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The Leray-Garding method
for finite difference schemes

Jean-Francois COULOMBEL"

May 6, 2015

Abstract

In [Ler53] and [Gar56], LERAY and GARDING have developed a multiplier technique for deriving
a priori estimates for solutions to scalar hyperbolic equations in either the whole space or the torus.
In particular, the arguments in [Ler53, Gar56] provide with at least one local multiplier and one local
energy functional that is controlled along the evolution. The existence of such a local multiplier is
the starting point of the argument by RAUCH in [Rau72] for the derivation of semigroup estimates for
hyperbolic initial boundary value problems. In this article, we explain how this multiplier technique can
be adapted to the framework of finite difference approximations of transport equations. The technique
applies to numerical schemes with arbitrarily many time levels, and encompasses a somehow magical
trick that has been known for a long time for the leap-frog scheme. More importantly, the existence
and properties of the local multiplier enable us to derive optimal semigroup estimates for fully discrete
hyperbolic initial boundary value problems, which answers a problem raised by TREFETHEN, KREISS
and WU [Tre84, KW93].

AMS classification: 65M06, 66M12, 35103, 35L04.
Keywords: hyperbolic equations, difference approximations, stability, boundary conditions, semigroup.

Throughout this article, we use the notation

% ={CeC(|>1}, #%:={CeC[¢|>1},
D:={¢eC,[¢ <1}, S':={CeC|¢|=1}, D:=DuUS'.

We let ., (K) denote the set of n x N matrices with entries in K =R or C. If M € .#,(C), M* denotes
the conjugate transpose of M. We let I denote the identity matrix or the identity operator when it acts
on an infinite dimensional space. We use the same notation x* y for the Hermitian product of two vectors
z,y € C™ and for the Euclidean product of two vectors z,y € R". The norm of a vector x € C" is
2| := (2* 2)"/2. The induced matrix norm on .#,(C) is denoted || - ||.

The letter C' denotes a constant that may vary from line to line or within the same line. The dependence
of the constants on the various parameters is made precise throughout the text.

*CNRS and Université de Nantes, Laboratoire de Mathématiques Jean Leray (UMR CNRS 6629), 2 rue de la Houssiniére,
BP 92208, 44322 Nantes Cedex 3, France. Email: jean-francois.coulombel@univ-nantes.fr. Research of the author was
supported by ANR project BoND, ANR-13-BS01-0009-01.



In what follows, we let d > 1 denote a fixed integer, which will stand for the dimension of the space
domain we are considering. We shall also use the space £? of square integrable sequences. Sequences may
be valued in C* for some integer k. Some sequences will be indexed by Z4~! while some will be indexed by
7% or a subset of Z%. We thus introduce some specific notation for the norms. Let Az; > 0fori=1,...,d
be d space steps. We shall make use of the £2(Z?~1)-norm that we define as follows: for all v € ¢2(Z4~1),

d d
ity (TT25) X bl
k=2 i=2 j,eZ
The corresponding scalar product is denoted (-, -) ¢2(za-1)- Then for all integers my < my, we set
ma2
llly s = D21 > w7 gary »
Jji=m1

to denote the £?-norm on the set [my,ms] x Z%! (m; may equal —co and mo may equal +0c). The
corresponding scalar product is denoted (-, )y, m,. Other notation throughout the text is meant to be
self-explanatory.

1 Introduction

1.1 Some motivations and a brief reminder

The ultimate goal of this article is to derive semigroup estimates for finite difference approximations
of hyperbolic initial boundary value problems. Up to now, the only available general stability theory
for such numerical schemes is due to GUSTAFSSON, KREISS and SUNDSTROM [GKST72]. It relies on
a Laplace transform with respect to the time variable, and the corresponding stability estimates are
thereby restricted to zero initial data. A long standing problem in this line of research is, starting from
the GKS stability estimates, which are resolvent type estimates, to incorporate nonzero initial data and
to derive semigroup estimates, see, e.g., the discussion in [Tre84, section 4]. This problem is delicate for
the following reason: the validity of the GKS stability estimate is known to be equivalent to a slightly
stronger version of the resolvent estimate

sup (|2] = 1) (21 = T) 7 22y < +00, (1)
Z2EU
where T is some bounded operator on £2(N) that incorporates both the discretization of the hyperbolic
equation and the numerical boundary conditions. Deriving an optimal semigroup estimate amounts to
showing that T is power bounded. In finite dimension, the equivalence between power boundedness of T’
and the resolvent condition (1) is known as the KREISS matrix Theorem, but the analogous equivalence
is known to fail in general in infinite dimension. Worse, even the strong resolvent condition

sup sup (|z| = )" [[(z1 = T) 7" || 22 vy) < +00,
n>1 ze¥
does not imply in general that T" is power bounded, see, e.g., the review [SW97] or [TE05] for details and
historical comments.
Optimal semigroup estimates have nevertheless been derived for some discretized hyperbolic initial
boundary value problems. More specifically, the first general derivation of semigroup estimates is due



