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Introduction

Extreme Value Theory (EVT) develops models for learning the unusual rather than the usual. These models are widely used in fields involving risk management like finance, insurance, telecommunication or environmental sciences. One major application of EVT is to provide a reasonable assessment of the probability of occurrence of rare events. To illustrate this point, suppose we want to manage the risk of a portfolio containing d different assets, X = (X 1 , . . . , X d ). A fairly general purpose is then to evaluate the probability of events of the kind {X 1 ≥ x 1 or . . . or X d ≥ x d }, for large multivariate thresholds x = (x 1 , . . . , x d ). Under not too stringent conditions on the regularity of X's distribution, EVT shows that for large enough thresholds, (see Section 2 for details)

P{X 1 ≥ x 1 or . . . or X d ≥ x d } ≃ l(p 1 , . . . , p d ),
where l is the stable tail dependence function and the p j 's are the marginal exceedance probabilities, p j = P(X j ≥ x j ). Thus, the functional l characterizes the dependence among extremes. The joint distribution (over large thresholds) can thus be recovered from the knowledge of the marginal distributions together with the STDF l. In practice, l can be learned from 'moderately extreme' data, typically the k 'largest' ones among a sample of size n, with k ≪ n. Recovering the p j 's can be done following a well paved way: in the univariate case, EVT essentially consists in modeling the distribution of the maxima (resp. the upper tail) as a generalized extreme value distribution, namely c 2015 N. Goix, A. Sabourin & S. Clémenc ¸on.

an element of the Gumbel, Fréchet or Weibull parametric families (resp. by a generalized Pareto distribution).

In contrast, in the multivariate case, there is no finite-dimensional parametrization of the dependence structure. The latter is characterized by the so-called stable tail dependence function (STDF). Estimating this functional is thus one of the main issues in multivariate EVT. Asymptotic properties of the empirical STDF have been widely studied, see [START_REF] Huang | Statistics of bivariate extreme values[END_REF], [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF], [START_REF] Embrechts | Modelling multivariate extremes. Extremes and Integrated Risk Management[END_REF] and de [START_REF] De Haan | Extreme value theory[END_REF] for the bivariate case, and [START_REF] Qi | Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics[END_REF], [START_REF] John | An m-estimator for tail dependence in arbitrary dimensions[END_REF] for the general multivariate case under smoothness assumptions.

However, to the best of our knowledge, no bounds exist on the finite sample error. It is precisely the purpose of this paper to derive such non-asymptotic bounds. Our results do not require any assumption other than the existence of the STDF. The main idea is as follows. The empirical estimator is based on the empirical measure of 'extreme' regions, which are hit only with low probability. It is thus enough to bound maximal deviations on such low probability regions. The key consists in choosing an adaptive VC class, which only covers the latter regions, and on the other hand, to derive VC-type inequalities that incorporate p, the probability of hitting the class at all.

The structure of the paper is as follows. The whys and wherefores of EVT and the STDF are explained in Section 2. In Section 3, concentration tools which rely on the general study of maximal deviations in low probability regions are introduced, with an immediate application to the framework of classification (Remark 5). The main result of the paper, a non-asymptotic bound on the convergence of the empirical STDF, is derived in Section 4. Section 5 concludes.

Background in extreme value theory

A useful setting to understand the use of EVT and to give intuition about the STDF concept is that of risk monitoring. In the univariate case, it is natural to consider the (1 -p) th quantile of the distribution F of a random variable X, for a given exceedance probability p, that is x p = inf{x ∈ R, P(X > x) ≤ p}. For moderate values of p, a natural empirical estimate is x p,n = inf{x ∈ R, 1/n n i=1 1 X i >x ≤ p}. However, if p is very small, the finite sample X 1 , . . . , X n contains insufficient information and x p,n becomes irrelevant. That is where EVT comes into play by providing parametric estimates of large quantiles: whereas statistical inference often involves sample means and the central limit theorem, EVT handles phenomena whose behavior is not ruled by an 'averaging effect'. The focus is on the sample maximum rather than the mean. The primal assumption is the existence of two sequences {a n , n ≥ 1} and {b n , n ≥ 1}, the a n 's being positive, and a non-degenerate distribution function G such that

lim n→∞ n P X -b n a n ≥ x = -log G(x) (1) 
for all continuity points x ∈ R of G. If this assumption is fulfilled -it is the case for most textbook distributions -then F is said to be in the domain of attraction of G, denoted F ∈ DA(G). The tail behavior of F is then essentially characterized by G, which is proved to be -up to rescaling -of the type G(x) = exp(-(1+γx) -1/γ ) for 1+γx > 0, γ ∈ R, setting by convention (1+γx) -1/γ = e -x for γ = 0. The sign of γ controls the shape of the tail and various estimators of the rescaling sequence as well as γ have been studied in great detail, see e.g. [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF][START_REF] John | Thresholding events of extreme in simultaneous monitoring of multiple risks[END_REF], [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], [START_REF] Smith | Estimating tails of probability distributions[END_REF], [START_REF] Beirlant | Tail index estimation, pareto quantile plots regression diagnostics[END_REF].

