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WELLPOSEDNESS FOR DENSITY-DEPENDENT INCOMPRESSIBLE VISCOUS
FLUIDS ON THE TORUS T3

EUGENIE POULON

ABsTRACT. We investigate the local wellposedness of incompressible inhomogeneous Navier-Stokes
equations on the Torus T®, with initial data in the critical Besov spaces. Under some smallness

1
assumption on the velocity in the critical space BQZ’I(']I‘?’)7 the global-in-time existence of the solution

3
is proved. The initial density is required to belong to Bﬁl(TS) but not supposed to be small.

1. INTRODUCTION AND MAINS STATEMENTS

Incompressible flows are often modeled by the incompressible homogeneous Navier-Stokes system (1),
e.g the density of the fluid is supposed to be a constant

odv+v-Vvo—Av = —Vp
(1) divov = 0
v‘t:O = (B

However, this model is sometimes far away from the physical situation. Concerning models of blood
and rivers, even if the fluid is incompressible, its density can not be considered constant, owing to the
complexity of the structure of the flow. As a result, a model which takes into account such constraints,
has to be considered. That is the so-called Inhomogeneous Navier-Stokes system, given by

Op + div(pu) = 0
O(pu) +div(pu @ u) — Au+ VII = 0
(2) divu = 0
(psu)jt=0 = (po,uo)-
which is equivalent to the system below, by vertue of the transport equation
Op +u-Vp = 0
(3) p(Ou+u-Vu) — Au+ VII = 0
divu = 0
(P, 1) ji=0 = (po,uo),

where p = p(t,x) € RT stands for the density and u = u(t,z) € T3 for the velocity field. The term
VII (namely the gradient of the pressure) may be seen as the Lagrangian multiplier associated with
the constraint divu = 0. The initial data (pg,ug) are prescribed. Notice, we choose the viscosity of
the fluid equal to 1, in a sake of simplicity.

Let us recall some well-known results about the two above systems (homogeneous versus inhomo-
geneous). In the homogeneous case, the celebrated theorem of J. Leray [15] proves the global existence
of weak solutions with finite energy in any space dimension. The uniqueness is garanteed in dimension
2, whereas in dimension 3, this is still an open question. In deal with this issue, H. Fujita and T. Kato
[10] built some global strong solutions in the context of scaling invariance spaces, namely spaces which
have the same scaling as the system (1). Such spaces are said to be critical, in the sense that their
norm is invariant for any A > 0 under the transformation

vo(z) = Avg(Az) and  v(t,z) — Av(\%t, \x).
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2 EUGENIE POULON

The point is that such solutions are unique in this framework. In the inhomogeneous case, Leray’s
approach is still relevant for the system (2). Indeed, if the initial density pp is non negative and
belongs to L> and if /pgug belongs to L?, then there exists some global weak solutions (p,u) with
finite energy. However, the question of uniqueness has not been solved, even in dimension 2. We refer
the reader to the paper of A. Kazhikhov [12], J. Simon [18] for the existence of global weak solutions.
The unique resolvability of (2) is first established by the works of O. Ladyzenskaja and V. Solonnikov
[13] in the case of a bounded domain € with homogeneous Dirichlet condition for the velocity u. As
one has already mentionned previously, the approach initiated by H. Fujita and T. Kato is particulary
efficient in the scaling invariance framework to face the uniqueness problem. A natural question is
to wonder if such an approach is relevant for incompressible inhomogeneous fluids. If one believes so,
scaling considerations should help us to find an adaptated functional framework. Firstly, one can check
that (3) is invariant under the scaling transformation (for any A > 0)

(po,uo)(x) — (po, Aug)(Az) and  (p,u, I)(t,z) — (p, Au, N2 I)(N\2t, \x).

.3 1
That is an easy exercice to check that B2271(1R3) X B2271(1R3) is scaling invariant under this transforma-
tion, in dimension 3, e.g

lpo(Az)][ .

= [|UW .
i ol

= d [[Aug(A
5) ool . 3 and [ Auo( $)||BEI(R3) B2 ()

B3, (R?)