to Wu [Wu95], whose analysis deals with numerical schemes with two time levels and scalar equations.
The results in [Wu95] were extended by GLORIA and the author in [CG11] to systems in arbitrary
space dimension, but the arguments in [CG11] are still restricted to numerical schemes with two time
levels. The present article gives, as far as we are aware of, the first systematic derivation of semigroup
estimates for fully discrete hyperbolic initial boundary value problems in the case of numerical schemes
with arbitrarily many time levels. It generalizes the arguments of [Wu95, CG11] and provides new insight
for the construction of “dissipative” numerical boundary conditions for discretized evolution equations.
Let us observe that the leap-frog scheme, with some specific boundary conditions, has been dealt with
by THOMAS [Tho72] by using a multiplier technique. It is precisely this technique which we aim at
developing in a systematic fashion for numerical schemes with arbitrarily many time levels. In particular,
we shall explain why the somehow magical multiplier u}”z —i—u;? for the leap-frog scheme, see, e.g., [RM67],
follows from a general theory that is the analogue of the LERAY-GARDING method for partial differential
equations, which we briefly recall now.

The method by LERAY and GARDING [Ler53, Gar56] provides with suitable multipliers for scalar
hyperbolic operators of arbitrary order. Namely, given an integer m > 0, we consider a partial differential

operator of the form
m—+1

L:=0/" + 3 Pu(@.) o7 F,
k=1

where t € R stands for the time variable, z € R¢ stands for the space variable!, and each operator Py(0y)
is a linear combination of spatial partial derivatives of order k:

P(de) = 3 pradl, 00:=000 -850, Jali=ai+--+ay.
|a|=k

In the above formula, the py ,’s are real numbers?. Well-posedness of the Cauchy problem
Lu=0, (u,0m,...,00"u)|i=0 = (ug,u1,...,Un), (2)

in Sobolev spaces is known to be linked with hyperbolicity of L. Namely, if L is strictly hyperbolic,
meaning that for all £ € R%\ {0}, the (homogeneous) polynomial

m+1
P(r,€) =" 4 Y B &) TR P(i€) =i ) prat®, (3)
k=1 |a|=k

has m + 1 simple purely imaginary roots with respect to 7, then the Cauchy problem (2) is well-posed in
H™(R?) x --- x L?(RY). In particular, there exists a constant C' > 0, that is independent of the solution
u and the initial data wug, u1, ..., um, such that there holds:

sup D 0Ful)ll gmnmay < C Y Nkl rmon ) - ()
teR 120 prd

The method by LERAY and GARDING gives a quick and elegant way to derive the estimate (4) assuming
that the solution u to (2) is sufficiently smooth. By standard duality arguments, the validity of the a

!The periodic case € T? can be dealt with in a similar way and is actually the one considered in [Gar56].
2We restrict here for simplicity to linear operators with constant coefficients.



priori estimate (4) yields well-posedness -meaning existence, uniqueness and continuous dependence on
the data- for (2). Hence the main point is to prove (4) assuming that u is sufficiently smooth and decaying
at infinity so that all integration by parts arising in the computations are legitimate. The main idea is
to find a suitable quantity M u, which we call a multiplier and that will be linear with respect to u, such
that when integrating the quantity 0 = (M u) (Lu) on the slab [0,7] x R, one gets the estimate (4)
for free (negative times are obtained by changing ¢t — —t). Following [Ler53, Chapter VI] and [Gar56,
Section 3], one possible choice of a multiplier is given by L’ u where L’ stands for the partial differential
operator of order m whose symbol is 9, P, with P given in (3). Why L’ u is a good multiplier is justified in
[Ler53, Gar56]. A well-known particular case is the choice of 2 9,u as a multiplier for the wave equation.
Here P(7,&) = 72 + |£|? and therefore 0, P = 27, hence the choice 2 ;u. The latter quantity is indeed a
suitable multiplier for the wave operator because of the formula?:

d
20 (B7u — Ayu) = 3t((8tu)2 + Z(@zju)2> — 2divy (Gru Vu) .

=1

The important fact here is that the energy:
d
(Oru)> + > (Oa;u)?
7j=1

is a positive definite quadratic form of the first order partial derivatives of u. Let us observe that the
multiplier L' u is local, meaning that its pointwise value at (¢, x) only depends on u in a neighborhood of
(t,x). This is important in view of using this multiplier in the study of initial boundary value problems.
Another important remark is that the above energy is also local, and the arguments in [Ler53, Gar56] show
that this property is not specific to the wave operator. The fact that both the multiplier and the energy
are local is crucial in the arguments of [Rau72, Lemma 1]. In our framework of discretized equations,
the multiplier will be local but the energy will not necessarily be so. We shall not exactly follow the
arguments of [Rau72] which use time reversibility, but rather construct dissipative boundary conditions
which will yield the optimal semigroup estimate we are aiming at.

1.2 The main result

We first set a few notations. We let Axq,...,Azxy, At > 0 denote space and time steps where the
ratios, the so-called COURANT-FRIEDRICHS-LEWY parameters, \; := At/Ax;, i = 1,...,d, are fixed
positive constants. We keep At € (0, 1] as a small parameter and let the space steps Azy,...,Axy vary

accordingly. The ¢2-norms with respect to the space variables have been previously defined and thus
depend on At and the CFL parameters through the mesh volume (Axs - -- Azg on Z%1 and Az - -- Axg
on Z%). We always identify a sequence w indexed by either N (for time), Z?~! or Z? (for space), with
the corresponding step function. In particular, we shall feel free to take Fourier or Laplace transforms of
such sequences.

