Silvia Bonomi
email: bonomi@dis.uniroma1.it

Antonella Del Pozzo
email: delpozzo@dis.uniroma1.it

Maria Potop-Butucaru
email: maria.potop-butucaru@lip6.fr

Tight Mobile Byzantine Tolerant Atomic Storage

Keywords: Atomic Storage, Byzantine mobile agents, Round-based Computation

This paper proposes the first implementation of an atomic storage tolerant to mobile Byzantine agents. Our implementation is designed for the roundbased synchronous model where the set of Byzantine nodes changes from round to round. In this model we explore the feasibility of multi-writer multi-reader atomic register prone to various mobile Byzantine behaviors. We prove upper and lower bounds for solving the atomic storage in all the explored models. Our results, significantly different from the static case, advocate for a deeper study of the main building blocks of distributed computing while the system is prone to mobile Byzantine failures.

Introduction

Byzantine-tolerant storage is an active research area and this problem has been studied in various settings and models (e.g. [START_REF] Bazzi | Synchronous byzantine quorum systems[END_REF][START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: A tutorial[END_REF][START_REF] Malkhi | Byzantine quorum systems[END_REF][START_REF] Martin | Minimal byzantine storage[END_REF] to cite just few of them). Recently, several works investigate this problem in the case where the system starts in an arbitrary state. To cope with this situation stabilizing Byzantine tolerant algorithms have been proposed in [START_REF] Alon | Practically stabilizing SWMR atomic memory in message-passing systems[END_REF][START_REF] Bonomi | Byzantine tolerant storage[END_REF][START_REF] Dolev | Crash resilient and pseudostabilizing atomic registers[END_REF]. In all the above mentioned works the set of Byzantine processes is assumed to be static. That is, the set of nodes exhibiting a Byzantine behavior does not change during the computation.

In the current work we investigate a different fault model where Byzantines are mobile. This model captures insiders attacks or viruses propagation. In the mobile Byzantine fault model transient state corruptions, which can be abstracted as Byzantine "agents," can move through the network and corrupt the nodes they occupy. A node occupied by a Byzantine agent will behave arbitrarily for a transient period of time. Once the Byzantine agent leaves the node, the node eventually behaves correctly. However, the Byzantine agent may "infect" another node that behaved correctly until the infection. This models the situation where, as soon as a faulty node is repaired, another one becomes compromised.

There are two main research directions in the mobile Byzantine area: Byzantines with constrained mobility and Byzantines with unconstrained mobility. In both models the only distributed problem studied so far is the agreement problem. Byzantines with constraint mobility were studied by Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF]. They consider that Byzantine agents move from one node to another only when protocol messages are sent (similar to how viruses would propagate).

In the case of unconstrained mobility the motion of Byzantine agents is not tight to the message exchange. Several authors investigated the agreement problem in variants of this model: [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF][START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF]. Reischuk [START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF] investigate the stability/stationarity of malicious agents for a given period of time. Ostrovsky and Yung [START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF] introduced the notion of mobile virus and investigate an adversary that can inject and distribute faults.

Our work follows the lines opened by Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF]. Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF] and, more recently, Banu et al. [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF] and Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] or Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF] consider, in theirs models, that processes execute synchronous rounds composed of three phases: send, receive, compute. Between two consecutive rounds, Byzantine agents can move from one host to another, hence the set of faulty processes has a bounded size although its membership can change from one round to the next.

In the current work we focus four of the above discussed models, all four consider a synchronous round-based system : Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF], Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF], Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] and Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF]. In the Garay's model a process has the ability to detect its own infection after the Byzantine agent left it. More precisely, during the first round following the leave of the Byzantine agent, a process enters a state, called cured, during which it can take preventive actions to avoid sending messages that are based on a corrupted state. Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF] proposes in this model an algorithm that solves Mobile Byzantine Agreement provided that n > 6t (dropped later to n > 4f in [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF]).

Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF] propose a model where the motion of Byzantine agents is tight to the message exchange. In this model they prove a tight bound for Mobile Byzantine Agreement (n > 3t, where t is the maximal number of simultaneously faulty processes) and propose a time optimal protocol that matches this bound.

Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF] investigated the same problem in a model where processes do not have the ability to detect when Byzantine agents move. However, differently from Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF], cured processes have control on the messages they send. This subtle difference on the power of Byzantine agents has an impact on the bounds for solving the agreement. If in the Sasaki's model the bound on solving agreement is n > 6f in Bonnet's model it is n > 5f and this bound is proven tight.

