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Abstract

This paper provides various "contractivity" results for linear opera-
tors of the form I�C where C are positive contractions on real ordered
Banach spaces X: If A generates a positive contraction semigroup in
Lebesgue spaces Lp(�), we show (M. Pierre�s result) that A(��A)�1 is
a "contraction on the positive cone", i.e.



A(��A)�1x

 � kxk for all
x 2 Lp+(�) (� > 0); provided that p > 2: We show also that this result
is not true for 1 � p < 2: We give an extension of M. Pierre�s result to
general ordered Banach spaces X under a suitable uniform monotony
assumption on the duality map on the positive cone X+: We deduce
from this result that, in such spaces, I � C is a contraction on X+
for any positive projection C with norm 1: We give also a direct proof
(by E. Ricard) of this last result if additionally the norm is smooth
on the positive cone. For any positive contraction C on base-norm
spaces X (e.g. in real L1(�) spaces or in preduals of hermitian part
of von Neumann algebras), we show that N(u � Cu) � kuk 8u 2 X
where N is the canonical half-norm in X: For any positive contraction
C on order-unit spaces X (e.g. on the hermitian part of a C� algebra),
we show that I � C is a contraction on X+: Applications to relative
operator bounds, ergodic projections and conditional expectations are
given.
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1 Introduction

In this paper, we give various "contractivity" results for perturbations of
the identity by linear positive contractions in real ordered Banach spaces.
This work was motivated initially by the computation of relative operator
bounds in a context of perturbation of generators of positive semigroups
of contractions (in connection e.g. with [5][1] and of interest e.g. for
perturbation theory of submarkovian operators with Levy-type structure
steeming from Dirichlet forms [7]).

It is well-known (see e.g. [24]) that if we consider a semibounded (say
bounded from above) self-adjoint operator

A : D(A) � H ! H

in a Hilbert space H and if

S : D(A)! H

is A-bounded then the relative A-bound of S (i.e. the in�mum of constants
a > 0 for which there exists a constant b > 0 such that

kSxk � a kAxk+ b kxk ; x 2 D(A))

is equal to
lim
�!1



S(��A)�1

L(H) :
The initial motivation of this work was to look for conditions under which
this property holds true in a Hilbert space when A is no longer self-adjoint
or, more generally, when A is a generator of a C0-semigroup (U(t))t>0 on
a Banach space. This question turned out to have some connection with
"contractivity" properties of perturbations of the identity by linear contrac-
tions in (ordered) Banach spaces of own interest which in turn have useful
applications.

We show �rst that the property above remains true in a Hilbert space
setting provided there exists some � 2 R such that A + � generates a con-
traction semigroup (see Corollary 3). More generally, in the context of
generators A of C0-semigroups (U(t))t>0 on Banach spaces X, the relative
A-bound of S coincides with lim�!1



S(��A)�1

L(X) provided that
lim sup

�!+1



A(��A)�1

L(X) � 1:
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On the other hand, it is easy to see that

lim sup
�!+1



A(��A)�1

L(X) � lim sup
t!0

kU(t)� IkL(X) (1)

and this leads us naturally to wonder if A(� � A)�1 or U(t) � I could be
contractions when A generates a C0-semigroup of contractions (U(t))t>0.
(Note that

A(��A)�1 = �(��A)�1 � I
and �(� � A)�1 is a contraction.) It turns out that this cannot be true in
general. Indeed, in an earlier version of this paper, we proved general neg-
ative results for submarkovian C0-semigroups in Lebesgue spaces Lp(
; �),
over a metric space 
; for large p�s (and also for p close to 1 in the symmetric
case) provided that a suitable smoothing e¤ect on L1(
; �) is assumed. In
particular, for stochastic (i.e. norm-preserving on the positive cone) positive
C0-semigroups on L1(
; �) with a suitable "dual smoothing e¤ect", we have
the sharp results

lim sup
�!+1



A(��A)�1

L(L1) = kU(t)� IkL(L1) = 2 (8t > 0): (2)

These general counter-examples suggest fully that a priori we cannot expect
A(� � A)�1 and I � U(t) to be contractions outside the realm of Hilbert
spaces. Despite this fact, we show in this paper how suitable "contractiv-
ity" properties still hold in suitable (non hilbertian) ordered Banach spaces.
Indeed, this paper is devoted to various "contractivity" results for operators
of the form

I � C
where C denotes linear positive contractions in suitable ordered Banach
spaces. This study was triggered by the unsuspected fact that if A generates
a positive semigroup (i.e. leaving invariant the positive cone X+) on a real
ordered Banach space with a Riesz norm and if S : D(A) \ X ! X is
positive, i.e.

S : D(A) \X+ ! X+;

then the relative A-bound of S is equal to

lim
�!1



S(��A)�1

L(X) (3)

(as in Hilbert space settings) provided that A(��A)�1 is a �contraction on
the positive cone� in the sense

sup
kxk�1; x2X+



A(��A)�1x


X
� 1 (� > 0):
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This explains why "contractions on the positive cone�(which are not con-
tractions on the whole space) are worth studying. This paper provides vari-
ous theorems in this direction with applications to relative operator bounds,
ergodic projections and conditional expectations (in both classical or non-
commutative contexts). As far as we know, these results appear here for
the �rst time. Three classes of ordered Banach spaces (and their duals) are
involved in this study:

(i) Base-norm ordered Banach spaces (see the de�nition in Section 3).
Such spaces cover e.g. real L1(�) spaces, the space of real Borel measures
on a metric space endowed with the total variation norm, the duals of the
hermitian part of C� algebras or the preduals of the hermitian part of von
Neumann algebras.

(ii) Order-unit ordered Banach spaces (see the de�nition in Section 3).
Such spaces cover e.g. real L1(�) spaces, real C(K) spaces or more generally
(hermitian parts of) C� algebras. (We point out that there is a perfect
symmetry (duality) between base-norm spaces and order-unit spaces, see
[15].)

(iii) The class of ordered Banach spaces whose duality map is uniformly
monotone on the positive cone X+ in the sense (6) below. This class covers
the Lebesgue spaces Lp(�) with p > 2 (and also noncommutative Lp spaces
with p > 2, see [20]).

For reader�s convenience, Section 3 is devoted to reminders on some basic
de�nitions and results on real ordered Banach spaces we need in this paper.