For all j € Z4, we set j = (j1,4") with §' := (jo,...,jq) € Z% 1. We let p,q,r € N® denote some fixed
multi-integers, and define py,q1,71, p’, ¢, 7" according to the above notation. We also let s € N denote

3We refer to [Car56, page 74] for the generalization of such ”integration by parts” formula to partial derivatives of higher
order.



some fixed integer. We consider a recurrence relation of the form:

s+1
1 . .

ZQJu?+J:AtF]”+S+, jezt, j>1, n>0,
o=0

s+1 (5)
u?+3+1—|—ZBj170u717‘j/0:g?+3+1’ jGZda jlzl_Tl)"'aov nZO,

o=0
ul = 1, jezd, j1>1—-r, n=0,...,s,

where the operators ), and Bj, , are given by:

p1 4 o 4
Qa‘ = Z Z Ao ng le,o' = Z Z b£7j130- Se‘ (6)

ly=—r1 /=—1r' 01=00'=—¢'

In (6), the ay ., by j, » are real numbers and are independent of the small parameter At (they may depend
on the CFL parameters though), while S denotes the shift operator on the space grid: (Sev) j = vj4y for
j, £ € Z%. We have also used the short notation

Sy ey ey
£/:—7”/ =2 fi:—'l‘i f’:—q/ =2 Ki:—qi
The numerical scheme (5) is understood as follows: one starts with ¢2 initial data ( fjo), ooy (f5) defined

for j;1 > 1 —ry. Assuming that the solution has been defined up to some time index n+ s, n > 0, then the
first and second equations in (5) should uniquely determine u;”rsﬂ for j1 > 1—ry, j' € Z4 1. The meshes
associated with j; > 1 correspond to the interior domain while those associated with j; =1 —171,...,0
represent the discrete boundary. We wish to deal here simultaneously with explicit and implicit schemes
and therefore make the following solvability assumption.

Assumption 1 (Solvability of (5)). The operator Qsi1 is an isomorphism on (?(Z%). Moreover, for all
(Fj) € £2(N* x Z3=1) and for all Jlri,---1 00, € (2(Z971Y), there exists a unique solution (i) jy>1-r, € 02
to the equations
{Qerluj:Fja jezt, j>1,
Uj+Bj1,s+1u17j/:gj, jEZd, j1:1*T1,...,0.

In particular, Assumption 1 is trivially satisfied in the case of explicit schemes for which Qsy1 is the
identity (ags+1 = 6p,,0- 0,0 in (6), with 6 the Kronecker symbol).

The first and second equations in (5) therefore uniquely determine u;”s“ for j1 > 1 — ry, and one
then proceeds to the following time index n + s + 2. Existence and uniqueness of a solution (u}) to (5)
follows from Assumption 1, so the last requirement for well-posedness is continuous dependence of the
solution on the three possible source terms (F}'), (¢7), (f}'). This is a stability problem for which several
definitions can be chosen according to the functional framework. The following one dates back to [GKS72]
in one space dimension and was also considered by MICHELSON [Mic83] in several space dimensions. It is
specifically relevant when the boundary conditions are non-homogeneous ((g7) # 0):

Definition 1 (Strong stability). The finite difference approximation (5) is said to be ”strongly stable”
if there exists a constant C' such that for all v > 0 and all At € (0,1], the solution (u}) to (5) with



(fjo) === (f]) = 0 satisfies the estimate:

p1
g - A - A

g D AT 3T AT Sl e

v n>s+1 n>s+1 Jj=1-r

0
yAt+1 _ _
<O TR0 ST A A ETR 4 S Are A ST gn 2,00 0. (1)

v n>s+1 n>s+1 J1=1-r

The main contributions in [GKS72, Mic83] are to show that strong stability can be characterized by a
certain algebraic condition, which is usually referred to as the Uniform KREISS-LOPATINSKII Condition,
see [Coul3] for an overview of such results. We do not pursue such arguments here but rather assume
from the start that (5) is strongly stable. We can thus control, with zero initial data, £? type norms of the
solution to (5). Our goal is to understand which kind of stability estimate holds for the solution to (5)

when one now considers nonzero initial data ( f](-]), o, (ff) in ¢2. Our main assumption is the following.

Assumption 2 (Stability for the discrete Cauchy problem). For all £ € RY, the dispersion relation

s+1

p
ZQU(eigl,...,eigd) 279=0, Qo(k):= Z ligae,o, (8)
o=0

l=—r

has s + 1 simple roots in D. (The von Neumann condition is said to hold when the roots are located in
D.) In (8), we have used the classical notation

. b Lq
K=K R

for k € (C\ {0})? and ¢ € Z°.

From Assumption 1, we know that Q541 is an isomorphism on ¢2, which implies by Fourier analysis
that stjl(ei €1 ...,e'%) does not vanish for any ¢ € R% In particular, the dispersion relation (8) is a
polynomial equation of degree s + 1 in z for any ¢ € R%. We now make the following assumption, which
already appeared in [GKS72, Mic83] and several other works on the same topic.

