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Abstract. This paper proposes the first implementation of an atomic storage tol-

erant to mobile Byzantine agents. Our implementation is designed for the round-

based synchronous model where the set of Byzantine nodes changes from round

to round. In this model we explore the feasibility of multi-writer multi-reader

atomic register prone to various mobile Byzantine behaviors. We prove upper

and lower bounds for solving the atomic storage in all the explored models. Our

results, significantly different from the static case, advocate for a deeper study of

the main building blocks of distributed computing while the system is prone to

mobile Byzantine failures.
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1 Introduction

Byzantine-tolerant storage is an active research area and this problem has been studied

in various settings and models (e.g.[3,15,10,11] to cite just few of them). Recently,

several works investigate this problem in the case where the system starts in an arbitrary

state. To cope with this situation stabilizing Byzantine tolerant algorithms have been

proposed in [1,5,7]. In all the above mentioned works the set of Byzantine processes is

assumed to be static. That is, the set of nodes exhibiting a Byzantine behavior does not

change during the computation.

In the current work we investigate a different fault model where Byzantines are

mobile. This model captures insiders attacks or viruses propagation. In the mobile

Byzantine fault model transient state corruptions, which can be abstracted as Byzan-

tine “agents,” can move through the network and corrupt the nodes they occupy. A node

occupied by a Byzantine agent will behave arbitrarily for a transient period of time.

Once the Byzantine agent leaves the node, the node eventually behaves correctly. How-

ever, the Byzantine agent may ”infect” another node that behaved correctly until the



infection. This models the situation where, as soon as a faulty node is repaired, another

one becomes compromised.

There are two main research directions in the mobile Byzantine area: Byzantines

with constrained mobility and Byzantines with unconstrained mobility. In both models

the only distributed problem studied so far is the agreement problem. Byzantines with

constraint mobility were studied by Buhrman et al. [6]. They consider that Byzantine

agents move from one node to another only when protocol messages are sent (similar

to how viruses would propagate).

In the case of unconstrained mobility the motion of Byzantine agents is not tight to

the message exchange. Several authors investigated the agreement problem in variants

of this model: [2,4,8,12,13,14]. Reischuk [13] investigate the stability/stationarity of

malicious agents for a given period of time. Ostrovsky and Yung [12] introduced the

notion of mobile virus and investigate an adversary that can inject and distribute faults.

Our work follows the lines opened by Garay [8]. Garay [8] and, more recently,

Banu et al. [2] and Sasaki et al. [14] or Bonnet et al. [4] consider, in theirs models,

that processes execute synchronous rounds composed of three phases: send, receive,

compute. Between two consecutive rounds, Byzantine agents can move from one host

to another, hence the set of faulty processes has a bounded size although its membership

can change from one round to the next.

In the current work we focus four of the above discussed models, all four consider a

synchronous round-based system : Garay [8], Buhrman et al. [6], Sasaki et al. [14] and

Bonnet et al. [4]. In the Garay’s model a process has the ability to detect its own infec-

tion after the Byzantine agent left it. More precisely, during the first round following the

leave of the Byzantine agent, a process enters a state, called cured, during which it can

take preventive actions to avoid sending messages that are based on a corrupted state.

Garay [8] proposes in this model an algorithm that solves Mobile Byzantine Agreement

provided that n > 6t (dropped later to n > 4f in [2]).

Buhrman et al. [6] propose a model where the motion of Byzantine agents is tight

to the message exchange. In this model they prove a tight bound for Mobile Byzantine

Agreement (n > 3t, where t is the maximal number of simultaneously faulty processes)

and propose a time optimal protocol that matches this bound.

Bonnet et al. [4] investigated the same problem in a model where processes do

not have the ability to detect when Byzantine agents move. However, differently from

Sasaki et al. [14], cured processes have control on the messages they send. This subtle

difference on the power of Byzantine agents has an impact on the bounds for solving

the agreement. If in the Sasaki’s model the bound on solving agreement is n > 6f in

Bonnet’s model it is n > 5f and this bound is proven tight.