Secondly, as the system (3) degenerates if p vanishes or becomes unbounded, we further assume that
the density is away from zero (pi' € L>). Denoting

1 1
—d:efl—i—ao and —d:efl—i—a,
p

o

the incompressible inhomogeneous Navier-Stokes system (3) can be rewritten as

oa +u-Va = 0

Ou+u-Vu+ (1+a)(VII—-Au) = 0

(4) divu = 0
(a7 u)|t=0 = (ao,uo),

The question of unique solvability of the above system (4) has been adressed by many authors. Let us
highlight the work of R. Danchin [6], who studied the unique solvability of (4) with constant viscosity
coefficient and in scaling invariant (e.g critical) Besov spaces in the whole space IRY. This generalized
the celebrated results by H. Fujita and T. Kato, devoted to the classical homogeneous Navier-Stokes
system (1). Indeed, R. Danchin proved in [6] (under the assumption the density is close to a constant)
a local well-posedness for large initial velocity and a global well-posedness for initial velocity small
with respect to the viscosity. More precisely, he proved that if the initial data (ag,up) belongs to

LN LN N
BZ?OO(IRN) N L®¥(RY) x By 1(]RN)7 with ag small enough in BQfOO(IRN) N L>®(RY), then the system

(4) has a unique local-in-time solution. In addition, assuming the velocity ug is also small enough in

LN
the space By, 1(]RN), the solution is global.

Our main motivation in this paper is to investigate the local and global wellposedness of the incom-
pressible inhomogeneous Navier-Stokes system, in the case of critical Besov spaces and on the torus T3.
The aim is to get rid of the smallness condition on the density, and just keeping the smallness one on
the initial velocity. We point out that such a result has been already proved in the whole space R?.
We refer the reader to the paper [4] of H. Abidi, G. Gui and P. Zhang. The main difference between
their work and ours is that, on the torus, we have to be careful, owing to the average of the velocity u,
which is not preserved, contrary to the case of classical Navier-Stokes system (1). As a consequence,
a lot of "classical results" such as Gagliardo-Niremberg inequalities and Sobolev embeddings, have to
take into account the average of the velocity u. We will collect them in section 2. Let us give some
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remarks about this.
Notation In the sequel, we shall denote by

md:ef/ m(x)dr, where |T3| =1.
T3

Remark 1.1. It is clear that p = pg. Indeed, an integration on the mass conservation equation

combining with the fact / u-Vp =0 gives
T3

/TS plt,z)dz = /T po(z) dz.

Notice that by vertue of the divergence free condition on the velocity u, the average of any function
of p is preserved. In particular, the average of a is conserved.

Remark 1.2. An integration on the momentum equation of the system (2) (the terms / div(pu @ u),
T3

Au and VII are nul) implies
T3 T3

[ onearae= [ mut)as

’]I‘S

Remark 1.3. Notice that p — p is also solution of the transport equation. Thus, if we take the L*
inner product of this mass conservation equation with p — p itself, we get the energy conservation of
the quantity ||p — p||12, because of divergence-free condition of w. Therefore we have :

lp = pllr2 = llpo — pollL2-

In this paper, our main Theorem can be stated as follows

3 1
Theorem 1.1 (Main theorem). Let ag € B3, ug € B3y, such that
1
s 1+ ap(z)

Then there exists a positive time T, such that the system (4) has a unique local-in-time solution : for
any T' < T,

(5) divup=0 ; 1l4ag>=0b forsome positive constant b and / uo(x) dz = 0.
T

3 1 5 1
(avuvH) € C([OvTLBQQ,l) x C([07T]7B2271) n Ll([ovTLBQQ,l) X Ll([ovTLBQQ,l)'

In addition, there exists a constant ¢ (depending on [lag|| 3 ) such that
B’y

<c¢, then T, = 4o0.

Our main Theorem 1.1 relies on two Theorems, given below. Indeed, we will face the question of local
wellposedness and global wellposedness in a different way. The first one deals with the local wellposed
issue: until a small time, we may control the velocity u in some functional Besov spaces, by the initial
data ug. It can stated as follows

3 1
Theorem 1.2 (Local-wellposedness theorem). Let ag € B2271, ug € B22,17 such that

(6) divug=0 ; 14ap>b for some positive constant b.