Our main results are:
We show �rst that a bounded operator B 2 L(X) is a contraction on

the positive cone, in the sense

sup
kxk�1; x2X+

kBxkX � 1;

if and only if the dual operator B0 satis�es a sublinear contraction

N 0 �B0x0� � 

x0


X0 8x0 2 X 0

where N 0 is the canonical half-norm (see the de�nition in Section 3) in X 0;
we show also that

N (Bx) � kxkX 8x 2 X
(N is the canonical half-norm in X) if and only if B0 is a contraction on the
dual positive cone X 0

+ (see Lemma 6). Notice that in a Banach lattice or on
(hermitian elements of) a C� algebra we have

N(x) = kx+k ; x 2 X
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where x+ is the positive component of x (see e.g. [2]).
It turns out that in Lebesgue spaces Lp(�) with

p > 2;

A(� � A)�1 is a contraction on the positive cone Lp+(�) for any generator
A of a positive contraction C0-semigroup in Lp(�) (see Theorem 12). This
unsuspected result is due to M. Pierre (private communication). This result
is false once p < 2 (see a counter-example by E. Ricard in Remark 27; see
also Theorem 15 and Remark 17 below for general counter-examples for
submarkovian semigroups if p is close to 1 and Remark 20(ii)).

It follows from Theorem 12 and Lemma 6 that

(A(��A)�1f)�


Lp
� kfkLp 8f 2 Lp(�); (1 < p � 2)

for any generator A of positive contraction C0-semigroups in Lp(�) with
1 < p � 2: We show also that this last result is true in L1 spaces or more
generally (with an appropriate formulation in terms of canonical half norm
N) in general base-norm spaces X. Actually, we show the much more general
statement

N(x� Cx) � kxk 8x 2 X (4)

for any linear positive contraction C on a base-norm ordered Banach spaceX
(see Theorem 8). An important feature of such spaces is the additivity of
the norm on the positive cone which plays a key role in the proof of (4). In
particular, for any linear positive contraction C in preduals X� of hermitian
part of von Neumann algebras X we have

(x� Cx)�

X� � kxkX� 8x 2 X�

(see Corollary 11) where �� > 0 refer to the unique Jordan decomposition
of � 2 X �, i.e. � = �+ � �� with k�kX � = k�+kX � + k��kX � 8� 2 X � [10].
Such results imply e.g. "contractivity" properies of I � E for conditional
expectations E in both contexts of classical and noncommutative probability
(see Remark 32).

We provide an extension of M. Pierre�s result above to general real or-
dered Banach spaces under a suitable monotony assumption on the duality
map. More precisely, let

� : R+ ! R+
be continuous, strictly increasing with �(0) = 0, �(r) ! +1 as r ! +1
and let

� : X ! X 0
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be a duality map relative to the gauge �, i.e. such that

h�(x); xi = �(kxk) kxk 8x 2 X;

(such a duality map always exists). We show then that A(� � A)�1 is a
contraction on the positive cone X+, i.e.

A(��A)�1x

 � kxk 8x 2 X+; (5)

for any generator A of positive contraction C0-semigroups provided the du-
ality map � is uniformly monotone on the positive cone X+ in the sense

h�(x)� �(y); x� yi > �(kx� yk) kx� yk 8x; y 2 X+; (6)

(see Theorem 18). This inequality which is true in Lebesgue spaces Lp(�)
with p > 2 (see Theorem 12) admits a (non trivial) generalization to non-
commutative Lp spaces by E. Ricard [20].

The mathematical results of this paper seem to single out the class C of
ordered Banach spaces for which (5) is satis�ed for all generators A of
positive contraction C0-semigroups (and we wonder if this class is much
larger than the class of ordered Banach spaces whose duality map satis�es
(6)). Indeed, for any generator A of a positive contraction C0-semigroup on
X 2 C, the relative A-bound of positive A-bounded operators S is given by

lim
�!1



S(��A)�1

L(X)
as in Hilbert space settings (see Theorem 21). For any generator A of a
positive ergodic contraction C0-semigroup with ergodic projection P on an
ordered Banach space X 2 C

kx� Pxk � kxk 8x 2 X+;

i.e. I�P is a contraction on the positive cone (see Theorem 22). Surprisingly
enough, Theorem 22 implies the more general statement that

kx� Cxk � kxk 8x 2 X+

for any positive projection C with norm 1 on an ordered Banach space
X 2 C (see Theorem 23). (Notice parenthetically that norm one projections
in Banach spaces are intensively studied in the literature, see e.g. [11][19]
and the references therein.)

I thank E. Ricard who kindly provided me with an elegant direct proof of
this last result on ordered Banach spaces whose duality map satis�es (6) and
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is single-valued on X+�f0g (see Theorem 26). In particular, if (
;A; P ) is
a probability space and if

EB : f 2 L1(
;A; P )! L1(
;B; P )

is the conditional expectation with respect to a �-subalgebra B � A then

f � EBf


Lp
� kfkLp 8f 2 Lp+(
;A; P ) (p > 2);

see Remark 33); (this result is also true in the noncommutative context,
see the comments in the last section; I thank J. Ch. Bourin for a helpful
discussion around this topic).

I am grateful to Hocine Mokhtar-Kharroubi for helpful informations on
convex analysis; in particular, we "understand" why M. Pierre�s result is
not true in Lp spaces once p < 2 because of the fact that the map

X 3 x! kxkp

is not uniformly convex on the whole space for p < 2 (see Remark 20).
Another result observed by M. Pierre (private communication) is that,

for any linear positive contraction C on L1(�); I�C is a contraction on the
positive cone L1+ (�):We extend this result to general order-unit spaces (see
Theorem 29) and this extension, in turn, provides us with an alternative
"shorter" proof (by a duality argument) of the contractivity property (4) in
base-norm spaces (see Corollary 30).

The author is grateful to M. Pierre and E. Ricard for their help. This
work owes very much to inspiring exchanges with both of them.

