target
nucleon is inside a nucleus. A dedicated feasibility study
is thus obviously needed to decide whether the observ-
ables defined here can be experimentally measured in a
definite experimental set-up, but this is not within the
goal of the present paper.

Acknowledgements. We thank O.V. Teryaev for use-
ful discussions. This work is partly supported by the
Polish Grant NCN No DEC- 2011/01/B/ST2/03915.

[1] J. P. Ralston and D. E. Soper, Nucl. Phys. B 152, 109
(1979); X. Artru and M. Mekhfi, Z. Phys. C 45, 669

(1990); J. L. Cortes et al., Z. Phys. C 55, 409 (1992);
R. L. Jaffe and X. D. Ji, Phys. Rev. Lett. 67, 552 (1991).

[2] for a review, see V. Barone, A. Drago and P. G. Ratcliffe,
Phys. Rept. 359, 1 (2002); B. Pire and L. Szymanowski,
Phys. Rev. Lett. 103, 072002 (2009).

[3] D. Miiller et al., Fortsch. Phys. 42, 101 (1994); X. Ji,
Phys. Rev. D55, 7114 (1997); A. V. Radyushkin, Phys.
Rev. D 56, 5524 (1997); J. C. Collins, L. Frankfurt,
M. Strikman, Phys. Rev. D 56, 2982 (1997).

[4] B. Lehmann-Dronke and A. Schafer, Phys. Lett. B 521

(2001) 55; C. Coriano and M. Guzzi, Phys. Rev. D 71

(2005) 053002; P. Amore, C. Coriano and M. Guzzi,

JHEP 0502 (2005) 038; A. Psaker, W. Melnitchouk and

A. V. Radyushkin, Phys. Rev. D 75 (2007) 054001 [hep-

ph/0612269)].
M. Diehl et. al. Phys. Rev. D 59, 034023 (1999);
J. C. Collins et. al., Phys. Rev. D 61, 114015 (2000).
D. Y. Ivanov et al.,, Phys. Lett. B 550, 65 (2002); R. En-
berg, B. Pire and L. Szymanowski, Eur. Phys. J. C 47,
87 (2006); M. E. Beiyad et al.,, Phys. Lett. B 688, 154
(2010).
[6] D. Boer et al., arXiv:1108.1713 [nucl-th]; J. L. Abelleira
Fernandez et al. [LHeC Study Group Collaboration], J.
Phys. G 39 (2012) 075001.
[7] S. Ahmad, G. R. Goldstein and S. Liuti, Phys. Rev. D
79, 054014 (2009); S. V. Goloskokov and P. Kroll, Eur.
Phys. J. C 65 (2010) 137 and Eur. Phys. J. A 47 (2011)
112.
[8] see for instance T. Arens, O. Nachtmann, M. Diehl and
P. V. Landshoff, Z. Phys. C 74, 651 (1997).
[9] M. Diehl et al., Phys. Lett. B 411 (1997) 193; A. V. Be-
litsky, D. Mueller and A. Kirchner, Nucl. Phys. B 629,
323 (2002).
[10] A. Szczepaniak, E. M. Henley and S. J. Brodsky, Phys.
Lett. B 243, 287 (1990); T. Kurimoto, H. n. Li and
A. 1. Sanda, Phys. Rev. D 65, 014007 (2002); S. Descotes-
Genon and C. T. Sachrajda, Nucl. Phys. B 650, 356
(2003); V. M. Braun, D. Y. Ivanov and G. P. Korchem-
sky, Phys. Rev. D 69, 034014 (2004); T. Feldmann,
B. O. Lange and Y. M. Wang, Phys. Rev. D 89, no.
11, 114001 (2014); V. M. Braun and A. Khodjamirian,
Phys. Lett. B 718, 1014 (2013).

[11] M. Diehl, Eur. Phys. J. C 19, 485 (2001);

[12] A. Bacchetta, A. Courtoy and M. Radici, JHEP 1303,
119 (2013); M. Radici et al., arXiv:1503.03495 [hep-ph].

[13] B. Z. Kopeliovich, I. Schmidt and M. Siddikov, Phys.
Rev. D 86, 113018 (2012) and D 89, 053001 (2014).

[14] J. C. Collins, Phys. Rev. D 58, 094002 (1998).

[15] D. S. Ayres et al. [NOvA Collaboration], hep-
ex/0503053; see also M. L. Mangano, S. I. Alekhin,
M. Anselmino et al., CERN Yellow Report CERN-2004-
002, pp.185-257 [hep-ph/0105155).

5