Assumption 3 (Noncharacteristic discrete boundary). For f; = —ry,...,p1, 2 € C and n € R*!, let us
define
s+1 p’
a, (z,m) =Y 2° agq e’ 9)

o=0 O=—r!

Then a_,, and a,, do not vanish on U x R¥1, and they have nonzero degree with respect to z for all
d—1
n e R

Our main result is comparable with [Wu95, Theorem 3.3] and [CG11, Theorems 2.4 and 3.5] and shows
that strong stability (or ”GKS stability”) is a sufficient condition for incorporating ¢2 initial conditions
in (5) and proving optimal semigroup estimates. The main price to pay in Assumption 2 is that the
roots of the dispersion relation (8), which are nothing but the eigenvalues of the so-called amplification
matriz for the Cauchy problem, need to be simple. This property is satisfied for instance by the leap-frog
and modified leap-frog schemes in several space dimensions, under an appropriate CFL condition, see
Paragraph 1.3. Our main result reads as follows.



Theorem 1. Let Assumptions 1, 2 and 3 be satisfied, and assume that the scheme (5) is strongly stable
in the sense of Definition 1. Then there exists a constant C such that for all v > 0 and all At € (0,1],
the solution to (5) satisfies the estimate:

—2ynAt n |2 g —2ynAt n||2
sup e u"||{_ + — Ate u||7Z
nZI(; H’ |||1 71,100 ’}/At +1 7;) W |||1 71,100
—2ynAt .- n 2 : o2 ’YAt+ 1 —2ynAt n |2
+3 Ate S gy < C SR e + TR ST Are 2 AR
n>0 J1=1—r1 o=0 n>s+1
0
+ 0 AP N gt ey ¢ - (10)
n>s+1 J1=1-r

In particular, the scheme (5) is "semigroup stable” in the sense that there exists a constant C such that
for all At € (0,1], the solution (u}) to (5) with (F}') = (g7) = 0 satisfies the estimate

sup H!unHll —rito0 SO Z [Fid e (11)

o=0

The scheme (5) is also ¢?-stable with respect to boundary data, see [TreS4, Definition 4.5], in the sense
that there exists a constant C' such that for all At € (0,1], the solution (u}) to (5) with (F}') = (f7') =0

satisfies the estimate
0

Sup Hlunllll e SC DAY g7

‘p(zd—l) .
n>s+1 Ji=1-r1

Theorem 1 gives the optimal semigroup estimate (11), and is therefore an improvement with respect to
our earlier work [Coul4] where in one space dimension, and under an appropriate non-glancing condition*,
we were able to derive the estimate (here r1 =7, p; = p since d = 1):

— A _ A
AT AT I 3 At > P

n>0 Jj=1-r

vyAt+1 _ _
<C ZIHf”Hh e Do AtePIAYENR o+ Y Ate A Z 9712

n>s+1 n>s+1 j=1-—r

The latter estimate does not incorporate on the left hand side the quantity:

sup e 27" A lu I, o
n>0

and was unfortunately still not sufficient for deriving the semigroup estimate (11). Our main contribution
in this article is to exhibit a suitable multiplier for the multistep recurrence relation in (5). With this
multiplier, we can readily show that, for zero initial data, the (discrete) derivative of an energy can be
controlled, as in [Rau72], by the trace estimate of (u ) and this is where strong stability comes into play.

4The non-glancing condition is unfortunately not met by the leap-frog scheme.



This first argument gives Theorem 1 for zero initial data (and even for nonzero initial data if the non-
glancing condition of [Coul4] is satisfied). By linearity we can then reduce to the case of zero forcing terms
in the interior and on the boundary. The next arguments in [Rau72] use time reversibility, which basically
always fails for numerical schemes®. Hence we must find another argument for dealing with nonzero initial
data. Hopefully, the properties of our multiplier enable us to construct an auxiliary problem, where we
modify the boundary conditions of (5), and for which we can prove optimal semigroup and trace estimates
by "hand-made” calculations. In other words, we exhibit an alternative set of boundary conditions that
yields strict dissipativity. Using these auxiliary numerical boundary conditions, the proof of Theorem
1 follows from a standard superposition argument, see, e.g., [BGS07, Section 4.5] for partial differential
equations or [Wu95, CG11] for numerical schemes.

Remark 1. Assumption 3 excludes the case of explicit two level schemes for which s =0 and Q1 = 1,
for in that case a_p, and/or ap, do not depend on z. However, this case has already been dealt with in
[Wu95, CG11], and we shall see in Section 3 where the assumption that a_,, and ap, are not constant is
inwvolved, and why the proof is actually simpler in the case s =0 and Q1 = 1.

1.3 Examples
1.3.1 One space dimension
Our goal is to approximate the outgoing transport equation (d = 1 here):
ou+ad,u=0, ul—o=mup, (12)

with t,x > 0 and a < 0. The latter transport equation does not require any boundary condition at
x = 0. However, discretizing (12) usually requires prescribing numerical boundary conditions, unless one
considers an upwind type scheme with a space stencil "on the right” (meaning 71 = 0 in (5)). We now
detail two possible multistep schemes for discretizing (12). Both are obtained by the so-called method
of lines, which amounts to first discretizing the space derivative d,u and then choosing an integration
technique for discretizing the time evolution, see [GKO95].