In the multivariate case, it is mathematically very convenient to decompose the joint distribution of X = (X 1 , . . . , X d ) into the margins on the one hand, and the dependence structure on the other hand. In particular, handling uniform margins is very helpful when it comes to establishing upper bounds on the deviations between empirical and mean measures. Define thus standardized variables U j = 1 -F j (X j ), where F j is the marginal distribution function of X j , and U = (U 1 , . . . , U d ). Knowledge of the F j 's and of the joint distribution of U allows to recover that of X, since P(

X 1 ≤ x 1 , . . . , X d ≤ x d ) = P(U 1 ≥ 1 -F 1 (x 1 ), . . . , U d ≥ 1 -F d (x d ))
. With these notations, under a fairly general assumption similar to (1) (namely, standard multivariate regular variation of standardized variables, see e.g. [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF], chap. 6), there exists a limit measure Λ on [0, ∞] d \ {∞} (called the exponent measure) such that

lim t→0 t -1 P U 1 ≤ t x 1 or . . . or U d ≤ t x d = Λ[x, ∞] c := l(x) . (x j ∈ [0, ∞], x = ∞) (2)
Notice that no assumption is made about the marginal distributions, so that our framework allows non-standard regular variation, or even no regular variation at all of the original data X (for more details see e.g. [START_REF] Resnick | Heavy-tail phenomena: probabilistic and statistical modeling[END_REF], th. 6.5 or Resnick (1987), prop. 5.10.). The functional l in the limit in ( 2) is called the stable tail dependence function. In the remainder of this paper, the only assumption is the existence of a limit in (2), i.e., the existence of the STDF.

We emphasize that the knowledge of both l and the margins gives access to the probability of hitting 'extreme' regions of the kind [0, x] c , for 'large' thresholds x = (x 1 , . . . , x d ) (i.e. such that for some j ≤ d, 1 -F j (x j ) is a O(t) for some small t). Indeed, in such a case,

P(X 1 > x 1 or . . . or X d > x d ) = P   d j=1 (1 -F j )(X j ) ≤ (1 -F j )(x j )   = t    1 t P   d j=1 U j ≤ t (1 -F j )(x j ) t      ∼ t→0 t l t -1 (1 -F 1 )(x 1 ), . . . , t -1 (1 -F d )(x d ) = l (1 -F 1 )(x 1 ), . . . , (1 -F d )(x d )
where the last equality follows from the homogeneity of l. This underlines the utmost importance of estimating the STDF and by extension stating non-asymptotic bounds on this convergence. Any stable tail dependence function l(.) is in fact a norm, (see Falk et al. (1994), p179) and satisfies max{x 1 , . . . ,

x n } ≤ l(x) ≤ x 1 + . . . + x d ,
where the lower bound is attained if X is perfectly tail dependent (extremes of univariate marginals always occur simultaneously), and the upper bound in case of tail independence or asymptotic independence (extremes of univariate marginals never occur simultaneously). We refer to [START_REF] Falk | Laws of Small Numbers: Extremes and Rare Events[END_REF] for more details and properties on the STDF.

A VC-type inequality adapted to the study of low probability regions

Classical VC inequalities aim at bounding the deviation of empirical from theoretical quantities on relatively simple classes of sets, called VC classes. These classes typically cover the support of the underlying distribution. However, when dealing with rare events, it is of great interest to have such bounds on a class of sets which only covers a small probability region and thus contains (very) few observations. This yields sharper bounds, since only differences between very small quantities are involved. The starting point of this analysis is the following VC-inequality stated below.

Theorem 1 Let X 1 , . . . , X n i .i .d. realizations of a r.v. X, a VC-class A with VC-dimension V A and shattering coefficient (or growth function) S A (n). Consider the class union A = ∪ A∈A A, and let p = P(X ∈ A). Then there is an absolute constant C such that for all 0 < δ < 1, with probability at least 1 -δ,

sup A∈A P X ∈ A - 1 n n i=1 1 X i ∈A ≤ C √ p V A n log 1 δ + 1 n log 1 δ . (3) 
Proof (sketch of) Details of the proof are deferred to the appendix section. We use a Bernstein-type concentration inequality (McDiarmid ( 1998)) that we apply to the general functional

f (X 1:n ) = sup A∈A P(X ∈ A) - 1 n n i=1 1 X i ∈A ,
where

X 1:n denotes the sample (X 1 , . . . , X n ). The inequality in McDiarmid (1998) involves the variance of the r.v. f (X 1 , . . . , X k , x k+1 , . . . , x n ) -f (X 1 , . . . , X k-1 , x k , . . . , x n )
, which can easily be bounded in our setting. We obtain