2 On relative operator bounds

Let (U(t))t>0 be a C0-semigroup on a Banach space X with generator

A : D(A) � X ! X

and let
S : D(A)! X

be bounded on D(A) endowed with the graph norm, i.e. S is A-bounded.
Let

s(A) := sup fRe�;� 2 �(A)g

be the spectral bound of A. We start with a general observation.
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Lemma 1 Let aS be the A-bound of S. Then

aS � inf
n

S(��A)�1

L(X) ; � > s(A)o

� lim sup
�!+1



S(��A)�1

L(X)
� aS lim sup

�!+1



A(��A)�1

L(X) :
In particular, if

lim sup
�!+1



A(��A)�1

L(X) � 1 (7)

then
aS = lim

�!+1



S(��A)�1

L(X) :
Proof:
Let a > 0 and b > 0 be such that

kSxk � a kAxk+ b kxk ; x 2 D(A):

Let !0 be the type of (U(t))t>0 and let ! > !0: There exists M! > 1 such
that kU(t)k �M!e

!t 8t > 0: Then for � > !

S(��A)�1x

 � a


A(��A)�1x

+ b 

(��A)�1x



� a


A(��A)�1x

+ bM!

�� ! kxk

and

lim sup
�!+1



S(��A)�1

L(X) � a lim sup
�!+1



A(��A)�1

L(X)
so

lim sup
�!+1



S(��A)�1

L(X) � aS lim sup
�!+1



A(��A)�1

L(X) :
On the other hand, for any � > s(A);

kSxk =


S(��A)�1(��A)x

 � 

S(��A)�1

 kAxk+� 

S(��A)�1

 kxk

shows that
aS � inf

n

S(��A)�1

L(X) ; � > s(A)o
and this ends the proof. �
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Remark 2 It follows from Lemma 1 that the A-bound of S is equal to zero
if and only if

lim
�!1



S(��A)�1

L(X) = 0:
An important illustration of this result, in L1 spaces, is provided by Kato
class potentials and Schrödinger operators, see e.g. [23] Proposition A.2.3.

We have a more precise result in Hilbert spaces.

Corollary 3 Let there exist some � 2 R such that A + � generates a con-
traction C0-semigroup on a Hilbert space H and let S : D(A) ! X be
A-bounded. Then the A-bound of S is equal to

lim
�!+1



S(��A)�1

L(H) :
Proof:
Let A0 := A+ �: We consider the equation

�x�A0x = y (� > s(A) + �):

Then
�(A0x; x)�



A0x

2 = (A0x; y)
and

��Re(A0x; x) +


A0x

2 = �Re(A0x; y) � 

A0x

 kyk :

The dissipativity of A0, i.e. Re(A0x; x) � 0 8x 2 D(A) implies

A0x

2 � 

A0x

 kyk
i.e. 

A0(��A)�1y

 � kyk
so that A0(��A0)�1 is a contraction. Thus

(A+ �)(�� (A+ �))�1 = A(�� ��A)�1 + �(�� ��A)�1

is a contraction for all � > s(A)+� and then (7) holds since


�(�� ��A)�1



goes to zero as �! +1: �

Remark 4 As pointed out to me by M. Pierre, the fact that (1���1A)�1�
I is a contraction is known in the general context of nonlinear maximal
dissipative operators A in Hilbert spaces (see [4] Proposition 2.6, p. 28).
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Remark 5 In the general setting of Banach spaces, we note that if, for
some � 2 R, A0 := A+ � generates a contraction C0-semigroup then

A0(��A0)�1

L(X) = 

�I + �(��A0)�1

L(X) � 2
which leads to the estimate

lim sup
�!+1



A(��A)�1

L(X) � 2
which cannot be improved in general, see (2).

3 Reminders on ordered Banach spaces

For reader�s convenience, this section is devoted to reminders on some basic
notions and results on real ordered Banach spaces we need thereafter. A real
ordered Banach space is a triple (X;X+; kk) where (X; kk) is a real Banach
space with norm kk and X+ � X is a closed convex cone. It follows that
(X 0; X 0

+; kk
0) is also an ordered Banach space with the dual (weak*) closed

convex cone
X 0
+ :=

�
x0 2 X 0; hx0; xi > 0 8x 2 X+

	
:

If X+ is proper, i.e.
X+ \ �X+ = f0g ;

then X+ induces an order relation � on X by

x � y , y � x 2 X+:

We say that X+ is weakly generating if X+�X+ is dense in X; in this case
the dual cone X 0

+ is proper. If

X = X+ �X+

then we say that X+ is generating. If additionaly X+ is normal, i.e. there
exists � > 1 such that x � y � z implies kyk � � fkxk _ kzkg ; then the dual
cone X 0

+ is also generating and normal. The norm is said to be absolutely
monotone if

�y � x � y ) kxk � kyk ;

and approximately absolutely dominating if for any � > 1

8x 2 X; 9y 2 X+; �y � x � y; kyk � � kxk :

10



A norm is called a Riesz norm if it is both absolutely monotone and approx-
imately absolutely dominating. Then kk is a Riesz norm if and only if the
dual norm is a Riesz norm. We mention a useful property of a Riesz norm
kk

kxk = inf fky + zk ; x = y � z; y; z 2 X+g 8x 2 X: (8)

Note that a real ordered Banach space (X;X+; kk) is a Banach lattice if X
is lattice (each pair x; y 2 X has a least upper bound x _ y and a greatest
lower bound x ^ y) and kk is a Riesz norm. The canonical half-norm on an
ordered Banach space X is de�ned by

N(x) = dist(�x;X+) = inf fkx+ yk ; y 2 X+g

or equivalently by

N(x) = inf fkzk ; z 2 X; z > xg : (9)

In Banach lattices or on the self-adjoint part of a C� algebra N(x) = kx+k
where x+ is the positive component of x 2 X: For all these results (and
many others), we refer to the exhaustive survey [2].

An ordered Banach space X is called an order-unit space if IntX+ 6= ;
and there exists e 2 IntX+ such that

kxk = inf f� > 0; ��e � x � �eg ;

(we note that X = [�>0 [��e; �e] for any point e 2 IntX+). Order-unit
spaces cover real AM -spaces (e.g. L1(�) or C(K) spaces) or more generally
hermitian part of C� algebras.