Our contribution.

As far as we known, our construction is the first that builds a distributed MWMR atomic memory on top of synchronous round-based servers, which communicate by message-passing, and where some of them can exhibit a Byzantine behavior induced by a mobile malicious agent. We prove first upper bounds on the number of faulty processes for four of the mobile Byzantine models cited above: Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF], Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF], Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] and Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF]. Then, we propose tight implementations of a atomic register in each of these models altogether with their correctness proofs. The first study focuses the model of Garay et al. [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF], where nodes can detect that they were previously infected by a Byzantine agent and remain silent until their state is cleaned. In this model, we implement the atomic register provided that in each round the number of Byzantine nodes (nodes occupied by a Byzantine agent), f , is less than n/3 where n is the number of correct nodes in that round. The second study concerns the models of Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] and Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF], where infected nodes cannot locally detect the presence or the absence of a Byzantine agent and hence can send/compute based on a corrupted state even thought the mobile agent is not anymore located at that node. In both these models we implement the atomic register provided that in each round the number of Byzantine nodes f is less than n/4 where n is the number of correct nodes in the round. Note that differently from the case of the agreement problem, these models have the same power in the case of atomic memory implementation. The last studied model is Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF] where Byzantine agents move with the messages. In this model, we provide an implementation of the atomic memory provided that f is less than n/2. Note that all the above bounds are also lower bounds for the considered models.

Paper roadmap. The paper is organized as follows. In Section 2 we define the model of the system and the problem of MWMR atomic memory. In Section 3 we prove upper bounds on the faulty processes necessary to implement MWMR atomic memory in the following four mobile Byzantine models: Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF], Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF], Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] and Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF]. In Section 4 we present a generic tight algorithm that implements MWMR atomic memory parametrized function on the considered mobile Byzantine model. The correctness of the generic algorithm is proved in Section 4.2. Finally, Section 5 concludes the paper and discuss some open research directions.

Model and Problem Definition 2.1 System Model

We consider a distributed system composed of an arbitrary large set of clients C and a set of n servers S = {s 1 , s 2 . . . s n }. Each process in the distributed system (i.e., both servers and clients) is identified trough a unique integer identifier. Servers run a distributed protocol implementing a shared memory abstraction.

Communication model and timing assumptions. Processes communicate trough message passing. In particular, we assume that (i) each client c i ∈ C can communicate with every server trough a broadcast primitive, (ii) servers can communicate among them trough a broadcast primitive and (iii) servers can communicate with clients trough point-to-point channels. We assume that communications are authenticated (i.e., given a message m, the identity of its sender cannot be forged) and reliable (i.e. messages are not created, lost or duplicated).

The system evolves in synchronous rounds. Every round is divided in three phases: (i) send where processes send all the messages for the current round, (ii) receive where processes receive all the messages sent at the beginning of the current round and (iii) computation where processes process received messages and prepare those that will be sent in the next round. Processes have access to the current round number via a local variable that we usually denote by r.

Failure model. We assume that an arbitrary number of clients may crash while servers are affected by mobile Byzantine failures (MBF) [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF]. Informally, in the mobile Byzantine failure model, faults are represented by powerful computationally unbounded agents that move arbitrarily from a server to another. When the agent is on the server, it can corrupt its local variables, force it to send arbitrary messages (potentially different from process to process) etc... However, the agent cannot corrupt the identity of the server. We assume that, in each round, at most f servers can be affected by a mobile Byzantine failure. When an agent occupies a server s i we will say that s i is faulty. When the agent leaves s i it is said to be cured until it does not restore the correct internal state. If a server is neither faulty nor cured then it is said to be correct. We assume similar to [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] that each server has a tamper-proof memory where it safely stores the correct algorithm code. When the agent leaves a server s i (i.e., it becomes cured), it recovers the correct algorithm code from the tamper-proof memory. Concerning the assumptions on agent movements and the server awareness on its cured state, different models have been defined. In the paper we will consider all the variants of mobile Byzantine failures [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF]: [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF]. In this model, agents can move arbitrarily from a server to another at the beginning of each round (i.e. before the send phase starts). When a server is in the cured state it is aware of its condition and thus can remain silent to prevent the dissemination of wrong information until its code has been completely restored and its state is corrected. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF]. As in the previous model, agents can move arbitrarily from a server to another at the beginning of each round (i.e. before the send phase starts). Differently from the Garay's model, in both models it is assumed that servers do not know if they are correct or cured when the Byzantine agent moved. The main difference between these two models is that in the [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] model a cured process still acts as a Byzantine one extra round. -(M4) Buhrman's model [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF]. Differently from the previous models, agents move together with the message (i.e., with the send or broadcast operation). However, when a server is in the cured state it is aware of that.