P [f (X 1:n ) -Ef (X 1:n ) ≥ t] ≤ e -nt 2 2q+ 2t 3 , (4) 
where the quantity q = E (sup A∈A |1 X ′ ∈A -1 X∈A |) (with X ′ an independent copy of X) is a measure of the complexity of the class A with respect to the distribution of X. It leads to high probability bounds on f (X 1:n ) of the form Ef (X

1:n ) + 1 n log(1/δ) + 2q n log(1/δ) instead of the standard Hoeffding-type bound Ef (X 1:n ) + 1 n log(1/δ) . It is then easy to see that q ≤ 2 sup A∈A P(X ∈ A) ≤ 2p. Finally, an upper bound on Ef (X 1:n ) is obtained by introducing re- normalized Rademacher averages R n,p = E sup A∈A 1 np n i=1 σ i 1 X i ∈A .
which are then proved to be of order O(

V A pn ), so that E(f (X 1:n )) ≤ C V A pn .
Remark 2 (COMPARISON WITH EXISTING BOUNDS) The following re-normalized VC-inequality due to Vapnik and Chervonenkis (see [START_REF] Vapnik | Theory of Pattern Recognition[END_REF], [START_REF] Anthony | A result of Vapnik with applications[END_REF] or [START_REF] Bousquet | Introduction to statistical learning theory[END_REF], Thm 7),

sup A∈A P(X ∈ A) -1 n n i=1 1 X i ∈A P(X ∈ A) ≤ 2 log S A (2n) + log 4 δ n , (5) 
which holds under the same conditions as Theorem 1, allows to derive a bound similar to (3), but with an additional log n factor. Indeed, it is known as Sauer's Lemma (see [START_REF] Bousquet | Introduction to statistical learning theory[END_REF]lemma 1 for instance) that for n

≥ V A , S A (n) ≤ ( en V A ) V A .
It is then easy to see from ( 5) that:

sup A∈A P(X ∈ A) - 1 n n i=1 1 X i ∈A ≤ 2 sup A∈A P(X ∈ A) V A log 2en V A + log 4 δ n .
Introduce the union A of all sets in the considered VC class, A = ∪ A∈A A, and let p = P (X ∈ A).

Then, the previous bound immediately yields

sup A∈A P(X ∈ A) - 1 n n i=1 1 X i ∈A ≤ 2 √ p V A log 2en V A + log 4 δ n .
Remark 3 (SIMPLER BOUND) If we assume furthermore that δ ≥ e -np , then we have:

sup A∈A P(X ∈ A) - 1 n n i=1 1 X i ∈A ≤ C √ p V A n log 1 δ .
Remark 4 (INTERPRETATION) Inequality ( 3) can be seen as an interpolation between the best case (small p) where the rate of convergence is O(1/n), and the worst case (large p) where the rate is O(1/ √ n). An alternative interpretation is as follows: divide both sides of (3) by p, so that the left hand side becomes a supremum of conditional probabilities upon belonging to the union class A, {P(X ∈ A X ∈ A)} A∈A . Then the upper bound is proportional to ǫ(np, δ) where

ǫ(n, δ) := V A n log 1 δ + 1 n log 1 δ is a classical VC-bound;
np is in fact the expected number of observations involved in (3), and can thus be viewed as the effective sample size.

Remark 5 (CLASSIFICATION OF EXTREMES) A key issue in the prediction framework is to find upper bounds for the maximal deviation sup g∈G |L n (g) -L(g)|, where L(g

) = P(g(X) = Y ) is the risk of the classifier g : X → {-1, 1}, associated with the r.v. (X, Y ) ∈ R d ×{-1, 1}. L n (g) = 1 n n i=1 I{g(X i ) = Y i } is the empirical risk based on a training dataset {(X 1 , Y 1 ), . . . , (X n , Y n )}.
Strong upper bounds on sup g∈G |L n (g) -L(g)| ensure the accuracy of the empirical risk minimizer g n := argmin g∈G L n (g).

In a wide variety of applications (e.g. Finance, Insurance, Networks), it is of crucial importance to predict the system response Y when the input variable X takes extreme values, corresponding to shocks on the underlying mechanism. In such a case, the risk of a prediction rule g(X) should be defined by integrating the loss function L(g) with respect to the conditional joint distribution of the pair (X, Y ) given X is extreme. For instance, consider the event { X ≥ t α } where t α is the (1 -α) th quantile of X for a small α. To investigate the accuracy of a classifier g given

{ X ≥ t α }, introduce L α (g) : = 1 α P (Y = g(X), X > t α ) = P Y = g(X) X ≥ t α ,
and its empirical counterpart

L α,n (g) : = 1 nα n i=1 I {Y i =g(X i ), X i > X (⌊nα⌋) } ,
where X (1) ≥ . . . ≥ X (n) are the order statistics of X . Then as an application of Theorem 1 with A = {(x, y), g(x) = y, x > t α }, g ∈ G, we have :

sup g∈G L α,n (g) -L α (g) ≤ C V G nα log 1 δ + 1 nα log 1 δ . ( 6 
)
We refer to the appendix for more details. Again the obtained rate by empirical risk minimization meets our expectations (see remark 4), insofar as α is the fraction of the dataset involved in the empirical risk L α,n . We point out that α may typically depend on n, α = α n → 0. In this context a direct use of the standard version of the VC inequality would lead to a rate of order 1/(α n √ n), which may not vanish as n → +∞ and even go to infinity if α n decays to 0 faster than 1/ √ n .