Let (X;X+; kk) be a real ordered Banach space with a generating cone
X+: A base for X+ is a bounded closed subset K of X+ such that for each
x 2 X+ there is a unique �K(x) � 0 such that x 2 �K(x)K: In this case,

kxkK := inf f� � 0; x 2 �co(K [ �K)g

is a Riesz norm equivalent to the original norm kk : A real ordered Banach
space (X;X+; kk) is called a base-norm space if there exists a base K for
X+ such that

kxkK = kxk ;

in such a case, the norm k:k is additive on the positive cone, i.e.

kx+ yk = kxk+ kyk 8x; y 2 X+:

11



Finally, an ordered Banach space (X;X+; kk) is a base-norm space if and
only if the dual ordered Banach space (X 0; X 0

+; kk
0) is an order-unit space.

Similarly, (X;X+; kk) is an order-unit space if and only if (X 0; X 0
+; kk

0) is
base-norm space. The typical examples of base-norm spaces are provided
by AL spaces (e.g. L1(�) spaces or the space of Borel measures on a metric
space endowed with the total variation norm), the duals of the hermitian
part of C� algebras or by the preduals of the hermitian part of von Neumann
algebras. We refer to [2][15] for the details.

4 Contractivity theorems in ordered Banach spaces

To motivate what follows, let (X;X+; kk) be an ordered Banach space with
a Riesz norm and let

A : D(A) � X ! X

be the generator of a positive (i.e. leaving invariant the positive cone X+)
C0-semigroup (U(t))t>0 on X: Let

S : D(A)! X

be positive, i.e.
S : D(A) \X+ ! X+;

and A-bounded. Since S(��A)�1 is a positive operator then

S(��A)�1

L(X) = sup
kxk�1; x2X+



S(��A)�1x


because kk is a Riesz norm (see [21] Lemma 3.3). Thus, if we resume the
proof of Lemma 1 by using positive vectors x 2 X+ we end up with

aS � lim
�!1



S(��A)�1

L(X) � aS lim sup
�!+1

( sup
kxk�1; x2X+



A(��A)�1x

)
so

aS = lim
�!1



S(��A)�1

L(X) (10)

if
lim sup

�!+1
( sup
kxk�1; x2X+



A(��A)�1x

) � 1; (11)

in particular if A(� � A)�1 is �a contraction on the positive cone�X+ in
the sense 

A(��A)�1x

 � kxk 8x 2 X+: (12)

The contraction property on the positive cone admits a dual characteriza-
tion.

12



Lemma 6 Let (X;X+; kk) be an ordered Banach space and let B 2 L(X):
Then:

1) B is a contraction on X+ if and only if N 0(B0x0) � kx0kX0 8x0 2 X 0:
2) N(Bx) � kxkX 8x 2 X if and only if B0 is a contraction on X 0

+:

Proof :

(i) Let B be a contraction on X+: Then for x0 2 X 0 and x 2 X+��hB0x0; xi�� = ��hx0; Bxi�� � 

x0


X0 kxkX :

Since
N 0(y0) = sup

x2X+; kxk�1
hy0; xi; 8y0 2 X 0

(see [2] Proposition 1.6.2) then

N 0 �B0x0� = sup
x2X+; kxk�1

��hB0x0; xi�� � 

x0


X0 :

(ii) Suppose now that N(Bx) � kxkX 8x 2 X: Since

N(y) = sup
x02X0

+; kx0k�1
hx0; yi; 8y 2 X

(see also [2] Proposition 1.6.2) then

kxkX > N(Bx) = sup
x02X0

+; kx0k�1
hx0; Bxi > hx0; Bxi 8x0 2 X 0

+;


x0

 � 1

so ��hB0x0; xi�� = ��hx0; Bxi�� � kxkX 

x0

X0 8x0 2 X 0
+;8x 2 X

and then 

B0x0


X0 �



x0


X0 8x0 2 X 0

+:

(iii) To show 1) we have just to show the converse part. Let N 0(B0x0) �
kx0kX0 8x0 2 X 0: By (ii), B00 (the bidual operator) is a contraction on the
positive cone of X 00: This ends the proof since B00 leaves invariant X and
coincides with B on X.

(iv) To show 2) we have just to show the converse part. Let B0 be a
contraction on X 0

+: Then (i) implies N
00(B00x00) � kx00kX00 8x00 2 X 00. On

the other hand (see [2] Proposition 1.6.2)

N 00(z) = sup
x02X0

+; kx0k�1
hz; x0i; (if z 2 X 00)

= N(z) (if z 2 X)

so that N(Bx) � kxkX 8x 2 X since B00 leaves invariant X and coincides
with B on X. �
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Corollary 7 Let (U(t))t>0 be a positive C0-semigroup with generator A on
an ordered Banach space (X;X+; kk).

(i) A(��A)�1 is a contraction on the positive cone X+ if and only if

N 0 �A0(��A0)�1x0� � 

x0


X0 8x0 2 X 0:

(ii) N
�
A(��A)�1x

�
� kxk 8x 2 X if and only if A0(� � A0)�1 is a

contraction on X 0
+:

We start with a "contractivity" theorem in base-norm spaces. A key
point is the additivity of the norm on the positive cone.

Theorem 8 Let X be a base-norm ordered Banach space. If C 2 L(X) is
a positive contraction then

N (x� Cx) � kxk 8x 2 X:

Proof:
Let

y = x� Cx:

Let x1 > x and z01 > �Cx be arbitrary. Then

y = (x1 � (x1 � x)) +
�
z01 �

�
z01 + Cx

��
=

�
x1 + z

0
1

�
�
�
(x1 � x) +

�
z01 + Cx

��
:

By (9)
N(y) �



x1 + z01

 � kx1k+ 

z01

 :
The arbitrariness of x1; z01 imply

N(y) � N(x) +N(�Cx):

On the other hand, since C is a positive contraction and because of the Riesz
norm (see [21] Lemma 3.2) we have

N(Cz) � N(z) 8z 2 X

whence
N(�Cx) � N(�x)

and then
N(y) � N(x) +N(�x):

14



On the other hand, the additivity of the norm on the positive cone implies

N(z) +N(�z) � kzk 8z 2 X:

Indeed, for any decomposition

z = z1 � z2; zi 2 X+;

we have (by (9))
N(z) � kz1k ; N(�z) � kz2k

so (using the additivity of the norm on X+)

N(z) +N(�z) � kz1k+ kz2k = kz1 + z2k

and then
N(z) +N(�z) � kz1 + z2k

which shows the claim thanks to the Riesz norm property (8). Finally
N(y) � kxk 8x 2 X. �

Remark 9 An alternative "shorter" proof of Theorem 8 is given in Corol-
lary 30 as a consequence of a (di¤erent) "contractivity" result in order-unit
spaces (Theorem 29).