The leap-frog scheme. It is obtained by approximating the space derivative d,u by the centered
difference (uj4+1 — uj—1)/(2Ax), and by then applying the so-called Nystrom method of order 2, see
[HNWO93, Chapter III.1]. The resulting approximation reads

n+2 n+1 n+1 n __
uw T+ Aa(uily —uity) —uf =0,

which corresponds to s = p = r = 1. Recall that A > 0 denotes the fixed ratio At/Az. Even though (12)
does not require any boundary condition at x = 0, the leap-frog scheme stencil includes one point to the
left, and we therefore need to prescribe some numerical boundary condition at 5 = 0. One possibility®
is to prescribe the homogeneous or inhomogeneous Dirichlet boundary condition. With general source
terms, the corresponding scheme reads

u}”z + )\a(u?jrll — u?fll) —uj = AtFJn+2, j>1, n>0,

upt? = git?, n>0, (13)

0,1\ _ 0 r1 ;
(ujvuj)_(jafj)v J=0.

SWith the notable exception of the leap-frog scheme that is indeed time reversible !

This is of course not the only possibility and we refer to [GKO95, Oli74, Slo83, Tre84] for some other possible choices
which might be more meaningful from a consistency and accuracy point of view. Our main concern here is a discussion on
stability for (5) and the Dirichlet boundary conditions are a good illustration for this aspect.




Assumption 1 is trivially satisfied because (13) is explicit. The leap-frog scheme satisfies Assumption 2
provided that A |a| < 1. In that case, the two roots to the dispersion relation

224+ 2idasinéz—1=0,

are simple and have modulus 1 for all £ € R. Assumption 3 is satisfied as long as the velocity a is nonzero,
for in that case aj(z) = —a_1(z) = Aaz. The scheme (13) is known to be strongly stable, see [GT81].
In particular, Theorem 1 shows that (13) is semigroup stable. An illustration of this stability property
is given in the numerical simulation of a bump function, propagating at speed a = —1 towards the left.
Homogeneous Dirichlet boundary conditions are enforced at j = 0. The reflection of the bump generates
a highly oscillatory wave packet that propagates with velocity +1 towards the right. The envelope of this
wave packet coincides with the profile of the initial condition, which indicates that the £2-norm is roughly
preserved by the evolution. This numerical observation is in agreement with semigroup boundedness.
Other choices of numerical boundary conditions for the leap-frog scheme or its fourth order extension
are discussed, e.g., in [Oli74, Slo83, Tho72, Tre84]. The main discussion in [Oli74, Slo83, Tre84] is to verify
strong stability for a wide choice of numerical boundary conditions, and if strong stability holds, then
Theorem 1 automatically gives semigroup boundedness, which was not achieved in these earlier works.
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Figure 1: Reflection of a bump by the leap-frog scheme with homogeneous Dirichlet condition at four
successive times.



A scheme based on the backwards differentiation rule. We still start from the transport equation
(12), approximate the space derivative J,u by the centered finite difference (uj;1 — uj—1)/(2Az), and
then apply the backwards differentiation formula of order 2, see [HNW93, Chapter III.1]. The resulting

scheme reads: 5 ) 1
2 a 2 2 1

J+1 J
This corresponds to s = 1 and

3 Aa
Qs (Uj>jeZ — | suj + — (Uj_H — uj_l)
2 2 .
JEZ
The operator Q2 is an isomorphism on £?(Z) since Q5 is an isomorphism for any small A a (as a perturbation
of 3/21), Q2 depends continuously on Aa, and there holds (uniformly with respect to Aa):

3
5 ltll—oo 400 < 1Q2 o0 400 -

The operator Qs is therefore an isomorphism on ¢2(Z) for any Aa > 0 (see, e.g., [Cou09, Lemma 4.3]).
Let us now study the dispersion relation (8), which reads here

<§+i)\a sin§> 22 —2z+% =0.
It is clear that the latter equation has two simple roots in z for any £ € R. Moreover, if sin ¢ = 0, the roots
are 1 and 1/3 which belong to D. In the case sin& # 0, none of the roots belongs to S! and examining
the case Aa sin = 1, we find that for sin{ # 0, both roots belong to I (which is consistent with the
shape of the stability region for the backwards differentiation formula of order 2, see [HW96, Chapter
V.1]). Assumption 2 is therefore satisfied. Assumption 3 is satisfied as long as a is nonzero since there
holds p =7 =1 and a1(z) = a_1(2) = Aa z?/2.

Theorem 1 therefore yields semigroup boundedness as long as one uses numerical boundary conditions
for which the numerical scheme is well-defined (this is at least the case for A a small enough) and strong
stability holds.