Then there exists a positive time T, such that the system (4) has a unique local-in-time solution : for
any T < T,

3 L 5 1
(avuvH) € C([OvTLBQQ,l) x C([07T]7B2271) N Ll([ovTLBQQ,l) X Ll([ovTLBQQ,l)'
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In addition, there exists a small constant ¢ depending on ||ag|| such that if

3
322,1
ool <
therefore, T, > 1 and one has for any T' < T,
(7) Density estimate: ||al| 3 <aoll 3 < [l )
%O 221) 221 Ll (B
(8) Velocity estimate: ||ul] 1+ | + || VII]| 1 <C HuOH
L¥(B31) Ly (B 21) Lh(B3) B3,

Remark 1.4. The difficulty, as mentionned previously, is that the density a is not supposed to be
small. To overcome this issue, we split the density 1 4+ a into

1+a=(1+Sna)+ (a— Sya), where mad—ef Z Aja.
j<m—1

The first part is then reqular enough, the second part can be made small enough, for some large enough
integer m: we fix m in the sequel such that |la — Small 3 <ec.

B3,
The local wellposedness Theorem 1.2 is an immediate consequence of Lemma below, which will be
useful in the sequel.

Lemma 1.3. Let T > 0 be a fixed finite time. For any t € [0,T], the velocity estimate is given by

t
9) [ull s + |u H 53 HVHII 1 < Cuol 5} / (IVu(t) Lo + W) lu@)]] ! dt’,
L (B 2,1 21 2,1 21 0 2
where def
et yom 8m 4 4 4
w(t') = 2""|la HL"O (L) T 2 HGHL?(B) (1 + HUHLOO(BQ% ) + HaHLgf’(LOO))'

t! )1

Two above results will provide us the local and uniqueness existence of a solution (a,u). Concerning
the global aspect to this solution, we shall use an energy method, which can be achieved by vertue of
Theorem 1.4 below.

Theorem 1.4 (Global wellposedness Theorem). Given the initial data (pg,ug) and two positive con-
stants m and M such that

(10) ug € H*(T?), 0<m < po(z) < M, and /3 po ug = 0.
T

There exists a constant €9 > 0 (depending on m and M) such that if uy satisfies the smallness
condition ||ug|| g2 < €o then, the system (3) has a (unique) global solution (p,w) which satisfies for any
(t,x) € [0, +oo[x T3

0<m< p(t,x) < M,
Bo(t) < |v/pouol,
11
(11) By(t) < OV,

Bo(t) < € (1 + lualle) ol exp (ol + [¥uolZ2)
where By(t), Bi(t) and By(t) are defined by
def

T
(12) Bo(T) = sup |pu(t)|2e —i—/o /W\Vu(t,x)\zdxdt.

t€[0,T]

T T
def 1
1) B0 s [Vue+ [ (WVFouIEs + VIO + 5 [ 190l

t€[0,T]
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def

1 m
By(1) € sup (SIVPu(t)|F2 + VIO 2 + T [0u()]2 )

t€[0,T]

1 r 2 1 r 2 2 T 2 2
+ 1 |Vopu(t)||5 = dt + 3 | VZu(t)||7edt + |VAII(t) |76 dt.
0 0 0

Remark 1.5. We shall prove the existence and global part by an energy method. We underline the
very weak assumption (bounded from above and below) on the density we need. We refer the reader to
[17] for the uniqueness proof.

(14)

Guideline of the proof and organisation of the paper.

Firstly, we prove the local existence and uniqueness of a solution, under hypothesis of Theorem 1.2.

Then, we underlinde that, provided [uo 1 is small enough, the lifespan T (ug) of the local solution

B3,

associated with this data should be greater than 1. This is due to scaling argument. In addition,

velocity estimate (8) implies

(15) 3t; € [0,1] such that w(t;) € H> and |ju(ty)|| g2 < CHUOHB% .
2,1

This stems from an interpolation argument, provided 7%(up) > 1. Indeed, assume we have proved

there exists an unique solution u such that
1 5
u € LOO([Ov T]? 322,1) n Ll([()? T]? B2271)7

and thus, u belongs to L3 ([0,T], H?), which provide the existence of the small time #;, such that (15)

is satisfied.

From this point, the strategy to deal with the global property of our system takes another direction

than the strategy setting up in [4|. Indeed, we shall prove that, considering u(¢1) as an initial data

in H?, which is small enough (since HUOHB% is supposed to be so) and thanks to Theorem 1.4 below,
2,1

there exists a global solution (the uniqueness is non necessary for what we need in the sequel).