Theorem 8 and the fact that, for a positive contraction C0-semigroup
with generator A,

�A(��A)�1 = I � �(��A)�1

is a perturbation of the identity by a positive contraction yield:

Corollary 10 Let X be a base-norm ordered Banach space. Let (U(t))t>0
be a positive contraction C0-semigroup on X with generator A: Then

N
�
A(��A)�1y

�
� kyk 8y 2 X; 8� > 0

where N is the canonical half-norm in X:

A classical result by A. Grothendieck [10] asserts that if X is the her-
mitian part of a C� algebra then each continuous linear functional � on X
admits a unique (Jordan) decomposition

� = �1 � �2 (�i > 0; i = 1; 2)

15



such that
k�kX � = k�1kX � + k�2kX �

(see also [22] for more recent developments). Moreover ([22] Lemma 6)

N�(�) = k�1kX � ; N
�(��) = k�2kX � :

On the other hand, if X is the hermitian part of a von Neumann algebra
with predual X� and if � 2 X� then �i 2 X� (i = 1; 2) [10]; thus

N�(�) = k�1kX� ; N�(��) = k�2kX� ; (� 2 X�)

where N� is the canonical norm on X�. By using the notations

�+ := �1; �� := �2;

Theorem 8 yields:

Corollary 11 Let C 2 L(X�) be a positive contraction where X� is the
predual of (the hermitian part of) a von Neumann algebra X . Then

(x� Cx)�

 � kxk 8x 2 X�:

We give now an important result by M. Pierre (private communication).

Theorem 12 (M. Pierre) Let (
;�) be a measure space with a �-�nite mea-
sure � and let (U(t))t>0 be a positive contraction C0-semigroup on L

p(
;�)

with generator A: Then, for any � > 0; A(��A)�1 is a contraction on the
positive cone, i.e.

A(��A)�1f



Lp
� kfkLp 8f 2 Lp+(
;�); 8� > 0; (13)

provided that 2 � p <1:

Proof:
We recall that the positivity of a contraction semigroup (U(t))t>0 in

Lp(
;�) is characterized by the dispersivity of its generator i.e.Z


(Au)(u+)

p�1�(dx) � 0; 8u 2 D(A)

when 1 < p < 1 (see e.g. [16] Theorem 1.2, p. 249). We can write (13) in
the form 


(I + � eA)�1f � f




Lp
� kfkLp 8f 2 Lp+(
;�) 8� > 0 (14)
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where eA = �A and � = ��1: Let
u = (I + � eA)�1f ;

then u > 0 since f is (and the resolvent (I + � eA)�1 is positive). We have
u+ � eAu = f: (15)

Let
q = p� 1:

By multiplying (15) by uq � f q we getZ


(u� f)(uq � f q) + �

Z


uq eAu = �

Z


f q eAu =

Z


(f � u)f q

and then Z


uq eAu > 0

implies Z


(u� f)(uq � f q) �

Z


(f � u)f q � kf � ukLp kf

qkLp0

where p0 = p
p�1 i.e.Z


(u� f)(uq � f q) �

Z


(f � u)f q � kf � ukLp kfk

p�1
Lp :

Now using the identity

(a� b)(aq � bq) > ja� bjq+1 ; 8a > 0; b > 0 (16)

for q > 1 (i.e. for p > 2) we getZ


ju� f jp � kf � ukLp kfk

p�1
Lp

and then kf � ukLp � kfkLp i.e. (14) holds. We note that (16) can be
proved by supposing e.g. a > b, dividing (16) by bq+1 and using the relation

8x > 1; (x� 1)(xq � 1) > (x� 1)q+1;

the last relation follows from the fact that g(x) := xq � 1 � (x � 1)q is
non-decreasing on [1;1[ and g(1) = 0: �

17



Remark 13 We point out that Theorem 12 is not true in Lp(�) spaces for
1 � p < 2, see Ricard�s counter-example given in Remark 27 below. We give
also in Theorem 15 (and Remark 17) below, for p close to 1; general counter-
examples for submarkovian C0-semigroups (see also Remark 20 (ii)).

Remark 14 We note that if A is the generator of positive contraction C0-
semigroup on Lp(
;�) with p 2 [1; 2) then

(A(��A)�1f)�



Lp
� kfkLp 8f 2 Lp(
;�); 8� > 0:

Indeed, the case p 2 (1; 2) follows from Theorem 12 and Corollary 7 while
the case p = 1 is covered by Theorem 8. In L2(
;�) we have a much stronger
result since A(��A)�1 is a contraction on the whole space (see the proof of
Corollary 3).

Theorem 15 Let (
;�) be a metric measure space and let (U(t))t>0 be a
positive contraction C0-semigroup on L1(
;�) with generator A:We assume
that A satis�es the following dual smoothing e¤ects:

(��A0)�1 : L1(
;�)! Cb(
) (17)

and, for any x 2 
;

((��A0)�1f")(x)! ((��A0)�11)(x) as "! 0 (18)

where f" is equal to �1 on the ball B(x; ") and equal to 1 outside this ball.
Then A(� � A)�1 is not a contraction on L1+(
;�). If (Up(t))t>0 is a sub-
markovian C0-semigroup with generator Ap with the dual "smoothing e¤ects"
(17)(18) on L1 then, for p close to 1; Ap(��Ap)�1 is not a contraction on
Lp+(
;�):

Proof:
Note �rst that if A(��A)�1 is a contraction on L1+(
;�) then A(��A)�1

is a contraction on the whole space L1(
;�) because of

A(��A)�1f

 =


A(��A)�1(f+ � f�)



�


A(��A)�1f+

+ 

A(��A)�1f�



� kf+k+ kf�k = kfk :

Since the continuous function (� � A0)�11 cannot vanish identically, there
exists some x 2 
 such that

((��A0)�11)(x) > 0:

18



Consider the equation
�u" �A0u" = f"

where

f" =

�
�1 on B(x; ")
1 on Bc(x; ")

and B(x; ") is the ball centered at x with radius ": Then (17)(18) show that
A0u is continuous on B(x; ") and, by 18),

(A0u")(x) = �u"(x)� f(x) = �u"(x) + 1 > 1

for " small enough. Thus

kf"kL1 = 1 < (A
0u")(x) �



A0u"

L1 = 

A0(��A0)�1f"

L1
and A(��A)�1 is not a contraction on L1(
;�).