Let us point out that rare events may be chosen more general than { X > t α }, say {X ∈ Q} with unknown probability q = P({X ∈ Q}). The previous result still applies with

L Q (g) := P (Y = g(X), X ∈ Q) and L Q,n (g) := P n (Y = g(X), X ∈ Q); then the obtained upper bound on sup g∈G 1 q L Q (g) -L Q,n (g) is of order O(1/ √ qn).
Similar results can be established for the problem of distribution-free regression, when the error of any predictive rule f (x) is measured by the conditional mean squared error E[(Z -f (X)) 2 | Z > q αn ], denoting by Z the real-valued output variable to be predicted from X and by q α its quantile at level 1 -α.

A bound on the STDF

Let us place ourselves in the multivariate extreme framework introduced in Section 1: Consider a random variable X = (X 1 , . . . X d ) in R d with distribution function F and marginal distribution functions F 1 , . . . , F d . Let X 1 , X 2 , . . . , X n be an i .i .d. sample distributed as X. In the subsequent analysis, the only assumption is the existence of the STDF defined in (2) and the margins F j are supposed to be unknown. The definition of l may be recast as

l(x) := lim t→0 t -1 F (tx) (7) 
with

F (x) = (1 -F ) (1 -F 1 ) ← (x 1 ), . . . , (1 -F d ) ← (x d ) .
Here the notation (1 -F j ) ← (x j ) denotes the quantity sup{y : 1 -F j (y) ≥ x j }. Notice that, in terms of standardized variables U j ,

F (x) = P d j=1 {U j ≤ x j } = P(U ∈ [x, ∞[ c ). Let k = k(n) be a sequence of positive integers such that k → ∞ and k = o(n) as n → ∞.
A natural estimator of l is its empirical version defined as follows, see [START_REF] Huang | Statistics of bivariate extreme values[END_REF], [START_REF] Qi | Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics[END_REF], [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF]Huang (1998), Einmahl et al. (2006):

l n (x) = 1 k n i=1 1 {X 1 i ≥X 1 (n-⌊kx 1 ⌋+1) or ... or X d i ≥X d (n-⌊kx d ⌋+1) } , (8) 
The expression is indeed suggested by the definition of l in ( 7), with all distribution functions and univariate quantiles replaced by their empirical counterparts, and with t replaced by k/n. Extensive studies have proved consistency and asymptotic normality of this nonparametric estimator of l, see [START_REF] Huang | Statistics of bivariate extreme values[END_REF], [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF] and de [START_REF] De Haan | Extreme value theory[END_REF] for the asymptotic normality in dimension 2, [START_REF] Qi | Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics[END_REF] for consistency in arbitrary dimension, and Einmahl et al.

(2012) for asymptotic normality in arbitrary dimension under differentiability conditions on l.

To our best knowledge, there is no established non-asymptotic bound on the maximal deviation sup 0≤x≤T |l n (x) -l(x)|. It is the purpose of the remainder of this section to derive such a bound, without any smoothness condition on l.

First, Theorem 1 needs adaptation to a particular setting: introduce a random vector Z = (Z 1 , . . . , Z d ) with uniform margins, i.e., for every j = 1, . . . , d, the variable Z j is uniform on [0, 1]. Consider the class

A = k n x, ∞ c : x ∈ R d + , 0 ≤ x j ≤ T (1 ≤ j ≤ d)
This is a VC-class of VC-dimension d, as proved in [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF], Theorem 13.8, for its complementary class [x, ∞[, x > 0 . In this context, the union class A has mass p ≤ dT k n since

P(Z ∈ A) = P Z ∈ k n T, ∞ d c = P   j=1..d Z j < k n T   ≤ d j=1 P Z j < k n T Consider the measures C n ( • ) = 1 n n i=1 1 {Z i ∈ • } and C(x) = P(Z ∈ • ).
As a direct consequence of Theorem 1 the following inequality holds true with probability at least 1 -δ,

sup 0≤x≤T n k C n ( k n [x, ∞[ c ) -C( k n [x, ∞[ c ) ≤ Cd T k log 1 δ + 1 k log 1 δ .
If we assume furthermore that δ ≥ e -k , then we have

sup 0≤x≤T n k C n ( k n [x, ∞[ c ) -C( k n [x, ∞[ c ) ≤ Cd T k log 1 δ . (9) 
Inequality ( 9) is the cornerstone of the following theorem, which is the main result of the paper.