Then, it remains to be seen that such a solution has the relevant regularity, namely the regularity

demanding by Theorem 1.2. In others words, it is crucial to prove the propagation of the regularity

of the density function a, from which we infer the regularity of the velocity, thanks to Lemma 1.3. To

sum up, we will prove the existence of a global solution with the relevant regularity : this proves the

uniqueness of such a solution.

The paper is structured as follows. In Section 2, we collect some basic facts on Littlewood Paley theory,
Besov spaces and we will give the classical inequalities (well-known in the whole space ]Rg), in the case
of the torus T3. In addition, we will stress on the important role of the average .

Section 3 is devoted to the proof of the main Theorem 1.1. Section 4 deals with the local wellposedness
issue of the main theorem : we will prove Theorem 1.2. Section 5 provides the global wellposedness
aspect of the main theorem, which will stem from the proof of Theorem 1.4. Let us mention we
will only give in both two cases the a priori estimates. It means we skip the standard procedure of
Friedrich’s regularization. The point is that we deal with uniform estimates, in which we use a standard
compactness argument.

2. TOOL BOX CONCERNING ESTIMATES ON THE ToORus T3

Proposition 2.1. (Poincaré-Wirtinger inequality)
Let u be in HY(T?) and mean free. Then we have :

[ull2rs) < VullL2(rs).-

In particular, the H'(T?) and H'(T?)-norms are equivalent, when @ is mean free.

An obvious consequence of the Poincaré-Wirtinger inequality is the corollary below.



6 EUGENIE POULON

Corollary 2.2. Let u be in H'(T?). Then we have :

[ = all 2 (psy < [[Vullp2(rs)-

Proposition 2.3. (Gagliardo-Niremberg inequality)
3.1 3_3
In the whole space  IR®: ||ul|pe < [Jul|?y * |Vul[. ", with 2<p<6.

3.1 3.3
On the torus T :  |lu—allg» < |Jul|?, * |Vul;, 7, with 2<p<6.
In particular, for p = 6, we find the Sobolev embeddings on the torus :

lu —al[gs(rs) < Cl|Vullp2ersy instead of = ||ul|zsgsy < C'[[Vull2(gs)-

The following Lemma is fundamental in this paper. It highlights the crucial role playing by the average
of the velocity. Because the framework of our work is the torus, we will need several times in the next,
to have an estimate on the average. Actually, it provides a general method to compute the average of
a quantity we are intesresting in. We will call it the average method in the sequel.

Lemma 2.4. Assuming that |T3| =1 and/ poug =0, we have :
T3

- lpo — pol| 2
[u(t)] < T Vu(t)| 2.

Proof. Let us consider the integral below and developp it

L=t —a)ee)de = [ plt.a)utt.a) - 200 a(0) +p(0) a0
T3 T3

Thanks to (1.1) and (1.2), we have

U ——L — D )(u —u x)dx
i) =~ [ (o= pta)u—0(t.2)d
(16) S [ o=t —a(0

Po
[u(t)] < |_| H(ﬂ p)()z2 [[(w — @) (@)]| 2
Applying (1.3), we have

_ 1
(17) a(t)] < ol llpo = pollz2 [I(w — @) (@) 2
Thanks to Poincaré-Wirtinger, we get :
_ lpo — pollze
(18) a()] < ——=——— IVu(®)] L2

|pol
[l

Proposition 2.5. Assuming that |T?| = 1 and/ pouo =0, therefore ||u(t)]|re < C(po)||Vu(t)| 2.
T3

Proof.
@ < (= DO + @)
(19) < CIVu(p)2s + Mo Pollze

< Clpo) [IVu(t)lIZ:-

IVu(t)]z:
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Proposition 2.6. If [T| = 1 and / pouo =0, then  [u(®)s < Cloo) [Vau(t)] 2.
T3

Proof. Arguments are similar as before. We introduce the average of u and we apply succesively
Gagliardo-Niremberg and Poincaré-Wirtinger inequalities

[z < l[(w = @) (@) £s + |a(t)]
1w = @)@ 22 IV (u = a)@)l| 72 + |a(t)

Vut)]| 2, [Vu(®)]2, + [a(0)
Vut)]l 2 + [a)].