To deal with the second claim, suppose that there exists a sequence
pn > 1 such that pn ! 1 and Apn(��Apn)�1 is a contraction on L

pn
+ (
;�)

for all n. Then

Apn(��Apn)�1f

Lpn � kfkLpn 8f 2 L1+(
;�) \ L1+ (
;�) 8n

and passing to the limit as pn ! 1 we get

A1(��A1)�1f

L1 � kfkL1 8f 2 L1+(
;�) \ L1+ (
;�)

which is not true by the �rst part of the proof since L1+(
;�)\L1+ (
;�) is
dense in L1+(
;�). Hence there exists some bp > 1 such that Ap(� � Ap)�1
is not a contraction on Lp+(
;�) for all p 2 [1; bp] : �
Remark 16 The smoothing conditions (17)(18) cannot be dropped a priori.
Indeed, the multiplication operateur by a measurable fonction ��(:)

Ap : ' 2 D(Tp)! ��' 2 Lp

(where �(:) > 0) with domain D(Ap) = f' 2 Lp; �' 2 Lpg generates a
positive contraction C0-semigroup

etAp' = e��(:)t'

having the peculiarity that

0 � etAp' � ' 8' 2 Lp+
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so
0 � '� etAp' � '

and therefore I � etAp is a contraction on Lp+ for all p 2 [1;1]. Similarly
Ap(��Ap)�1 is a contraction on Lp+ for all p 2 [1;1] since

Ap(��Ap)�1' =
��'
�+ �'

:

Remark 17 The smoothing conditions (17)(18) are satis�ed for instance
by generators of convolution C0-semigroups on Rn

Up(t) : ' 2 Lp(Rn)!
Z
Rn
'(x� y)�t(dy) 2 Lp(Rn) (1 � p � +1)

where �t are sub-probability measures such that

b�t(�) = e�tF (�)
and F (:) (the characteristic exponent) is a negative-de�nite function (see
e.g. [12]), provided that �t is absolutely continuous with respect to Lebesgue
measure on Rn, e.g. if e�tF (:) 2 L1(Rn) (for t > 0). This covers e.g. the
Laplacian, fractional di¤usions, relativistic Schrödinger operators etc.

We provide now an extension of Theorem 12 to general real ordered
Banach spaces X under a suitable assumption on the duality map. Let

� : R+ ! R+

be continuous, strictly increasing and such that �(0) = 0 and �(r) ! +1
as r ! +1: We say that

� : X ! X 0

is a duality map relative to the gauge � if

h�(x); xi = k�(x)kX0 kxk 8x 2 X

and
k�(x)kX0 = �(kxk) 8x 2 X:

We recall that a duality map relative to a gauge � always exists. Indeed, for
a vector x on the unit sphere of X; we set

�(x) = �(1)x�
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where x� is chosen (via Hahn-Banach theorem) in @N(x) where N(x) = kxk,
and

�(�x) = �(�)x� � 2 R+ kxk = 1:
Thus

h�(x); xi = �(kxk) kxk 8x 2 X: (19)

We note that
h�(x); Axi � 0 8x 2 D(A)

because

h�(x); Axi = h�(kxk x

kxk); Axi

= kxk �(kxk)h
�
x

kxk

��
; A

x

kxki � 0

since
�
x
kxk

��
2 @N( x

kxk) and A is dissipative. Finally (see e.g. [13] Proposi-

tion 2.1, p. 175)

h�(x)� �(y); x� yi > 0 8x; y 2 X:

Theorem 18 Let X be an ordered Banach space and let (U(t))t>0 be a
positive contraction C0-semigroup on X with generator A: Let there exist a
duality map � : X ! X 0 (relative to some gauge � : R+ ! R+) such that

h�(x)� �(y); x� yi > h�(x� y); x� yi 8x; y 2 X+: (20)

Then 

A(��A)�1x

 � kxk 8x 2 X+; 8� > 0: (21)

Proof:
In view of (19), our assumption (20) is equivalent to

h�(x)� �(y); x� yi > kx� yk �(kx� yk) 8x; y 2 X+: (22)

Given x 2 X+ and � > 0, let y 2 X+ be the solution to

�y �Ay = x:

Then

h�(�y)� �(x); �y � xi = h�(�y)� �(x); Ayi
= h�(�y); Ayi � h�(x); Ayi
= ��1h�(�y); A(�y)i � h�(x); Ayi
� �h�(x); Ayi = �h�(x); �y � xi
� k�(x)kX0 k�y � xk = �(kxk) k�y � xk
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so

��1
�
h�(�y)� �(x); �y � xi

k�y � xk

�
� kxk :

On the other hand, by (22)

h�(�y)� �(x); �y � xi
k�y � xk > �(k�y � xk)

or equivalently

��1
�
h�(�y)� �(x); �y � xi

k�y � xk

�
> k�y � xk

whence
k�y � xk � kxk

i.e. kAyk � kxk or 

A(��A)�1x

 � kxk
and we are done. �

Remark 19 Note that in Lp(�) (1 < p < 1) with the gauge �(r) = rp�1

we have �(f) = jf jp�2 f and then (20) amounts toZ
(fp�1 � gp�1)(f � g) > kf � gkp 8f; g 2 Lp+(�) (23)

which appears in the proof of M. Pierre�s result (Theorem 12) and follows
from (16) which holds for q := p � 1 > 1: Its noncommutative version (see
(32)) is also true [20].