-(M1) Garay's model

-(M2) Bonnet et al.'s model [4] and (M3) Sasaki et al.'s model

Atomic Registers

A register is a shared variable accessed by a set of processes, i.e. clients, through two operations, namely read() and write(). Informally, the write() operation updates the value stored in the shared variable while the read() obtains the value contained in the variable (i.e. the last written value). Every operation issued on a register is, generally, not instantaneous and it can be characterized by two events occurring at its boundary: an invocation event and a reply event. These events occur at two time instants (invocation time and reply time) according to the fictional global time. An operation op is complete if both the invocation event and the reply event occur (i.e. the process executing the operation does not crash between the invocation and the reply). Contrary, an operation op is said to be failed if it is invoked by a process that crashes before the reply event occurs. According to these time instants, it is possible to state when two operations are concurrent with respect to the real time execution. For ease of presentation we assume the existence of a fictional global clock and the invocation time and response time of every operation are defined with respect to this fictional clock.

Given two operations op and op ′ , and their invocation event and reply event times (t B (op) and t B (op ′)) and return times (t E (op) and t E (op ′)), we say that op precedes op ′ (op ≺ op ′) iff t E (op) < t B (op ′). If op does not precede op ′ and op ′ does not precede op, then op and op ′ are concurrent (op||op ′). Given a write(v) operation, the value v is said to be written when the operation is complete. We assume that locally any client never performs read() and write() operation concurrently. We also assume that initially the register stores a default value ⊥ written by a fictional write(⊥) operation happening instantaneously at round r 0 . In case of concurrency while accessing the shared variable, the meaning of last written value becomes ambiguous. Depending on the semantics of the operations, three types of register have been defined by Lamport [START_REF] Lamport | On interprocess communication. part i: Basic formalism[END_REF]: safe, regular and atomic. In this paper, we will consider a Multi-Writer/Multi-Reader (MWMR) atomic register which is specified as follows:

-Termination: If a correct client invokes an operation, it eventually returns from that operation. -Validity: A read operation returns the last value written before its invocation, or a value written by a write operation concurrent with it. -Ordering: There exists a total order S of read() and write() operations such (i) if op ≺ op ′ then op appears before op ′ in S and (ii) any read() operation returns the value v written by the last write() preceding it in S.

Upper Bounds on the number of Faults

The next theorems provide upper bounds on the number of faulty processes for the implementation of MWMR Atomic Register in the models of mobile Byzantine faults [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF].

Theorem 1. If n ≤ 3f , there exists no algorithm that implements a MWMR Atomic Register in the Garay's model [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF].

Proof Consider that each read() operation takes at least one round to be executed and, according to the Garay's model, at the beginning of each round servers are partitioned in three sets: (i) faulty, (ii) cured and (iii) correct. Due to the assumption that we have f faulty servers in each round, we have that, cured processes, in the worse case, are f as well (i.e., the f servers that were faulty in the previous round). Thus, considering that n is at most 3f , we follows that, in the worst case, at most f processes are correct. As a consequence, considering that cured servers are silent (they do not send any message), the reader will gather at most 2f values and it will be not able to distinguish those that come from correct servers from those coming from faulty one.

T heorem 1

Theorem 2. If n ≤ 4f , there exists no algorithm that implements a MWMR Atomic Register in the Sasaki's model [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF].

Proof The claim simply follows by considering that each read() operation takes at least one round to be executed and, according to the Sasaki's model, at the beginning of each round servers are partitioned in three sets: (i) faulty, (ii) cured and (iii) correct. Due to the assumption that at most f faulty servers are in each round, it follows that, cured processes, in the worst case, are f (i.e., the f servers that was faulty in the previous round). Thus, considering that n is at most 4f , we have that, in the worst case, at most 2f processes are correct. As a consequence, considering that cured servers act like faulty ones as well, the reader will get back at most 4f values and it will be not able to distinguish which ones come from correct servers (i.e., 2f same values v) from those coming from faulty one (i.e., 2f same values v ′).