In the sequel, we consider a sequence k(n) of integers such that k = o(n) and k(n) → ∞. For notational convenience, we often drop the dependence in n and simply write k instead of k(n).

Theorem 6 Let T be a positive number such that T ≥ 7 2 ( log d k + 1), and δ such that δ ≥ e -k . Then there is an absolute constant C such that for each n > 0, with probability at least 1 -δ:

sup 0≤x≤T |l n (x) -l(x)| ≤ Cd T k log d + 3 δ + sup 0≤x≤2T n k F ( k n x) -l(x) (10) 
The second term on the right hand side of ( 10) is a bias term which depends on the discrepancy between the left hand side and the limit in ( 2) or ( 7) at level t = k/n. The value k can be interpreted as the effective number of observations used in the empirical estimate, i.e. the effective sample size for tail estimation. Considering classical inequalities in empirical process theory such as VCbounds, it is thus no surprise to obtain one in O(1/ √ k). Too large values of k tend to yield a large bias, whereas too small values of k yield a large variance. For a more detailed discussion on the choice of k we recommend [START_REF] John | Thresholding events of extreme in simultaneous monitoring of multiple risks[END_REF].

The proof of Theorem 6 follows the same lines as in [START_REF] Qi | Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics[END_REF]. For unidimensional random variables Y 1 , . . . , Y n , let us denote by Y (1) ≤ . . . ≤ Y (n) their order statistics. Define then the empirical version Fn of F ( introduced in ( 7)) as

Fn (x) = 1 n n i=1 1 {U 1 i ≤x 1 or ... or U d i ≤x d } , so that n k Fn ( k n x) = 1 k n i=1 1 {U 1 i ≤ k n x 1 or ... or U d i ≤ k n x d } .
Notice that the U j i 's are not observable (since F j is unknown). In fact, Fn will be used as a substitute for l n allowing to handle uniform variables. The following lemmas make this point explicit.

Lemma 7 (Link between l n and Fn ) The empirical version of F and that of l are related via

l n (x) = n k Fn (U 1 (⌊kx 1 ⌋) , . . . , U d (⌊kx d ⌋) ).
Proof Consider the definition of l n in ( 8), and note that for j = 1, . . . , d,

X j i ≥ X j (n-⌊kx i ⌋+1) ⇔ rank(X j i ) ≥ n -⌊kx j ⌋ + 1 ⇔ rank(F j (X j i )) ≥ n -⌊kx j ⌋ + 1 ⇔ rank(1 -F j (X j i )) ≤ ⌊kx j ⌋ ⇔ U j i ≤ U j (⌊kx j ⌋) , so that l n (x) = 1 k n j=1 1 {U 1 j ≤U 1 (⌊kx 1 ⌋) or ... or U d j ≤U d (⌊kx d ⌋) } .
Lemma 8 (Uniform bound on Fn 's deviations) For any finite T > 0, and δ ≥ e -k , with probability at least 1 -δ, the deviation of Fn from F is uniformly bounded:

sup 0≤x≤T n k Fn ( k n x) - n k F ( k n x) ≤ Cd T k log 1 δ Proof Notice that sup 0≤x≤T n k Fn ( k n x) - n k F ( k n x) = n k 1 n n i=1 1 {U i ∈ k n ]x,∞] c } -P U ∈ k n ]x, ∞] c ,
and apply inequality (9).

Lemma 9 (Bound on the order statistics of U) Let δ ≥ e -k . For any finite positive number T > 0 such that T ≥ 7/2((log d)/k + 1), we have with probability greater than 1 -δ,

∀ 1 ≤ j ≤ d, n k U j (⌊kT ⌋) ≤ 2T , (11) 
and with probability greater than 1 -

(d + 1)δ, max 1≤j≤d sup 0≤x j ≤T ⌊kx j ⌋ k - n k U j (⌊kx j ⌋) ≤ C T k log 1 δ . Proof Notice that sup [0,T ] n k U j (⌊k • ⌋) = n k U j (⌊kT ⌋) and let Γ n (t) = 1 n n i=1 1 {U j i ≤t} . It then straight- forward to see that n k U j (⌊kT ⌋) ≤ 2T ⇔ Γ n k n 2T ≥ ⌊kT ⌋ n so that P n k U j (⌊kT ⌋) > 2T ≤ P   sup 2kT n ≤t≤1 t Γ n (t) > 2   .
Using [START_REF] Wellner | Limit theorems for the ratio of the empirical distribution function to the true distribution function[END_REF], Lemma 1-(ii) (we use the fact that, with the notations of this reference, h(1/2) ≥ 1/7 ), we obtain