Our contribution. As far as we known, our construction is the first that builds a dis-

tributed MWMR atomic memory on top of synchronous round-based servers, which

communicate by message-passing, and where some of them can exhibit a Byzantine

behavior induced by a mobile malicious agent. We prove first upper bounds on the

number of faulty processes for four of the mobile Byzantine models cited above: Garay

[8], Buhrman et al. [6], Sasaki et al. [14] and Bonnet et al. [4]. Then, we propose tight

implementations of a atomic register in each of these models altogether with their cor-

rectness proofs. The first study focuses the model of Garay et al. [8], where nodes can



detect that they were previously infected by a Byzantine agent and remain silent until

their state is cleaned. In this model, we implement the atomic register provided that in

each round the number of Byzantine nodes (nodes occupied by a Byzantine agent), f ,

is less than n/3 where n is the number of correct nodes in that round. The second study

concerns the models of Sasaki et al. [14] and Bonnet et al. [4], where infected nodes

cannot locally detect the presence or the absence of a Byzantine agent and hence can

send/compute based on a corrupted state even thought the mobile agent is not anymore

located at that node. In both these models we implement the atomic register provided

that in each round the number of Byzantine nodes f is less than n/4 where n is the num-

ber of correct nodes in the round. Note that differently from the case of the agreement

problem, these models have the same power in the case of atomic memory implemen-

tation. The last studied model is Buhrman et al. [6] where Byzantine agents move with

the messages. In this model, we provide an implementation of the atomic memory pro-

vided that f is less than n/2. Note that all the above bounds are also lower bounds for

the considered models.

Paper roadmap. The paper is organized as follows. In Section 2 we define the model

of the system and the problem of MWMR atomic memory. In Section 3 we prove upper

bounds on the faulty processes necessary to implement MWMR atomic memory in

the following four mobile Byzantine models: Garay [8], Buhrman et al. [6], Sasaki et

al. [14] and Bonnet et al. [4]. In Section 4 we present a generic tight algorithm that

implements MWMR atomic memory parametrized function on the considered mobile

Byzantine model. The correctness of the generic algorithm is proved in Section 4.2.

Finally, Section 5 concludes the paper and discuss some open research directions.

2 Model and Problem Definition

2.1 System Model

We consider a distributed system composed of an arbitrary large set of clients C and a

set of n servers S = {s1, s2 . . . sn}. Each process in the distributed system (i.e., both

servers and clients) is identified trough a unique integer identifier. Servers run a dis-

tributed protocol implementing a shared memory abstraction.

Communication model and timing assumptions. Processes communicate trough mes-

sage passing. In particular, we assume that (i) each client ci ∈ C can communicate

with every server trough a broadcast primitive, (ii) servers can communicate among

them trough a broadcast primitive and (iii) servers can communicate with clients trough

point-to-point channels. We assume that communications are authenticated (i.e., given

a message m, the identity of its sender cannot be forged) and reliable (i.e. messages are

not created, lost or duplicated).

The system evolves in synchronous rounds. Every round is divided in three phases:

(i) send where processes send all the messages for the current round, (ii) receive where

processes receive all the messages sent at the beginning of the current round and (iii)

computation where processes process received messages and prepare those that will be

sent in the next round. Processes have access to the current round number via a local



variable that we usually denote by r.

Failure model. We assume that an arbitrary number of clients may crash while servers

are affected by mobile Byzantine failures (MBF) [4,8,6,14]. Informally, in the mobile

Byzantine failure model, faults are represented by powerful computationally unbounded

agents that move arbitrarily from a server to another. When the agent is on the server, it

can corrupt its local variables, force it to send arbitrary messages (potentially different

from process to process) etc... However, the agent cannot corrupt the identity of the

server. We assume that, in each round, at most f servers can be affected by a mobile

Byzantine failure. When an agent occupies a server si we will say that si is faulty. When

the agent leaves si it is said to be cured until it does not restore the correct internal state.

If a server is neither faulty nor cured then it is said to be correct. We assume similar to

[4,8,14] that each server has a tamper-proof memory where it safely stores the correct

algorithm code. When the agent leaves a server si (i.e., it becomes cured), it recovers

the correct algorithm code from the tamper-proof memory. Concerning the assumptions

on agent movements and the server awareness on its cured state, different models have

been defined. In the paper we will consider all the variants of mobile Byzantine failures

[4,8,6,14]:

– (M1) Garay’s model [8]. In this model, agents can move arbitrarily from a server

to another at the beginning of each round (i.e. before the send phase starts). When a

server is in the cured state it is aware of its condition and thus can remain silent to

prevent the dissemination of wrong information until its code has been completely

restored and its state is corrected.