2 T heorem 2

Theorem 3. If n ≤ 4f , there exists no algorithm that implements a MWMR Atomic Register in the Bonnet's model [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF].

Proof The claim simply follows by considering that the Bonnet's model is a particular case of Sasaki model, in which cured servers act as less powerful faulty servers, forced to send the same message to all. The same reasoning as in the proof of Theorem 2 is applied.

2 T heorem 3
Theorem 4. If n ≤ 2f there exists no algorithm that implements a MWMR Atomic Register in the Burhman's model [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF].

Proof The proof is similar to the static case [START_REF] Bazzi | Synchronous byzantine quorum systems[END_REF]. Let us suppose by contradiction that such algorithm exists and suppose without restraining the generality that n = 2f . Let v be the value written by the last completed write() operation and let us assume that no other operations are concurrent with the read(). In this settings, when the client gets values from servers, it will receive at most f same value v from correct servers and f same values v ′ , with v ′ = v from faulty servers. As a consequence, the reader has no way to distinguish between the two values and we have a contradiction.

T heorem 4 4 Tight MWMR Atomic Register Implementation

In this section we present a generic algorithm A Areg (Fig. 2-1) that implements the MWMR Atomic Register in all the above presented models. In order to abstract the knowledge a server has on its state (i.e. cured or correct), we introduce the cured state oracle. When invoked via report cured state() function it returns true to cured servers and false to others in the Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF] and Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF]. In this case the oracle is said enabled. cured state oracle returns always false in Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] or Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF] models. In this case the oracle is said disabled.

In the following we propose a generic MWMR atomic register algorithm that is tight for all the above models by just tuning the following three parameters: α, β and the cured state oracle status. Let denote the number of servers with respect to faulty servers by n > αf , where α ∈ {2, 3, 4} following the mobile Byzantine model. Let s be the minimal number of required occurrences of the same value in order to chose it, s = nβf . Basically s has to be greater than the number of possible wrong values that faulty and cured servers can return, which is βf , where β ∈ {1, 2} depending on the model adopted for the cured servers.

Table 1 summarizes the above in a synthetic way.

A Areg Algorithm description

The presented algorithm exploits the round based nature of the system model. Any write() operation lasts one round, during which a client sends the value and all servers deliver it in the same round. Due to the synchrony assumptions no acknowledgement messages are required and the operation can terminate. If more than one write() operation falls in the same round then any server receives the same set of values. The one coming from the client with the highest identifier is stored, thus any server chose the same value. The read() operation lasts two rounds. One round to send a read request to servers and the subsequent one to gather replies. The value which occurrence is at least the threshold nβf is returned. Along with the classical read() and write(v) operations performed by clients, for maintenance purpose in each round servers echo each other their value. Thus even though at each round at most f servers may lose the value (and no write() operation occurs), thanks to the echoed values at the end of each round cured servers are able to became correct, having the same correct servers value.

Client local variables. Each client c i manages the following variables:

to send i : a set in which are stored messages to be sent in the next send phase and emptied just after.

reading i and writing i : two boolean variables, only the one corresponding to the current operation is set to true.

op start i : a variable in which is stored the current round when a new operation starts and set to ⊥ when it ends.

rcv i is a set variable (emptied at the beginning of each round), where c i stores messages received during the current round r.

replies i : a set in which are stored messages delivered after a read request.

Server local variables. Each server s j manages the following variables:

value i : the maintained value.

At the beginning of each round r (01) echo valsi ← ∅; (02) current writesi ← ∅; (03) curedi ← report cured state(); --------------- --------------- --------------- rcv i is a set variable (emptied at the beginning of each round), where s j stores messages received during the current round r.

- Computation Phase of round r (19) if (current writesi = ∅) (20) then let v such that ∃ < v, j >∈ current writesi ∧ j = max k (< -, k >); (21) valuei ← v; (22) else if (∃v ∈ echo valsi | #occurrence(v) ≥ n -βf) (23) then valuei ← v; (24) endif (25) endif
echo vals j : a set (emptied at the beginning of each round), in which are stored the echoed values by servers in each round.

current writes j : a set (emptied at the beginning of each round), in which are stored values that clients want to write during the current round.

currend reads j : a set in which are stored the identifiers of clients whose requested for a read. It is emptied after the reply to such clients.

cured j : boolean variable set through the report cured state() event. It is set to true by the cured state oracle (if enabled) when s j is in a cured state. Otherwise it is always false.