Remark 20 (i) A helpful discussion with Hocine Mokhtar-Kharroubi al-
lowed to link (22) to a uniform convexity assumption on the positive cone of
the convex function

X+ 3 x! 	(x) := p(kxk)
in the sense

	(x)�	(y) > �(y)(x� y) + 1
2
kx� yk �(kx� yk) 8x; y 2 X+

where p(r) :=
R r
0 �(s)ds: Indeed, by reversing the role of x 2 X+ and y 2 X+

and adding we obtain (22): This assumption itself can be derived from the
following stronger one

	(�x+ (1� �)y) � �	(x) + (1� �)	(y)� �(1� �)
2

kx� yk �(kx� yk)
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for all x; y 2 X+; � 2 ]0; 1[ (see e.g. [25]).
(ii) We note that with the gauge �(r) = rp�1 and 1 < p < 2, Condition

(22) never holds. Indeed, according to ([25] Theorem 2) this would imply
that

X 3 x! kxkp

is uniformly convex (on the whole cone X+) but this is not true for p < 2
(see [25] Theorem 5). This corroborates why Theorem 12 is not true once
p < 2 (see Remark 27 and Theorem 15).

We denote by C the class of ordered Banach spaces X for which (5) is sat-
is�ed by all generators A of positive contraction semigroups onX: According
to Theorem 18, this class contains the class of ordered Banach spaces whose
duality map is uniformly monotone on the positive cone X+ in the sense
(20).

The question on relative operator bounds which motivated initially this
paper has a general positive answer within the class C.

Theorem 21 Let X 2 C be an ordered Banach space with a Riesz norm.
Let A be the generator of a positive C0-semigroup (U(t))t>0 such that, for
some real �; kU(t)k � e�t 8t > 0 and let S : D(A) ! X be positive (i.e.
S : D(A) \X+ ! X+) and A-bounded. Then the relative A-bound of S is
equal to

lim
�!1



S(��A)�1

L(X) :
Proof :
By assumption bA := A � � generates a positive contraction semigroup.

By assumption (or a consequence of Theorem 18) bA(�� bA)�1 is a contraction
on X+ 8� > 0: Finally, for � > �,

A(��A)�1 = bA h(�� �)� bAi�1 + �(��A)�1
yields

lim sup
�!+1

( sup
kxk�1; x2X+



A(��A)�1x

) � 1
i.e. (11) is satis�ed and consequently (10) holds. �

Furthermore, the property (5) characterizing the class C has consequences
on ergodic semigroups on X 2 C.
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Theorem 22 Let X be an ordered Banach space and let (U(t))t>0 be a
positive contraction C0-semigroup on X with a generator A satisfying (21)
(e.g. let (20) be satis�ed). If (U(t))t>0 is mean ergodic (e.g. if X is re�exive)
with ergodic projection P then I � P is a contraction on the positive cone,
i.e.

kx� Pxk � kxk 8x 2 X+:

Proof :
We recall that the mean ergodicity of (U(t))t>0 means that

Px := lim
t!+1

1

t

Z t

0
U(t)xdt

exists for all x 2 X: In this case, P is a projection on the kernel of A along
the closure of the range of A: On the other hand, the mean ergodicity of
(U(t))t>0 is equivalent to the existence of the strong limit

lim
�!0+

�(��A)�1x 8x 2 X

and we have
Px = lim

�!0+
�(��A)�1x 8x 2 X;

(see [6], Theorem 5.1, p. 123). By assumption (or according to Theorem
18), 

A(��A)�1x

 � kxk 8x 2 X+; 8� > 0:

It su¢ ces to note that

A(��A)�1x

 = 

x� �(��A)�1x


and to pass to the limit as �! 0: �

More generally, the positive projections with norm 1 on X 2 C enjoy a
remarkable property.

Theorem 23 Let X 2 C be an ordered Banach space. Then

kx� Cxk � kxk 8x 2 X+

for any positive projection C on X with norm 1:
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Proof:
We de�ne

U(t) : X ! X (t 2 R)

by
U(t)x = e�tx+ (1� e�t)Cx: (24)

It is elementary to check that (U(t))t2R is a continuous group which is
positive and contractive for t � 0: On the other hand

U(t)! C as t! +1

(in operator norm) and C is its ergodic projection. Finally Theorem 22 ends
the proof. �

Remark 24 Theorem 23 applies for instance in commutative or non-commutative
Lp spaces with p � 2 since (20) is satis�ed, (see Remark 19).

Remark 25 The semigroup (24) appears e.g. in [3] where C is a condi-
tional expectation in L2(�) where � is a probability measure.

We give now a very nice direct proof of Theorem 23 (under slightly
stronger assumptions) kindly communicated to the author by E. Ricard.

Theorem 26 (E. Ricard) Let X be an ordered Banach space such that the
duality map satis�es (20). If the norm kk is smooth (i.e. Gâteaux di¤eren-
tiable) on X+ � f0g then

kx� Cxk � kxk 8x 2 X+

for any positive projection C on X with norm 1:

Proof:
Let x 2 X: We consider the convex function

h : [0; 1] 3 t! kCx+ t(x� Cx)k :

Since
kCxk = kC(Cx+ t(x� Cx))k � kCx+ t(x� Cx)k

then h reaches its minimum at t = 0 and then

lim
t!0+

kCx+ t(x� Cx)k � kCxk
t

� 0:
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Let BX0 be the unit sphere of X 0 and let J : X �f0g ! 2BX0 be the duality
map

J(x) =
�
x0 2 X 0;



x0

 = 1; hx0; xi = kxk	 :
Let now x 2 X+ with Cx 6= 0 and x � Cx 6= 0: Since kk is smooth at Cx
then J(Cx) is a singleton and

lim
t!0+

kCx+ t(x� Cx)k � kCxk
t

= hJ(Cx); x� Cxi

(see e.g. [8] Corollary 1.5 (i), p. 5). Since J(Cx) is a singleton then

�(Cx)

�(kCxk) = J(Cx)

so
h�(Cx); x� Cxi � 0

or
h�(x)� �(Cx); x� Cxi � h�(x); x� Cxi:

Now (20) (or equivalently (22)) implies

kx� Cxk �(kx� Cxk) � h�(x)� �(Cx); x� Cxi
� h�(x); x� Cxi
� k�(x)kX0 kx� Cxk
= �(kxk) kx� Cxk

whence
�(kx� Cxk) � �(kxk)

and �nally
kx� Cxk � kxk 8x 2 X+

since � : R+ ! R+ is strictly increasing. �

Remark 27 (E. Ricard). Theorem 12 is not true in Lp(�) for 1 � p < 2:
Indeed, let s 2 (0; 1) and let 
 = f0; 1g be endowed with a probability measure
Ps where Ps (f0g) = s and Ps (f1g) = 1�s: Let C be the positive contractive
projection (on the constants)

Cf =

Z


f(!)dPs(!)
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and consider the positive ergodic semigroup (U(t))t>0 on Lp(
; Ps) where

U(t)f = e�tf + (1� e�t)Cf:

If (13) were true for any generator of positive contraction semigroup then
Theorem 22 would imply that

kf � Cfk � kfk 8f � 0:

In particular, the choice f(0) = 1
s and f(1) = 0 would imply

(1� s)p + (1� s)sp�1 � 1

or
1 + sp�1(1� ps2�p + s2�p"(s)� s) � 1

(where "(s)! 0 as s! 0) which is violated for small positive s if 1 � p < 2:

Remark 28 Let X be (say) a re�exive ordered Banach space whose dual
norm satis�es (20) and let N be its canonical half-norm. The following
statements follow directly from the results above and a duality argument
(Corollary 7 and Lemma 6).