P n k U j (⌊kT ⌋) > 2T ≤ e -2kT 7 ,
and thus

P ∃j, n k U j (⌊kT ⌋) > 2T ≤ de -2kT 7 ≤ e -k ≤ δ
as required in ( 11). Yet,

sup 0≤x j ≤T ⌊kx j ⌋ k - n k U j (⌊kx j ⌋) = sup 0≤x j ≤T 1 k n i=1 1 {U j i ≤U j (⌊kx j ⌋) } - n k U j (⌊kx j ⌋) = n k sup 0≤x j ≤T 1 n n i=1 1 {U j i ≤U j (⌊kx j ⌋) } -P U j 1 ≤ U j (⌊kx j ⌋) = sup 0≤x j ≤T Θ j ( n k U j (⌊kx j ⌋) ),
where

Θ j (y) = n k 1 n n i=1 1 {U j i ≤ k n y} -P U j 1 ≤ k n y .
Then, by (11), with probability greater than 1 -δ,

max 1≤j≤d sup 0≤x j ≤T ⌊kx j ⌋ k - n k U j (⌊kx j ⌋) ≤ max 1≤j≤d sup 0≤y≤2T Θ j (y)
and from (9), each term sup 0≤y≤2T Θ j (y) is bounded by C T k log 1 δ (with probability 1 -δ). In the end, with probability greater than 1 -(d + 1)δ :

max 1≤j≤d sup 0≤y≤2T Θ j (y) ≤ C T k log 1 δ ,
which is the desired inequality

We may now proceed with the proof of Theorem 6. First of all, noticing that F (tx) is nondecreasing in x j for every l and that l(x) is non-decreasing and continuous (thus uniformly continuous on [0, T ] d ), from (7) it is easy to prove by subdivising [0, T ] d (see [START_REF] Qi | Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics[END_REF] p.174 for details) that

sup 0≤x≤T 1 t F (tx) -l(x) → 0 as t → 0 . ( 12 
)
Using Lemma 7, we can write :

sup 0≤x≤T |l n (x) -l(x)| = sup 0≤x≤T n k Fn U 1 (⌊kx 1 ⌋) , . . . , U d (⌊kx d ⌋) -l(x) ≤ sup 0≤x≤T n k Fn U 1 (⌊kx 1 ⌋) , . . . , U d (⌊kx d ⌋) - n k F U 1 (⌊kx 1 ⌋) , . . . , U d (⌊kx d ⌋) + sup 0≤x≤T n k F U 1 (⌊kx 1 ⌋) , . . . , U d (⌊kx d ⌋) -l n k U 1 (⌊kx 1 ⌋) , . . . , n k U d (⌊kx d ⌋) + sup 0≤x≤T l n k U 1 (⌊kx 1 ⌋) , . . . , n k U d (⌊kx d ⌋) -l(x) =: Λ(n) + Ξ(n) + Υ(n) .
Now, by ( 11) we have with probability greater than 1 -δ :

Λ(n) ≤ sup 0≤x≤2T n k Fn ( k n x) - n k F ( k n x)
and by Lemma 8,

Λ(n) ≤ Cd 2T k log 1 δ with probability at least 1 -2δ. Similarly, Ξ(n) ≤ sup 0≤x≤2T n k F ( k n x) - n k l( k n x) = sup 0≤x≤2T n k F ( k n x) -l(x) → 0 (bias term)
by virtue of (12). Concerning Υ(n), we have :

Υ(n) ≤ sup 0≤x≤T l n k U 1 (⌊kx 1 ⌋) , . . . , n k U d (⌊kx d ⌋) -l( ⌊kx 1 ⌋ k , . . . , ⌊kx d ⌋ k ) + sup 0≤x≤T l( ⌊kx 1 ⌋ k , . . . , ⌊kx d ⌋ k ) -l(x) = Υ 1 (n) + Υ 2 (n)
Recall that l is 1-Lipschitz on [0, T ] d regarding to the . 1 -norm, so that

Υ 1 (n) ≤ sup 0≤x≤T d l=1 ⌊kx j ⌋ k - n k U j (⌊kx j ⌋)
so that by Lemma 9, with probability greater than 1 -(d + 1)δ:

Υ 1 (n) ≤ Cd 2T k log 1 δ .
On the other hand, Υ 2 (n) ≤ sup 0≤x≤T d l=1

⌊kx j ⌋ k -x j ≤ d k .
Finally we get, for every n > 0, with probability at least 1 -(d + 3)δ:

sup 0≤x≤T |l n (x) -l(x)| ≤ Λ(n) + Υ 1 (n) + Υ 2 (n) + Ξ(n) ≤ Cd 2T k log 1 δ + Cd 2T k log 1 δ + d k + sup 0≤x≤2T F (x) - n k l( k n x) ≤ C ′ d 2T k log 1 δ + sup 0≤x≤2T n k F ( k n x) -l(x)

Discussion

We provide a non-asymptotic bound of VC type controlling the error of the empirical version of the STDF. Our bound achieves the expected rate in O(k -1/2 ) + bias(k), where k is the number of (extreme) observations retained in the learning process. In practice the smaller k/n, the smaller the bias. Since no assumption is made on the underlying distribution, other than the existence of the STDF, it is not possible in our framework to control the bias explicitly. One option would be to make an additional hypothesis of 'second order regular variation' (see e.g. de Haan and [START_REF] De | Second-order regular variation and rates of convergence in extreme-value theory[END_REF]. We made the choice of making as few assumptions as possible, however, since the bias term is separated from the 'variance' term, it is probably feasible to refine our result with more assumptions.