1.3.2 Two space dimensions
Here we wish to approximate the two-dimensional transport equation (d = 2):
O+ a1 Oz, u~+ a2 Ogau =0, ult=0 = ug ,

in the space domain {z; > 0, o € R}. When a; is negative, the latter problem does not necessitate any
boundary condition at z; = 0. Following [AG76], we use one of the following two-dimensional versions of
the leap-frog scheme, either

n+2 n+1 n+1 n+1 n+1 n _
Wik HAvan (uh = ugT ) A2 ae (uy gy —ujpy) — i =0, (14)

or

n+1 n+1 n+1 n+1
n+2 Uity o1 T Wi e—1 Uil pqr T U e
’LL] k + )\1 aq —

2 2
n+1 n+1 n+1 n+1
U + u; U + u;
1,k+1 —1,k+1 1,k—1 —1,k—1
+>\2a2 ( J+1,k+ 5 J +1 g+ 5 J > 7u2k:0 (15)
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Assumption 1 is trivially satisfied because (14) and (15) are explicit schemes. The scheme (14) satisfies
Assumption 2 if and only if A |a1| + A2 |ag| < 1, while the scheme (15) satisfies Assumption 2 if and only
if max(A;1 |ai], A2 |az|) < 1. Let us now study when Assumption 3 is valid. For the scheme (14), we have
r1 =p1 =1, and

ai(z,n) =Aarz, a-1(zn) = —a(zn),

so Assumption 3 is valid as long as a; # 0. For the scheme (15), we have again r1 = p; = 1, and
a1(z,m) = z(A1ay cosn+idgaz sinng), a_1(z,m) =z(—Aa; cosn+idgaysinng),

so Assumption 3 is valid as long as both a; and ay are nonzero. We refer to [AG79] for the verification
of strong stability depending on the choice of some numerical boundary conditions for (14) or (15). Once
again, if strong stability holds, then Theorem 1 yields semigroup boundedness and #2-stability with respect
to boundary data.

2 The Leray-Garding method for fully discrete Cauchy problems

This section is devoted to proving stability estimates for discretized Cauchy problems, which is the first
step before considering the discretized initial boundary value problem (5). More precisely, we consider
the simpler case of the whole space j € Z%, and the recurrence relation:

s+1

Qou"t" =0, jez¢, n>0,
2 Q0 (16
u;b: ‘;./L’ jeZd7 77,:0,...,8,

where the operators @), are given by (6). We recall that in (6), the ay, are real numbers and are
independent of the small parameter At (they may depend on the CFL parameters Aq,...,\q), while S
denotes the shift operator on the space grid: (S‘v); := v;14 for j, ¢ € Z4. Stability of (16) is defined as
follows.

Definition 2 (Stability for the discrete Cauchy problem). The numerical scheme defined by (16) is (¢2-)
stable if Q41 is an isomorphism from (?(Z%) onto itself, and if furthermore there exists a constant Cy > 0
such that for all At € (0,1], for all initial conditions (f](-])jezd, ooy (ff)jega in 02(Z%), there holds

s

sup JJu" 12 0 400 < Co D 172 00 400 - (17)

neN o—0

Let us quickly recall that stability in the sense of Definition 2 is in fact independent of At € (0, 1] (because
(16) does not involve At and (17) can be simplified on either side by [], Az;), and can be characterized
in terms of the uniform power boundedness of the so-called amplification matrix

~Qs(R)/Qur1(R) oo oo —Qo(K)/Qsra (k)
o (k) == (1) 0 N 0 € Ms1(C), (18)
0 0 1 O

where the C/Q;(Fa)’s are defined in (8) and where it is understood that </ is defined on the largest open
set of C% on which Qs+1 does not vanish. Let us also recall that if Q)54+ is an isomorphism from 02 (Zd)
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onto itself, then Czrl does not vanish on (S")¢, and therefore does not vanish on an open neighborhood
of (Sh)4. With the above definition (18) for <7, the following well-known result holds:

Proposition 1 (Characterization of stability for the fully discrete Cauchy problem). Assume that Qsy1
is an isomorphism from €2(Z%) onto itself. Then the scheme (16) is stable in the sense of Definition 2 if
and only if there exists a constant C1 > 0 such that the amplification matriz o/ in (18) satisfies

VneN, VEéeR?, |o(ef%, ... ) <. (19)

In particular, the spectral radius of @/ (€1, ... e*%) should not be larger than 1 (the so-called von Neu-
mann condition,).

The eigenvalues of &7 (¢!, ..., e'é) are the roots to the dispersion relation (8). When these roots are
simple for all £ € R, the von Neumann condition is both necessary and sufficient for stability of (16), see,
e. g., [Coul3, Proposition 3|. Assumption 2 is therefore a way to assume that (16) is stable for the discrete
Cauchy problem. Our goal is to derive the semigroup estimate (17) not by applying Fourier transform to
(16) and using uniform power boundedness of o7, but rather by multiplying the first equation in (16) by
a suitable local multiplier. The analysis relies first on the simpler case where one only considers the time
evolution and no additional space variable.

2.1 Stable recurrence relations

In this Paragraph, we consider sequences (v"),en with values in C. The index n should be thought of as
the discrete time variable, and we therefore introduce the new notation T for the shift operator on the
time grid: (T™wv)" := v™™™ for all m,n € N. We start with the following elementary but crucial Lemma,
which is the analogue of [Gar56, Lemme 1.1].