– (M2) Bonnet et al.’s model [4] and (M3) Sasaki et al.’s model [14]. As in the previ-

ous model, agents can move arbitrarily from a server to another at the beginning of

each round (i.e. before the send phase starts). Differently from the Garay’s model,

in both models it is assumed that servers do not know if they are correct or cured

when the Byzantine agent moved. The main difference between these two models

is that in the [14] model a cured process still acts as a Byzantine one extra round.

– (M4) Buhrman’s model [6]. Differently from the previous models, agents move

together with the message (i.e., with the send or broadcast operation). However,

when a server is in the cured state it is aware of that.

2.2 Atomic Registers

A register is a shared variable accessed by a set of processes, i.e. clients, through two

operations, namely read() and write(). Informally, the write() operation updates the

value stored in the shared variable while the read() obtains the value contained in the

variable (i.e. the last written value). Every operation issued on a register is, generally,

not instantaneous and it can be characterized by two events occurring at its boundary:

an invocation event and a reply event. These events occur at two time instants (invoca-

tion time and reply time) according to the fictional global time.

An operation op is complete if both the invocation event and the reply event occur (i.e.

the process executing the operation does not crash between the invocation and the re-

ply). Contrary, an operation op is said to be failed if it is invoked by a process that



crashes before the reply event occurs. According to these time instants, it is possible to

state when two operations are concurrent with respect to the real time execution. For

ease of presentation we assume the existence of a fictional global clock and the invoca-

tion time and response time of every operation are defined with respect to this fictional

clock.

Given two operations op and op′, and their invocation event and reply event times

(tB(op) and tB(op
′)) and return times (tE(op) and tE(op

′)), we say that op precedes

op′ (op ≺ op′) iff tE(op) < tB(op
′). If op does not precede op′ and op′ does not pre-

cede op, then op and op′ are concurrent (op||op′). Given a write(v) operation, the value

v is said to be written when the operation is complete.

We assume that locally any client never performs read() and write() operation concur-

rently. We also assume that initially the register stores a default value ⊥ written by a

fictional write(⊥) operation happening instantaneously at round r0. In case of concur-

rency while accessing the shared variable, the meaning of last written value becomes

ambiguous. Depending on the semantics of the operations, three types of register have

been defined by Lamport [9]: safe, regular and atomic. In this paper, we will consider

a Multi-Writer/Multi-Reader (MWMR) atomic register which is specified as follows:

– Termination: If a correct client invokes an operation, it eventually returns from that

operation.

– Validity: A read operation returns the last value written before its invocation, or a

value written by a write operation concurrent with it.

– Ordering: There exists a total order S of read() and write() operations such (i) if

op ≺ op′ then op appears before op′ in S and (ii) any read() operation returns the

value v written by the last write() preceding it in S.

3 Upper Bounds on the number of Faults

The next theorems provide upper bounds on the number of faulty processes for the

implementation of MWMR Atomic Register in the models of mobile Byzantine faults

[4,8,6,14].

Theorem 1. If n ≤ 3f , there exists no algorithm that implements a MWMR Atomic

Register in the Garay’s model [8].

Proof Consider that each read() operation takes at least one round to be executed and,

according to the Garay’s model, at the beginning of each round servers are partitioned

in three sets: (i) faulty, (ii) cured and (iii) correct. Due to the assumption that we have f
faulty servers in each round, we have that, cured processes, in the worse case, are f as

well (i.e., the f servers that were faulty in the previous round). Thus, considering that

n is at most 3f , we follows that, in the worst case, at most f processes are correct. As a

consequence, considering that cured servers are silent (they do not send any message),

the reader will gather at most 2f values and it will be not able to distinguish those that

come from correct servers from those coming from faulty one. 2Theorem 1

Theorem 2. If n ≤ 4f , there exists no algorithm that implements a MWMR Atomic

Register in the Sasaki’s model [14].