For the purpose of controlling the empirical STDF, we have adopted the more general framework of maximal deviations in low probability regions. The VC-type bounds adapted to low probability regions derived in Section 3 may directly be applied to a particular prediction context, namely where the objective is to learn a classifier (or a regressor) that has good properties on low probability regions. This may open the road to the study of classification of extremal observations, with immediate applications to the field of anomaly detection.

In the following, X 1:n denotes an i .i .d. sample (X 1 , . . . , X n ) distributed as X, a R d -valued random vector. The classical steps to prove VC inequalities consist in applying a concentration inequality to the function

f (X 1:n ) := sup A∈A P(X ∈ A) - 1 n n i=1 1 X i ∈A , (14) 
and then establishing bounds on the expectation Ef (X 1:n ), using for instance Rademacher average.

Here we follow the same lines, but applying a Bernstein type concentration inequality instead of the usual Hoeffding one, since the variance term in the bound involves the probability p to be in the union of the VC-class A considered. We then introduce relative Rademacher averages instead of the conventional ones, to take into account p for bounding Ef (X 1:n ).

We need first to control the variability of the random variable f (X 1:n ) when fixing all but one marginal X i . For that purpose introduce the functional

h(x 1 , . . . , x k ) = E [f (X 1:n )|X 1 = x 1 , . . . , X k = x k ] -E [f (X 1:n )|X 1 = x 1 , . . . , X k-1 = x k-1 ]
The positive deviation of h(x 1 , . . . , x k-1 , X k ) is defined by We have now the tools to state an extension of the classical Bernstein inequality, which is proved in [START_REF] Mcdiarmid | Concentration[END_REF].

dev + (x 1 , . . . , x k-1 ) = sup x∈R d {h(x 1 , . . . , x k-1 , x)} ,
Proposition 11 Let X 1:n = (X 1 , . . . , X n ) as above, and f any function (R d ) n → R . Let maxdev + and v the maximum sum of variances, both of which we assume to be finite, and let µ be the mean of f (X 1:n ). Then for any t ≥ 0,

P f (X 1:n ) -µ ≥ t ≤ exp - t 2 2v(1 + maxdev + t 3v 
) .

Note that the term maxdev + t 3v is view as an 'error term' and is often negligible. Let us apply this theorem to the specific function f defined in (14). Then the following lemma holds true:

Lemma 12 In the situation of Proposition 11 with f as in ( 14), we have

maxdev + ≤ 1 n and v ≤ q n , where q = E sup A∈A |1 X ′ ∈A -1 X∈A | ≤ 2E sup A∈A |1 X ′ ∈A 1 X / ∈A | , (15) 
with X ′ an independent copy of X.

Proof Considering the definition of f , we have:

h(x 1 , . . . , x k-1 , x k ) = E sup A∈A P(X ∈ A) - 1 n k i=1 1 x i ∈A - 1 n n i=k+1 1 X i ∈A -E sup A∈A P(X ∈ A) - 1 n k-1 i=1 1 x i ∈A - 1 n n i=k 1 X i ∈A .
Using the fact that sup A∈A |F (A)|-sup A∈A |G(A)| ≤ sup A∈A |F (A)-G(A)| for every function F and G of A, we obtain:

h(x 1 , . . . , x k-1 , x k ) ≤ E sup A∈A 1 n |1 x k ∈A -1 X k ∈A | . (16) 
The term on the right hand side of ( 16) is less than 1 n so that maxdev + ≤ 1 n . Moreover, if X ′ is an independent copy of X, (16) yields

h(x 1 , . . . , x k-1 , X ′ ) ≤ E sup A∈A 1 n |1 X ′ ∈A -1 X∈A | X ′ , so that E h(x 1 , . . . , x k-1 , X ′ ) 2 ≤ E E sup A∈A 1 n |1 X ′ ∈A -1 X∈A | X ′ 2 ≤ E sup A∈A 1 n 2 |1 X ′ ∈A -1 X∈A | 2 ≤ 1 n 2 E sup A∈A |1 X ′ ∈A -1 X∈A |
Thus Var(h(x 1 , . . . , x k-1 , X k )) ≤ E[h(x 1 , . . . , x k-1 , X k ) 2 ] ≤ q n 2 . Finally v ≤ q n as required.