Lemma 1 (The energy-dissipation balance law). Let P € C[X] be a polynomial of degree s + 1 whose
roots are simple and located in . Then there exists a positive definite Hermitian form q. on C**1, and a
nonnegative Hermitian form qq on CT1, that both depend in a €> way on P, such that for any sequence
(V") nen with values in C, there holds

VneN, 2Re<WP(T) v") = (s+1)|P(T) 0" >+ (T —1) (ge(v", ..., 0" %)) +qq(v", ..., 0" %),
In particular, for all sequence (V")nen that satisfies the recurrence relation

VneN, P(T)v" =0,
the sequence (qe(v™, ..., 0" %)) e 48 nonincreasing.

The fact that there exists a Hermitian norm on C**! that is nonincreasing along solutions to the
recurrence relation is not new. In fact, it is easily seen to be a consequence of the Kreiss matrix Theorem,
see [SW97]. However, the important point here is that we can construct a multiplier that yields directly
the "energy boundedness” (or decay). The fact that the coefficients of this multiplier are integer multiples
of the coefficients of P will be crucial in the analysis of Section 3, see also Proposition 2 below.

Proof. We borrow some ideas from [Gar56, Lemme 1.1] and introduce the interpolation polynomials:

Vk=1,...,s+1, P(X) ZZCLH(X*CL‘]'),
ik
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where z1,...,x541 denote the roots of P, and a # 0 its dominant coefficient. Since the roots of P are
pairwise distinct, the Py’s form a basis of C4[X] and they depend in a ¥> way on the coefficients of P.

We have
s+1

=> P
k=1

We then consider a sequence (v"),en with values in C and compute

2 Re (T (P/(T)v") P(T) v") (s +1)|P(T) v"|?
s+1
=S T (B(T)) v (T — a3,) P(T) " + T (Py(T) v™) (T — 7) B (T) 0"

s+1

- Z — T) (Pe(T) v™) (T — a3,) (Pr(T) v™)

s+1

—Z — |zkl?) [ Pe(T) 0"

The conclusion follows by defining:

s+1

V(wl,. . w') e CFgo(u®, . wt) =) [Pe(T) wl)?, (20)
s+1

qa(u®, ... w) = (1 |ag]?) [Pe(T) ). (21)
k=1

The form g, is positive definite because the Py’s form a basis of C4[X]. The form g4 is nonnegative because
the roots of P are located in . Both forms depend in a ¥*° way on the coefficients of P because the
roots of P are simple. O

Lemma 1 shows that the polynomial P’ yields the good multiplier T P'(T)v™ for the recurrence
relation P(T)v"™ = 0. Of course, P’ is not the only possible choice, though it will be our favorite one in
what follows. As in [Gar56, Lemme 1.1], any polynomial of the form”

s+1
Q::Zakpk, ala"’vas+1>07

provides with an energy balance of the form
2Re (T (Q(T)v") P(T) v") = (a1 4+ as) [P(T) 0" P+ (T 1) (ge(v", ..., 0" )+ qa(W”, ..., 0"F*),

with suitable Hermitian forms g., g4 that have the same properties as stated in Lemma, 1.

"The sign condition here on the coefficients ay, is the analogue of the separation condition for the roots in [Ler53, Gar56].
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2.2 The energy-dissipation balance for finite difference schemes

In this Paragraph, we consider the numerical scheme (16). We introduce the following notation:

s+1 s+1
L:=) T7Q,, M:=) 0T7Q,. (22)
o=0 o=0

Thanks to Fourier analysis, Lemma 1 easily gives the following result:

Proposition 2 (The energy-dissipation balance law). Let Assumptions 1 and 2 be satisfied. Then
there exist a continuous coercive quadratic form Ey and a continuous nonnegative quadratic form Dy
on £2(Z% R)**L such that for all sequences (V™)nen with values in £2(Z%R) and for alln € N, there holds

2(Mv", Lv") oo 400 = (s+1)| L vn”|%m,+m + (T —1I)Eo(v™,...,v" ") + Do(v™, ..., 0" "%).
In particular, for all initial data f°,..., f* € (*(Z%R), the solution to (16) satisfies

sup Eo(v™,...,v" %) < Eo(f, ..., f%),
neN

and (16) is (¢*-)stable.

Proof. We use the same notation v™ for the sequence (v;l) jeza and the corresponding step function on R4
whose value on the cell [j1 Az, (j1 +1) Az1) X -+ X [jg Azg, (ja + 1) Azg) equals v}. Then Plancherel
Theorem gives

2(M ", L") oo 400 = (s + 1) IL 0" 0 oo

/ on on o ae
:/Rnge(T(pC(T)v (€)) P:(T) v (g)) — (54 1) [P(T) 0" (¢)? @m)

where v™ denotes the Fourier transform of v™, and where we have let

s+1
Pr(z) := Z Qo (eZQ, . ,e“:d) 27, (=& Axy,
o=0

and P/(z) denotes the derivative of P with respect to z.
From Assumption 2, we know that for all ¢ € R?, P has degree s + 1 and has s + 1 simple roots in
D. We can apply Lemma 1 and get

2 (M ", L") oo poo — (5 + 1) | L0

—00,+00

B /Rd@ =D @), ) + aac(T ), 0 T)

where g ¢, ¢4, depend in a € way on ¢ € R? and are 2 w-periodic in each ;. Furthermore, g ¢ is positive
definite and g4 is nonnegative. The conclusion of Proposition 2 follows by a standard compactness
argument for showing coercivity of Ej. O
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2.3 Examples