Proof The claim simply follows by considering that each read() operation takes at least

one round to be executed and, according to the Sasaki’s model, at the beginning of each

round servers are partitioned in three sets: (i) faulty, (ii) cured and (iii) correct. Due to

the assumption that at most f faulty servers are in each round, it follows that, cured

processes, in the worst case, are f (i.e., the f servers that was faulty in the previous

round). Thus, considering that n is at most 4f , we have that, in the worst case, at most

2f processes are correct. As a consequence, considering that cured servers act like

faulty ones as well, the reader will get back at most 4f values and it will be not able to

distinguish which ones come from correct servers (i.e., 2f same values v) from those

coming from faulty one (i.e., 2f same values v′). 2Theorem 2

Theorem 3. If n ≤ 4f , there exists no algorithm that implements a MWMR Atomic

Register in the Bonnet’s model [4].

Proof The claim simply follows by considering that the Bonnet’s model is a particular

case of Sasaki model, in which cured servers act as less powerful faulty servers, forced

to send the same message to all. The same reasoning as in the proof of Theorem 2 is

applied. 2Theorem 3

Theorem 4. If n ≤ 2f there exists no algorithm that implements a MWMR Atomic

Register in the Burhman’s model [6].

Proof The proof is similar to the static case [3]. Let us suppose by contradiction that

such algorithm exists and suppose without restraining the generality that n = 2f . Let

v be the value written by the last completed write() operation and let us assume that

no other operations are concurrent with the read(). In this settings, when the client gets

values from servers, it will receive at most f same value v from correct servers and f
same values v′, with v′ 6= v from faulty servers. As a consequence, the reader has no

way to distinguish between the two values and we have a contradiction.

2Theorem 4

4 Tight MWMR Atomic Register Implementation

In this section we present a generic algorithm AAreg (Fig.2-1) that implements the

MWMR Atomic Register in all the above presented models. In order to abstract the

knowledge a server has on its state (i.e. cured or correct), we introduce the cured state

oracle. When invoked via report cured state() function it returns true to cured servers

and false to others in the Garay [8] and Buhrman et al. [6]. In this case the oracle is said

enabled. cured state oracle returns always false in Sasaki et al. [14] or Bonnet et al. [4]

models. In this case the oracle is said disabled.

In the following we propose a generic MWMR atomic register algorithm that is

tight for all the above models by just tuning the following three parameters: α, β and

the cured state oracle status. Let denote the number of servers with respect to faulty

servers by n > αf , where α ∈ {2, 3, 4} following the mobile Byzantine model. Let s



be the minimal number of required occurrences of the same value in order to chose it,

s = n − βf . Basically s has to be greater than the number of possible wrong values

that faulty and cured servers can return, which is βf , where β ∈ {1, 2} depending on

the model adopted for the cured servers.

Table 1 summarizes the above in a synthetic way.

Table 1. AAreg parameters for the four different Mobile Byzantine Failure models.

Failure model Mid α β Oracle

Garay [8] M1 3 2 enabled

Bonnet et al. [4] M2 4 2 disabled

Sasaki et al. [14] M3 4 2 disabled

Burhman et al. [6] M4 2 1 enabled

4.1 AAreg Algorithm description

The presented algorithm exploits the round based nature of the system model. Any

write() operation lasts one round, during which a client sends the value and all servers

deliver it in the same round. Due to the synchrony assumptions no acknowledgement

messages are required and the operation can terminate. If more than one write() oper-

ation falls in the same round then any server receives the same set of values. The one

coming from the client with the highest identifier is stored, thus any server chose the

same value. The read() operation lasts two rounds. One round to send a read request to

servers and the subsequent one to gather replies. The value which occurrence is at least

the threshold n− βf is returned.

Along with the classical read() and write(v) operations performed by clients, for main-

tenance purpose in each round servers echo each other their value. Thus even though

at each round at most f servers may lose the value (and no write() operation occurs),

thanks to the echoed values at the end of each round cured servers are able to became

correct, having the same correct servers value.

Client local variables. Each client ci manages the following variables:

− to sendi: a set in which are stored messages to be sent in the next send phase and

emptied just after.

− readingi and writingi: two boolean variables, only the one corresponding to the

current operation is set to true.

− op starti: a variable in which is stored the current round when a new operation starts

and set to ⊥ when it ends.