As a consequence with Proposition 11 the following general inequality holds true:

P [f (X 1:n ) -Ef (X 1:n ) ≥ t] ≤ e -nt 2 2q+ 2t 3 (17)
where the quantity q = E (sup A∈A |1 X ′ ∈A -1 X∈A |) seems to be a central characteristic of the VC-class A given the distribution X. It may be interpreted as a measure of the complexity of the class A with respect to the distribution of X: how often the class A is able to separate two independent realizations of X.

Recall that the union class A and its associated probability p are defined as A = ∪ A∈A A, and p = P(X ∈ A). Noting that for all A ∈ A, 1 {.∈A} ≤ 1 {.∈A} , it is then straightforward from (15) that q ≤ 2p. As a consequence (17) holds true when changing q by 2p. Let us now explicit the link between the expectation of f and the Rademacher average

R n = E sup A∈A 1 n n i=1 σ i 1 X i ∈A ,
where (σ i ) i≥1 is a Rademacher chaos independent of the X i 's.

Lemma 13 With this notations the following inequality holds true:

Ef (X 1:n ) ≤ 2R n
Proof The proof of this lemma relies on classical arguments: Introducing a ghost sample (X ′ i ) 1≤i≤n namely i.i.d independent copy of the X i 's, we may write:

Ef (X 1:n ) = E sup A∈A P(X ∈ A) - 1 n n i=1 1 X i ∈A = E sup A∈A E 1 n n i=1 1 X ′ i ∈A - 1 n n i=1 1 X i ∈A ≤ E sup A∈A 1 n n i=1 1 X ′ i ∈A - 1 n n i=1 1 X i ∈A = E sup A∈A 1 n n i=1 σ i 1 X ′ i ∈A -1 X i ∈A ≤ E sup A∈A 1 n n i=1 σ i 1 X ′ i ∈A + sup A∈A 1 n n i=1 -σ i 1 X i ∈A = 2R n
Combining (17) with Lemma 13 and the fact that q ≤ 2p gives:

P [f (X 1:n ) -2R n ≥ t] ≤ e -nt 2 4p+ 2t 3 . ( 18 
)
Recall that the relative Rademacher average are defined in (13) as R n,p = R n /p. It is wellknown that R n is of order O((V A /n) 1/2 ), see [START_REF] Koltchinskii | Local Rademacher complexities and oracle inequalities in risk minimization (with discussion)[END_REF] for instance. However, we hope a stronger bound than just R n,p = O(p -1 (V A /n) 1/2 ) since 1 np | n i=1 σ i 1 X i ∈A | with P(X i ∈ A) = p is expected to be like 1 np | np i=1 σ i 1 Y i ∈A | with Y i such that P(Y i ∈ A) = 1. The result below confirms this heuristic: Lemma 14 The relative Rademacher average R n,p is of order O( V A pn ).

  and maxdev + , the maximum of all positive deviations, bymaxdev + = sup x 1 ,...,x k-1 max k dev + (x 1 , . . . , x k-1 ) .Finally, define v, the maximum sum of variances, by v = sup x 1 ,...,xn n k=1 Var h(x 1 , . . . , x k-1 , X k ) .

Appendix A. Proof of Theorem 1

Theorem 1 is actually a short version of Theorem 10 below:

Theorem 10 (Maximal deviations) Let X 1 , . . . , X n i .i .d. realizations of a r.v. X valued in R d , a VC-class A, and denote by R n,p the associated relative Rademacher average defined by

Define the union A = ∪ A∈A A, and p = P(X ∈ A). Fix 0 < δ < 1, then with probability at least 1 -δ,

and there is a constant C independent of n, p, δ such that with probability greater than 1 -δ,

If we assume furthermore that δ ≥ e -np , then we both have:

where

Thus,

Finally we obtain from ( 18) and Lemma 14 the following bound:

This ends the proof.

Appendix B. Note on Remark 5

To obtain the bound in ( 6), the following easy to show inequality is needed before applying Theorem 1 :

Note that the final objective would be to bound the quantity sup g∈G |L α (g) -L α (g * α )|, where g * α is a Bayes classifier for the problem at stake, i.e. a solution of the conditional risk minimization problem inf {g measurable} L α (g). Such a bound involves a bias term inf g∈G L α (g) -L α (g * α ), as in the classical setting. Further, it can be shown that the standard Bayes classifier g * (x) := 2I{η(x) > 1/2} -1 (where η(x) = P(Y = 1 | X = x)) is also a solution of the conditional risk minimization problem. Finally, the conditional bias inf g∈G L α (g) -L α (g * α ) can be expressed as 1 α inf g∈G E |2η(X) -1|1 g(X) =g * (X) 1 X ≥tα , to be compared with the standard bias inf g∈G E |2η(X) -1|1 g(X) =g * (X) .