Server maintenance. For maintenance purposes, at the beginning of each round, servers exchange their stored value value j allowing cured servers to became correct at the end of it. Thus, during the send phase of each round, servers broadcast the ECHO(val, i) message (Fig. 1, line 05). If not new values have been written in the current round (the condition at line 19 is not verified), during the computation phase (Fig. 1, line 22) they chose the one with at least nβf occurrences. Note that in the case in which servers are aware of being in a cured state (Fig. 1, line 04) then they avoid to send their value j . operation read(): (01) to sendi ← to sendi ∪ { READ(i)}; (02) readingi ← true; --------------- --------------- ----------------Receive Phase of round r (10) for each REPLY(v, j) message in rcvi do [START_REF] Martin | Minimal byzantine storage[END_REF] repliesi ← repliesi ∪ < v, j >; (12) endFor - -------------- Write operation. When a client c i wants to write a value v, it stores in to send i a message W RIT E(v, i) and sets the variable writing i to true (Fig. 2, line 03-04). At the subsequent send phase, c i broadcasts W RIT E(v, i) to all servers, stores the current round in op start i and empties the to send i set (Fig. 2, line 05-09). At the server side this message will be delivered within the same round during the receive phase and any correct and cured server s j stores it in current writes j set (Fig. 1, line [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF][START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: A tutorial[END_REF]. At the end of the round, during the computation phase, if current writes j is not empty then the value associated to the highest client identifier is stored in value j (Fig. 1, line 19-21). Back to the client side, during its computation phase if writing i is true and op start i is equal to the current round r, this means that during the current round c i performed a write() operation. Since it lasts just one round then it sets writing i to false, op start i to ⊥ and returns the write conformation to the application layer (Fig. 2, line 13-17).

- operation write(v) (03) to sendi ← to sendi ∪ { WRITE(v, i)}; (04) writingi ← true;
Read operation. When a client c i wants to read at round r then it stores in to send i a message READ(i) and sets the variable reading i to true (Fig. 2, line 01-02). At the subsequent send phase c i broadcasts a READ(i) message to all servers, stores the current round r in op start i and empties the to send i set (Fig. 2, line 05-09). Note, the check at line 06 is necessary to avoid that op start i would be updated at each round. This would not be an issue for the write() operation which lasts only one round, but in the case of read() operation it would cause the loss of information about the starting round. At server side, the READ(i) message will be delivered within the same round r and any correct and cured server s j stores the client identifier in the current reads j set (Fig. 1, line 17-18). At the start of the next round r + 1, if server s j is not cured or not aware of that then it sends the message REP LY (value j) to all the clients in current reads j set, which is emptied at the end of the send phase (Fig. 1, line 06-10). At client side all the REP LY (value j) are delivered and stored in the set replies i during the receive phase (Fig. 2,line 10-12). Now during the computation phase the reading i variable is true and op start i is storing the previous round number. Thus reading i is set to false, op start i is set to ⊥ and the value in replies i which occurs more than nβf times is returned to the application layer and replies i is emptied (Fig. 2, line 18-24).

Correctness Proofs

Lemma 1. Let α Mi and β Mi be the parameters for each of the 4 failure models Mi as reported in Table 1 and used by the algorithm in Fig. 12. Let n > α Mi f for each failure model Mi considered. At the end of each round, at least nf correct servers store the same value v in their value i local variable.

Proof Each non-faulty server updates its value i local variable at the end of each round r (i) in line 21 i.e., if there exists at least a pair in the current writes i local variable, or (ii) in line 23 i.e., current writes i is empty and there exist at least nβf same values in echo vals i .

First we prove that one of the two cases always happens and then we prove that the number of non-faulty servers storing the same values v is nf . The current writes i local variable is initialized by any non-faulty server s i to ∅ at the beginning of each round r (cfr. line 02) and it is updated when a WRITE() message is received by s i1 . Thus, case (i) corresponds to a scenario where at least a write() operation is executed in round r and case (ii) corresponds to a scenario where no write() is running.

-Case (i): current writes i = ∅. In this case the claim simply follows by considering that (i) writer clients broadcast a WRITE(v, j) message in the send phase of round r, (ii) clients are correct so the same set of values is delivered to all servers that will apply a deterministic function to select the value v and (iii) at most f servers are faulty and may skip the update of their value i variable.