− rcvi is a set variable (emptied at the beginning of each round), where ci stores mes-

sages received during the current round r.

− repliesi: a set in which are stored messages delivered after a read request.

Server local variables. Each server sj manages the following variables:

− valuei: the maintained value.



At the beginning of each round r

(01) echo valsi ← ∅;
(02) current writesi ← ∅;
(03) curedi ← report cured state();

———————————————–

Send Phase of round r
(04) if (¬curedi)
(05) then broadcast ECHO(val, i); % maintenance

(06) for each j ∈ current readsi do

(07) send REPLY(valuei ) to cj ; % reply to read() operations started in round r − 1
(08) endFor

(09) endif

(10) current readsi ← ∅;
———————————————–

Receive Phase of round r

(11) for each ECHO(v, j) message in rcvi do

(12) echo valsi ← echo valsi ∪ v;

(13) endFor

(14) for each WRITE(v, j) message in rcvi do

(15) current writesi ← current writesi ∪< v, i >;

(16) endFor

(17) for each READ(j) message in rcvi do

(18) current readsi ← current readsi ∪ {j};
———————————————–

Computation Phase of round r

(19) if (current writesi 6= ∅)
(20) then let v such that ∃ < v, j >∈ current writesi ∧ j = maxk(< −, k >);

(21) valuei ← v;

(22) else if (∃v ∈ echo valsi |#occurrence(v) ≥ n − βf)
(23) then valuei ← v;

(24) endif

(25) endif

Fig. 1. AAreg implementation: code executed by any server si.

− rcvi is a set variable (emptied at the beginning of each round), where sj stores mes-

sages received during the current round r.

− echo valsj : a set (emptied at the beginning of each round), in which are stored the

echoed values by servers in each round.

− current writesj : a set (emptied at the beginning of each round), in which are stored

values that clients want to write during the current round.

− currend readsj : a set in which are stored the identifiers of clients whose requested

for a read. It is emptied after the reply to such clients.

− curedj : boolean variable set through the report cured state() event. It is set to true

by the cured state oracle (if enabled) when sj is in a cured state. Otherwise it is always

false.

Server maintenance. For maintenance purposes, at the beginning of each round, servers

exchange their stored value valuej allowing cured servers to became correct at the end

of it. Thus, during the send phase of each round, servers broadcast the ECHO(val, i)
message (Fig.1, line 05). If not new values have been written in the current round (the

condition at line 19 is not verified), during the computation phase (Fig.1, line 22) they

chose the one with at least n − βf occurrences. Note that in the case in which servers

are aware of being in a cured state (Fig.1, line 04) then they avoid to send their valuej .



operation read():

(01) to sendi ← to sendi ∪ { READ(i)};
(02) readingi ← true;

———————————————–

operation write(v)
(03) to sendi ← to sendi ∪ { WRITE(v, i)};
(04) writingi ← true;

———————————————–

Send Phase of round r
(05) for each M() ∈ to sendi do broadcast M();

(06) if (op starti == ⊥)

(07) then op starti ← r;

(08) endIf

(09) to sendi ← ∅;
———————————————–

Receive Phase of round r
(10) for each REPLY(v, j) message in rcvi do

(11) repliesi ← repliesi ∪< v, j >;

(12) endFor

———————————————–

Computation Phase of round r
(13) if (writingi ∧ op starti = r)
(14) then writingi ← false;

(15) op starti ← ⊥;

(16) return write confirmation;

(17) endif

(18) if (readingi ∧ op starti = r − 1)
(19) then readingi ← false;

(20) op starti ← ⊥;

(21) let v such that ∃ < v, j >∈ repliesi ∧#occurrence(v) ≥ n− βf ;

(22) repliesi ← ∅;
(23) return v;

(24) endif

Fig. 2. AAreg implementation: code executed by any client ci.

Write operation. When a client ci wants to write a value v, it stores in to sendi a mes-

sage WRITE(v, i) and sets the variable writingi to true (Fig.2, line 03-04). At the

subsequent send phase, ci broadcasts WRITE(v, i) to all servers, stores the current

round in op starti and empties the to sendi set (Fig.2, line 05-09). At the server side

this message will be delivered within the same round during the receive phase and any

correct and cured server sj stores it in current writesj set (Fig.1, line 14-15). At

the end of the round, during the computation phase, if current writesj is not empty

then the value associated to the highest client identifier is stored in valuej (Fig. 1, line

19-21).