(i) If (U(t))t>0 is a positive contraction C0-semigroup on X with gener-
ator A: Then

N
�
A(��A)�1x

�
� kxk 8x 2 X:

(ii) If C is a positive projection with norm 1 then

N (x� Cx) � kxk 8x 2 X:

M. Pierre pointed out to me that, for any positive linear contraction C
on L1(�), I � C is a contraction on the positive cone L1+ (�): This result
extends to general order-unit spaces.

Theorem 29 Let C be a linear positive contraction on an order-unit space
X. Then I � C is a contraction on the positive cone X+:

Proof:
We recall again that an ordered Banach space X is called an order-unit

space if IntX+ 6= ; and there exists e 2 IntX+ such that

kxk = inf f� > 0; ��e � x � �eg : (25)
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Note that (25) implies that kek = 1 and

�kxk e � x � kxk e 8x 2 X: (26)

Thus, for x 2 X+;
0 � Cx � kxkCe

and
�x � Cx� x � kxkCe� x

so that
�kxk e � Cx� x � kxkCe:

On the other hand, by (26)

Ce � kCek e � e:

Hence
�kxk e � Cx� x � kxk e

and then (25) implies

kCx� xk � kxk 8x 2 X+

and ends the proof. �
It is interesting to observe that this result, in turn, provides us with an

alternative "shorter" proof of Theorem 8.

Corollary 30 Let X be a base-norm ordered Banach space. If C 2 L(X)
is a positive contraction then

N (x� Cx) � kxk 8x 2 X:

Proof:
We know that X 0 is an order-unit space [15]. Let C 0 be the dual positive

contraction on X 0: It follows from Theorem 29 that I � C 0 is a contraction
on the positive cone X 0

+ and consequently a duality argument (Lemma 6)
ends the proof. �

Remark 31 Similarly, we could derive Theorem 29 from Theorem 8 by a
duality argument (Lemma 6) since the dual of an order-unit space is a base-
norm space [15].
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5 On conditional expectations

We end this paper with di¤erent remarks on "contractivity" properties of
I � E for classical or non-commutative conditional expectations E .

Remark 32 The following statements are direct consequences of Theorem
8, Corollary 11 and Theorem 29.

(1) Let (
;A; P ) be a probability space and let

EB : f 2 L1(
;A; P )! L1(
;B; P )

be the conditional expectation with respect to a �-subalgebra B � A. Then

f � EBf


L1

� kfkL1 8f 2 L1+ (
;A; P ) (27)

and 

(f � EBf)�


L1
� kfkL1 8f 2 L1(
;A; P ): (28)

(2) Let (X ; ') be a quantum probability space (i.e. X is a von Neumann
algebra and ' is a �-weakly continuous state on X ), let X0 � X be a sub-von
Neumann algebra and let

EX0 : X ! X0
be a conditional expectation (see e.g. [9] or [18] for the di¤erent de�nitions).
Then 

a� EX0a

X � kakX 8a 2 X+: (29)

Moreover, if EX0 is �-weakly continuous then the dual operator (EX0)0 leaves
invariant the predual space X� and its restriction to X� (the so-called quan-
tum reduction [17]) is such that


�a� (EX0)0a��




X�
� kakX� 8a 2 X�; (30)

(where �� refer to the unique Jordan decomposition of hermitian element
� = �+ � �� such that �� > 0 and k�kX� =



�+

X� + 

�+

X� [10]).
We don�t know if (27)(29) belong to the folklore on the subject. Their

dual versions (28)(30) seem to appear here for the �rst time.

Remark 33 It follows from Theorem 23 (or Theorem 26) and Remark 24
that 

f � EBf



Lp
� kfkLp 8f 2 Lp+(
;A; P ) (p > 2) (31)

and then (because of the self-adjointness of EB on L2(
;A; P )) Lemma 6
implies 

(f � EBf)�



Lp
� kfkLp 8f 2 Lp(
;A; P ) (1 � p < 2):
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We end this section with a comment on the non-commutative analogue
of (31). Let H be a Hilbert space and let X be the self-adjoint part of a
von Neumann algebra on H (i.e. a C�-subalgebra of B(H) which contains
I and is w�-closed). Let � be a �nite faithful trace normalized by �(I) = 1
and let Lp(X ; �) be the completion of X endowed with the norm kkp where

kxkpp := �(jxj
p) (p � 1)

where jxj =
p
x2: Let L1(X ; �) = X endowed with the operator norm on

H: Then we can identify (isometrically) the dual of Lp(X ; �) (with 1 � p <
1) to Lp�(X ; �) where p� is the conjugate exponent and the duality pairing
is given by

hx; yiLp;Lp� = �(xy):

Let X0 � X be a sub-von Neumann algebra. Then the conditional expecta-
tion

EX0 : X ! X0
extends to a positive contractive projection from Lp(X ; �) to Lp(X0; �) (1 �
p <1) still denoted by EX0 : We refer e.g. to [26] for the details.

Thus the non-commutative version of (23) (i.e. the condition (20) in
Lp+(X ; �)) amounts to

�
�
(xp�1 � yp�1)(x� y)

�
> �(jx� yjp) 8x; y 2 Lp+(X ; �) (32)

and has been proved by E. Ricard for p � 2 [20]. It follows from Theorem
23 that 

x� EX0x



Lp(X ;�) � kxkLp(X ;�) 8x 2 Lp+(X ; �) (p � 2);

see also [20].
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