-Case (ii): current writes i = ∅ and line 22 is true. In this case, the value i variable is updated according to the values stored in echo vals i . Such variable is emptied by every non-faulty process at the beginning of each round (cfr. line 01) and is filled in when an ECHO() message is delivered. Such message is sent at least by any server, believing it is correct, at the beginning of each round. Let r ′ be the round in which the last write(v) operation terminated. Note that, due to above hypothesis, a write() operation always exists as we assume a fictional write happening instantaneously at round r 0 . Without loss of generality, let us consider the round r = r ′ + 1. Due to case (i), at the end of r ′ , at least nf non-faulty servers store the same value v in their local variable value i . Thus, at the beginning of r ′ + 1, at least nfx correct servers will send an ECHO(v, j) message, where x is the number of non-faulty processes that become faulty while passing from r ′ to r (i.e.

x = f for all the models but Burhman's one where x = 0 as faulty processes move during the send phase and not at the beginning of the round). It follows that the condition in line 22 is verified if and only if nfx ≥ nβf that is true in any model. Therefore, considering that at the end of round r non-faulty servers are exactly nf , we have that nf processes will execute this update. Iterating the reasoning for any r the claim follows.

2 Lemma 1

Lemma 2. Let us consider the algorithm in Fig. 12. If a correct client invokes a write() operation, it eventually returns from that operation.

Proof The proof simply follows by considering that, for a write() operation invoked at some round r, the write confirmation is generated by the client at the end of the same round just checking the value of the variables initialized at the beginning of r. Proof Let c j be a client invoking a read() operation at some time t. When this happens, c j flags that a read() operation is starting and prepares a READ() message to send at the beginning of the next send phase at round r. When c j sends such READ() message, it updates its op start j variable to r and it returns from the read() operation at round r+1 if and only if it has at least nβf occurrences of the same value in the replies j set. Such replies j is initially empty (it has been emptied at the end of the previous read() operation) and it is filled in when c j receives a REPLY() message (line 11) that is sent at least by non-faulty servers when they receive a READ() message.

In particular, the READ() message sent by c j will be delivered by servers during the receiving phase of round r. When this happens, any non-faulty server will execute line 18 in Figure 1 and will store the identifier of c j in order to send a reply at the beginning of the next round r + 1. Due to Lemma 1, at the end of round r, at least nf nonfaulty servers will store the same value v. Let us note that, during the send phase of round r + 1, x of such servers may become faulty. Thus, c j will find a value satisfying the condition in line 21 if and only if nfx ≥ nβf . Considering that x ≤ f for all models but Burhman's one where x = 0, we have that the condition is always true and the claim follows.

2 -Case (i): op R ≺ op W . This case follows directly from Lemma 1 considering that (i) at the end of the first round of op r (i.e., r 1) at least nf correct processes have the same initial value v = ⊥, (ii) while moving to the second round of op R , at most x processes can get faulty (with x ≤ f for models M1-M3 and x = 0 for M4), (iii)

n -f -x ≥ n -β Mi f (i.e. β Mi f ≥ f + x)
for each model (i.e. there will always be enough replies from correct servers to select a value) and (iv) nβ Mi f > f (i.e. (α Miβ Mi)f + 1 > f) for each model. It follows that faulty processes cannot force the client to select a wrong value.

-Case (ii): op W ≺ op R . Let r be the round at which op W terminates and let r + 1 be the round at which op R is invoked. Due to Lemma 1, at round r + 2 there are enough occurrences (at least nβf) of the last written value v. So, applying the same reasoning of case (i) the claim follows.

-Case (iii): op W || op R . Let us note that a read() operation spans two rounds, i.e., the round of the request r req and the round of the reply r reply . So, let us consider them separately.

• Case (iii-a): op W is concurrent with op R during r req . In that case the value v is delivered to correct server at the end of r req . Due to Lemma 1, at the end of r req at least nf correct servers store the new written value v, we fall down into case (ii) and the claim follows.

• Case (iii-b): op W is concurrent with op R during r replay . Since, in every round, the send phase is executed before the receive phase, it follows that at least all the correct servers will reply with the value written before the invocation of the write() operation, we fall down into case (i) and the claim follows.