Back to the client side, during its computation phase if writingi is true and op starti
is equal to the current round r, this means that during the current round ci performed a

write() operation. Since it lasts just one round then it sets writingi to false, op starti
to ⊥ and returns the write conformation to the application layer (Fig. 2, line 13-17).

Read operation. When a client ci wants to read at round r then it stores in to sendi
a message READ(i) and sets the variable readingi to true (Fig.2, line 01-02). At

the subsequent send phase ci broadcasts a READ(i) message to all servers, stores the



current round r in op starti and empties the to sendi set (Fig.2, line 05-09). Note, the

check at line 06 is necessary to avoid that op starti would be updated at each round.

This would not be an issue for the write() operation which lasts only one round, but in

the case of read() operation it would cause the loss of information about the starting

round. At server side, the READ(i) message will be delivered within the same round

r and any correct and cured server sj stores the client identifier in the current readsj
set (Fig. 1, line 17-18).

At the start of the next round r + 1, if server sj is not cured or not aware of that

then it sends the message REPLY (valuej) to all the clients in current readsj set,

which is emptied at the end of the send phase (Fig. 1, line 06-10). At client side all

the REPLY (valuej) are delivered and stored in the set repliesi during the receive

phase (Fig.2,line 10-12). Now during the computation phase the readingi variable is

true and op starti is storing the previous round number. Thus readingi is set to false,

op starti is set to ⊥ and the value in repliesi which occurs more than n− βf times is

returned to the application layer and repliesi is emptied (Fig. 2, line 18-24).

4.2 Correctness Proofs

Lemma 1. Let αMi and βMi be the parameters for each of the 4 failure models Mi

as reported in Table 1 and used by the algorithm in Fig. 1-2. Let n > αMif for each

failure model Mi considered. At the end of each round, at least n − f correct servers

store the same value v in their valuei local variable.

Proof Each non-faulty server updates its valuei local variable at the end of each round

r (i) in line 21 i.e., if there exists at least a pair in the current writesi local variable,

or (ii) in line 23 i.e., current writesi is empty and there exist at least n − βf same

values in echo valsi.
First we prove that one of the two cases always happens and then we prove that the

number of non-faulty servers storing the same values v is n− f . The current writesi
local variable is initialized by any non-faulty server si to ∅ at the beginning of each

round r (cfr. line 02) and it is updated when a WRITE() message is received by si
1.

Thus, case (i) corresponds to a scenario where at least a write() operation is executed

in round r and case (ii) corresponds to a scenario where no write() is running.

– Case (i): current writesi 6= ∅. In this case the claim simply follows by consid-

ering that (i) writer clients broadcast a WRITE(v, j) message in the send phase of

round r, (ii) clients are correct so the same set of values is delivered to all servers

that will apply a deterministic function to select the value v and (iii) at most f
servers are faulty and may skip the update of their valuei variable.

– Case (ii): current writesi = ∅ and line 22 is true. In this case, the valuei vari-

able is updated according to the values stored in echo valsi. Such variable is emp-

tied by every non-faulty process at the beginning of each round (cfr. line 01) and is

1 Recall that such WRITE() message is sent by the writer client in the send phase of the first

round starting after the write() invocation and it is delivered by any non-faulty server in the

same round.



filled in when an ECHO() message is delivered. Such message is sent at least by any

server, believing it is correct, at the beginning of each round. Let r′ be the round

in which the last write(v) operation terminated. Note that, due to above hypoth-

esis, a write() operation always exists as we assume a fictional write happening

instantaneously at round r0. Without loss of generality, let us consider the round

r = r′ + 1. Due to case (i), at the end of r′, at least n− f non-faulty servers store

the same value v in their local variable valuei. Thus, at the beginning of r′ + 1, at

least n − f − x correct servers will send an ECHO(v, j) message, where x is the

number of non-faulty processes that become faulty while passing from r′ to r (i.e.

x = f for all the models but Burhman’s one where x = 0 as faulty processes move

during the send phase and not at the beginning of the round). It follows that the

condition in line 22 is verified if and only if n − f − x ≥ n − βf that is true in

any model. Therefore, considering that at the end of round r non-faulty servers are

exactly n− f , we have that n− f processes will execute this update. Iterating the

reasoning for any r the claim follows.