The first basic example corresponds to the case s = 0 for which the multiplier provided by Proposition 2

is Q1 v}lﬂ. In that case, the energy Ep reads [|Q1v||? o 1o (recall that @ is an isomorphism) and the

energy-dissipation balance law is nothing but the trivial identity

2(Q1v" ™, Q1™ + Qo ™) _so o0 = Q10" + Qo 0" 1% s 400

1RV e oo = 1Q0 0™ 2o, o -

The second line of this algebraic identity can be rewritten as

Q1 0™ M e o0 = 1Q1 V"I o0 o0 + Q10" 12 e o0 = 1Q0 0™ 1 o

and ¢2-stability for the Cauchy problem amounts to assuming that the operator norm of Ql_l Qo is not

larger than 1. Hence the dissipation term [|Q1 v™||? oo 4 oo — Q0 0" oo 400 is nonnegative.

Let us now consider the leap-frog scheme in one space dimension, for which we have s = 1 and
L=T?4+XaT(S-8S7')—1T.
The corresponding dispersion relation (8) reduces to
224+ 2idasinéz—1=0.

For Ala| < 1, the latter equation has two simple roots x1(&),z2(§) of modulus 1. Following the previous
analysis, see (20)-(21), the form g is given by

e (0, w') = ' — 21 (Q)w? + ' — 23(Q) wf = 2 (w0 + 2[w![* + 4 X aRe(i sinC wl w),

and gq ¢ is zero. The associated forms in Proposition 2 are Dy = 0 and (recall here d = 1):

Eo(v°,v') =2 ZAJU (v?)2 +2 Z Ax (v})2 +2Xa ZAl' (U?H - fu?,l) vjl .
JEL JEZL JEZL
The latter energy functional Fj is coercive under the condition Al|a| < 1, which is the necessary and
sufficient condition of stability for the leap-frog scheme, and Fjy is conserved for solutions to the leap-frog
scheme. The conservation of Fy is usually proved by starting from the recurrence relation
Vi€Z, VYneN, u!*?+xa(uff{ —ut)—ul=0,

n+2

using the multiplier u; "+ u?, and summing with respect to j. This is equivalent, for solutions to the

leap-frog scheme, to what we propose here, since our multiplier reads

n __ n+2 n+l _  ntly _  nt2 n n
Muj =2ui™" + Xa(ujly —ui™)) =uj"" +uj+ Luj .

=0
However, it will appear more clearly in Section 3 why our choice for M uj has a major advantage when
considering initial boundary value problems.
Let us observe here that the energy functional Ej is associated with a local energy density

Eo;j(v%,0') =2 (v?)2 +2 (vjl-)2 +2X\a (U?H - v?,l) vjl- .

This is very specific to the leap-frog scheme. In general, the coefficients of the Hermitian forms ge ¢, qq,¢
are not trigonometric polynomials of { and therefore Ey, Dy do not necessarily admit local densities. This
is one main difference with [Ler53, Gar56].

15



3 Semigroup estimates for fully discrete initial boundary value prob-
lems

We now turn to the proof of Theorem 1 for which we shall use the results of Section 2 as a toolbox. By
linearity of (5), it is sufficient to prove Theorem 1 separately in the case ( fJQ) =---=(f;) =0, and in the
case (F]') =0, (g7) = 0. The latter case is the most difficult and requires the introduction of an auxiliary
set of “dissipative” boundary conditions. Solutions to (5) are always assumed to be real valued, which
means that the data are real valued. For complex valued initial data and/or forcing terms, one just uses
the linearity of (5).

3.1 The case with zero initial data

We first assume ( fJO) =--- = ([;) = 0. By strong stability, we already know that (7) holds with a constant
C' that is independent of v > 0 and At € (0,1]. Therefore, proving Theorem 1 amounts to showing the
existence of a constant C, that is independent of v > 0 and At € (0, 1] such that the solution to (5) with
(f]o) == (f;) = 0 satisfies

At +1
sup 23, <0 4 TEIES ST Aoz A pr
n>0 TS
0
+ Y AtePIAC N gl N gany p o (23)
n>s+1 Ji=1-m

We thus consider a parameter v > 0 and a time step At € (0, 1], and focus on the numerical scheme (5)
with zero initial data (that is, (fjo) == (fj) =0). For all n € N, we extend the sequence (u}) by zero
for j1 < —ry:
o ui it g >1-—r,
/ 0  otherwise.
We use Proposition 2 and compute:
(T —I) Eg(v™,..., 0" ) + Do(v"™, ..., 0" ") = 2(M ", Lv™) o400 —(s+1)|L Un|||2_007+00 .

Due to the form of the operator L, see (22), and the fact that v} vanishes for j; < —ry, there holds:
s+l ip o
Lo" = AtF]’-1 s if 1 >1,
’ 0 if j1 < —r1 —p1,
and we thus get

(T — 1) Ep(v™,...,0""%) " V")

o(v", ...
D 2A(M ) FIT — (s 4 1) AP (P2

D ;
k=1 1>1jrezd—1
d 0
+ (H Axk> > > 2(Muf)Lof - (s+1) (Lv}).
k=1

J1=1-r1—p1 j'€zd-1

+

1