This paper addressed the first implementation of a multi-writer multi-reader atomic register tolerant to mobile Byzantine agents altogether with upper bounds on the number of faulty processes. We investigate four models of mobile Byzantines in round-based synchronous systems: the model of Garay et al. [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF], where nodes have the capability to detect an infection and clean their state after the Byzantine agent leaves the node; the models of Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] and Bonnet et al. [START_REF] Bonnet | Tight bound on mobile byzantine agreement[END_REF], where infected nodes may execute their code with a corrupted state even though the mobile agent is not anymore located at the node and finally, the model of Buhrman et al. [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF] where Byzantines move are tight to messages and move during the send phase. As for the case of the agreement problem (benchmark already investigated in all these models) our study shows that the atomic registers cannot be implemented using the static bounds on the number of faulty processes. That is, we prove that in the Garay's model atomic registers can be implemented provided that in each round the number of Byzantine nodes (nodes occupied by a Byzantine agent), f , is less than n/3 where n is the number of correct nodes in that round while in the Bonnet's and Sasaki's models the number of Byzantine nodes f is less than n/4. Finally, for the case of Buhrman's model we show that f should be less than n/2. Our study can be extended in several directions (here after we mention only two of them). First, an interesting issue is to investigate the storage problem in the round-free synchronous and furthermore in the asynchronous settings. We conjecture that in these models the bounds on the faulty processes are different from the roundbase case. Secondly, our study advocates in favor of revisiting other building blocks of distributed computing in these settings (e.g. quorums, k-set agreement, synchronization etc). In all these cases we conjecture lower and upper bounds different from the static case.

Fig. 1 .

 1 Fig. 1. A Areg implementation: code executed by any server s i .

Fig. 2 .

 2 Fig. 2. A Areg implementation: code executed by any client c i .

Table 1 .

 1 A Areg parameters for the four different Mobile Byzantine Failure models.

	Failure model Mid α β Oracle
	Garay [8]	M1 3 2 enabled
	Bonnet et al. [4] M2 4 2 disabled
	Sasaki et al. [14] M3 4 2 disabled
	Burhman et al. [6] M4 2 1 enabled

2

 Lemma 2 Lemma 3. Let α Mi and β Mi be the parameters for each of the 4 failure models Mi as reported in Table1and used by the algorithm in Fig.1-2. Let n > α Mi f for each failure model Mi considered. If a correct client invokes a read() operation, it eventually returns from that operation.

 Theorem 6 (Validity). Let α Mi and β Mi be the parameters for each of the 4 failure models Mi as reported in Table1and used by the algorithm in Fig.1-2. Let n > α Mi f for each failure model, Mi, considered. Any read() operation returns the last value written before its invocation, or a value written by a concurrent write() operation.Proof Without loss of generality, let us consider the first write(v) operation op W and the first read() operation op R . Three cases may happen: (i) op R ≺ op W , (ii) op W ≺ op R and (iii) op W || op R . Let us note that op r spans over two rounds: in the first one it sends the READ() message and in the second one it collects replies.

		Lemma 3
	Theorem 5 (Termination). If a correct client invokes an operation, it eventually re-
	turns from that operation.	
	Proof It follows direclty from Lemma 2 and Lemma 3.	2 T heorem 5

Recall that such WRITE() message is sent by the writer client in the send phase of the first round starting after the write() invocation and it is delivered by any non-faulty server in the same round.

Theorem 7 (Ordering). There exists a total order S of read() and write() operations such (i) if op ≺ op ′ then op appears before op ′ in S and (ii) any read() operation returns the value v written by the last write() preceding it in S.

Proof Consider two read() operations, op R1 and op R2 returning respectively v 1 and v 2 (with v 1 = v 2) such that op R1 ≺ op R2 . Note that if op R1 returns v 1 , it follows that there exists a write(v 1) operation, op W (v1) concurrent or preceding it in S. Suppose by contradiction that op W (v2) ≺ op W (v1) . Recall that each read() operation spans over two rounds and call the first r req and the second r reply . Since op R1 returns v 1 this means that v 1 has been stored by servers at latest during r req of op R1 ; let us call it r R1req . The same holds for op R2 : v 2 has been written at most during r R2req of op R2 . Since op R2 follows op R1 then r R1req < r R2req . However, which is a contradiction to respect the assumption of r v1 > r v2 (a general scenario is depicted in Fig. 3).