2Lemma 1

Lemma 2. Let us consider the algorithm in Fig. 1-2. If a correct client invokes a write()
operation, it eventually returns from that operation.

Proof The proof simply follows by considering that, for a write() operation invoked

at some round r, the write confirmation is generated by the client at the end of the

same round just checking the value of the variables initialized at the beginning of r.

2Lemma 2

Lemma 3. Let αMi and βMi be the parameters for each of the 4 failure models Mi

as reported in Table 1 and used by the algorithm in Fig. 1-2. Let n > αMif for each

failure model Mi considered. If a correct client invokes a read() operation, it eventually

returns from that operation.

Proof Let cj be a client invoking a read() operation at some time t. When this happens,

cj flags that a read() operation is starting and prepares a READ() message to send at the

beginning of the next send phase at round r. When cj sends such READ() message, it

updates its op startj variable to r and it returns from the read() operation at round r+1
if and only if it has at least n − βf occurrences of the same value in the repliesj set.

Such repliesj is initially empty (it has been emptied at the end of the previous read()
operation) and it is filled in when cj receives a REPLY() message (line 11) that is sent

at least by non-faulty servers when they receive a READ() message.

In particular, the READ() message sent by cj will be delivered by servers during the

receiving phase of round r. When this happens, any non-faulty server will execute line

18 in Figure 1 and will store the identifier of cj in order to send a reply at the beginning

of the next round r + 1. Due to Lemma 1, at the end of round r, at least n − f non-

faulty servers will store the same value v. Let us note that, during the send phase of

round r + 1, x of such servers may become faulty. Thus, cj will find a value satisfying

the condition in line 21 if and only if n− f − x ≥ n− βf . Considering that x ≤ f for



all models but Burhman’s one where x = 0, we have that the condition is always true

and the claim follows.

2Lemma 3

Theorem 5 (Termination). If a correct client invokes an operation, it eventually re-

turns from that operation.

Proof It follows direclty from Lemma 2 and Lemma 3. 2Theorem 5

Theorem 6 (Validity). Let αMi and βMi be the parameters for each of the 4 failure

models Mi as reported in Table 1 and used by the algorithm in Fig. 1-2. Let n > αMif
for each failure model, Mi, considered. Any read() operation returns the last value

written before its invocation, or a value written by a concurrent write() operation.

Proof Without loss of generality, let us consider the first write(v) operation opW and

the first read() operation opR. Three cases may happen: (i) opR ≺ opW , (ii) opW ≺
opR and (iii) opW || opR. Let us note that opr spans over two rounds: in the first one it

sends the READ() message and in the second one it collects replies.

– Case (i): opR ≺ opW. This case follows directly from Lemma 1 considering that

(i) at the end of the first round of opr (i.e., r1) at least n− f correct processes have

the same initial value v = ⊥, (ii) while moving to the second round of opR, at most

x processes can get faulty (with x ≤ f for models M1-M3 and x = 0 for M4), (iii)

n− f − x ≥ n− βMif (i.e. βMif ≥ f + x) for each model (i.e. there will always

be enough replies from correct servers to select a value) and (iv) n − βMif > f
(i.e. (αMi−βMi)f+1 > f ) for each model. It follows that faulty processes cannot

force the client to select a wrong value.

– Case (ii): opW ≺ opR. Let r be the round at which opW terminates and let r + 1
be the round at which opR is invoked.

Due to Lemma 1, at round r + 2 there are enough occurrences (at least n − βf )

of the last written value v. So, applying the same reasoning of case (i) the claim

follows.

– Case (iii): opW || opR. Let us note that a read() operation spans two rounds, i.e.,

the round of the request rreq and the round of the reply rreply . So, let us consider

them separately.

• Case (iii-a): opW is concurrent with opR during rreq . In that case the value v
is delivered to correct server at the end of rreq . Due to Lemma 1, at the end of

rreq at least n − f correct servers store the new written value v, we fall down

into case (ii) and the claim follows.

• Case (iii-b): opW is concurrent with opR during rreplay . Since, in every round,

the send phase is executed before the receive phase, it follows that at least all

the correct servers will reply with the value written before the invocation of the

write() operation, we fall down into case (i) and the claim follows.



2Theorem 6

Theorem 7 (Ordering). There exists a total order S of read() and write() operations

such (i) if op ≺ op′ then op appears before op′ in S and (ii) any read() operation

returns the value v written by the last write() preceding it in S.

Proof Consider two read() operations, opR1 and opR2 returning respectively v1 and

v2 (with v1 6= v2) such that opR1 ≺ opR2. Note that if opR1 returns v1, it follows that

there exists a write(v1) operation, opW (v1) concurrent or preceding it in S. Suppose by

contradiction that opW (v2) ≺ opW (v1). Recall that each read() operation spans over two

rounds and call the first rreq and the second rreply . Since opR1 returns v1 this means

that v1 has been stored by servers at latest during rreq of opR1; let us call it rR1req . The

same holds for opR2: v2 has been written at most during rR2req of opR2. Since opR2

follows opR1 then rR1req < rR2req . However, which is a contradiction to respect the

assumption of rv1 > rv2 (a general scenario is depicted in Fig.3). 2Lemma 7

r

rv1

rR1req rR1reply

opR1

opW (v1)

rv2

rR2req rR2reply

opR2

opW (v2)

Fig. 3. A general scenario which show how two subsequent read() operations opR1 and

opR2 can not return respectively v1 and v2 if v2 has been written before v1.

Theorem 8. Let AAreg be the algorithm in Fig. 1-2 and let n > αf . If α = 3 and

β = 2 then AAreg implements a MWMR Atomic register in the Garay’s model.

Proof It follows directly from Theorem 5, 6 and 7. 2Theorem 8

Theorem 9. Let AAreg be the algorithm in Fig. 1-2 and let n > αf . If α = 4 and

β = 2 then AAreg implements a MWMR Atomic register in the Bonnet’s model.

Proof It follows directly from Theorem 5, 6 and 7. 2Theorem 9

Theorem 10. Let AAreg be the algorithm in Fig. 1-2 and let n > αf . If α = 4 and

β = 2 then AAreg implements a MWMR Atomic register in the Sasaki’s model.

Proof It follows directly from Theorem 5, 6 and 7. 2Theorem 10

Theorem 11. Let AAreg be the algorithm in Fig. 1-2 and let n > αf . If α = 2 and

β = 1 then AAreg implements a MWMR Atomic register in the Burhman’s model.

Proof It follows directly from Theorem 5, 6 and 7. 2Theorem 11



5 Conclusion

This paper addressed the first implementation of a multi-writer multi-reader atomic reg-

ister tolerant to mobile Byzantine agents altogether with upper bounds on the number

of faulty processes. We investigate four models of mobile Byzantines in round-based

synchronous systems: the model of Garay et al. [8], where nodes have the capability to

detect an infection and clean their state after the Byzantine agent leaves the node; the

models of Sasaki et al. [14] and Bonnet et al. [4], where infected nodes may execute

their code with a corrupted state even though the mobile agent is not anymore located

at the node and finally, the model of Buhrman et al. [6] where Byzantines move are

tight to messages and move during the send phase. As for the case of the agreement

problem (benchmark already investigated in all these models) our study shows that the

atomic registers cannot be implemented using the static bounds on the number of faulty

processes. That is, we prove that in the Garay’s model atomic registers can be imple-

mented provided that in each round the number of Byzantine nodes (nodes occupied

by a Byzantine agent), f , is less than n/3 where n is the number of correct nodes in

that round while in the Bonnet’s and Sasaki’s models the number of Byzantine nodes

f is less than n/4. Finally, for the case of Buhrman’s model we show that f should be

less than n/2. Our study can be extended in several directions (here after we mention

only two of them). First, an interesting issue is to investigate the storage problem in the

round-free synchronous and furthermore in the asynchronous settings. We conjecture

that in these models the bounds on the faulty processes are different from the round-

base case. Secondly, our study advocates in favor of revisiting other building blocks of

distributed computing in these settings (e.g. quorums, k-set agreement, synchronization

etc). In all these cases we conjecture lower and upper bounds different from the static

case.
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