N

(20)
|
|

NN

Concerning the term |u(t)|, same computations as in Lemma 2.4 yield

o )z < IF(E)]12 + 7 oo = ol 1 = 1)

< Clpo) [[Vu@®)] 2

3. PROOF OF THE MAIN THEOREM

Assuming we have proved Theorems 1.2 and 1.4, we can prove the main Theorem. Firstly, notice that
Theorem 1.2 implies

1
(22) Ity € [0,T], u(ty) € H? NBj3,, and llu(t)|| g2 < HUOHB% )
2,1

Moreover, we have a fundamental information on a(ty) :

3
(23) a(ti) € B, N L.

Let us underline that we have, by vertue of Remark 1.2,

1 1
(24) /T T o) ") = /T Thag @ =0

As a consequence, Theorem 1.4 implies there exists a global solution (p, w) of the system (2) associated
with data

(P, w)i=o def <%a(t1)’u(tl)>'

First of all, we adopt the classical point of view : from the solution (p,w) of the system (2), we define

the solution (a,,,w) of the system (4), given by

def 1

1+ ay
Therefore, it follows that the solution (a,,w) is associated with the data (a(t1),u(t1)), which belongs
3
to B2, N L® x H2.

The goal is to prove the uniqueness of such a solution, which will come from the following regularity

3 1 5
VT 20, (aww)eC(0,T],B3,) x C(0,T],B3,) N L'([0,T], B3, )-

Proving such a regularity on the density function and the velocity field provides us the uniqueness by
vertue of local wellposedness Theorem 1.2. The point is the propagation of the regularity of a,.
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3.1. Propagation of the regularity of the density.

3
Proposition 3.1. Let T' > 0 be a time fived. Then, Vt € [0,T], ay(t) € B3,

Proof. Applying the frequencies localization operator A, on the transport equation, we get
(25) 0Dy, + w- VAgay = — [Ag, w- V] ay.

Taking the L?-inner product with Aga, the divergence-free condition implies that

(26) HA awllfe < 1Agawl 2 || [Ag, w- V] |l zz.

2dt

By vertue of Gronwall’s Lemma 6.1 (given in the appendix), we infer that
3q 3q 3q t /
(27) 22 [|Agaw(t)|2 <272 [|Agalty)|z2 + 22 / 1Ag, w- V] ayl| 2 dt'.
0

Therefore, by some classical estimate of the commutator (see Lemma 2.100 in [5]), we get

(28)  law(®)]] )dt'.

1

< el s +C/ law(@)ll g IV ()L +IVaw )l IVl
2

3
2 2
32,1 Bz

S

From the following embedding B; s B%,l which holds in dimension 3, Gronwall Lemma yields

t
(29) law@®I 3 <lla(t)] 3 exp (C/ (IVw(@)llpee + [[Vw(@)] 1 ))dt"
B3y B3, 0 Bga

t t
It remains to be checked that / [Vw(t')|| L dt’ and / [Vw(#)|| 1 dt’ exist for any time. This stems
0 0

1

BG21
’ t

from energy method applying on w, thanks to Theorem 1.4. Concerning the term / |Vw(t')|| edt,
0

an interpolation argument gives rise to

t t 1 3
/\\Vw(t')upodt’</ IVw ()| £ [IV2w ()] edt’
0

/Hw ) pedt + = /HV2 | pedt’,

and thanks to Holder’s inequality, we get

(30)

t
1
(31) /0 IVw(t) e < Otz (IVwt)ll 22y + V2w ()] L2 (1s))-

By vertue of Theorem 1.4, [[Vw|[2(12) < C [u(t1)| 22 and HVQ’LUHL%(LG) < C'Ju(ty)]| g2, therefore,
¢

(32) / IVw(t) || peedt < Ct2 |Ju(ty)]| g
0

3 dt’, arguments are similar to the others ones and lead us to
B

6,1
t 1
Ivu@®) uw Wi @)l at
0 62 BG,oo
1 t
/ ! ! /
: /0 Hw(f)||3aéodt 3 [ )yt

Notice we have the following embeddings

(34) L* < Bg), and L°< BY .,

t
Concerning the term/ [Vw(t')]|
0

(33)



WELLPOSEDNESS FOR DENSITY-DEPENDENT INCOMPRESSIBLE VISCOUS FLUIDS ON THE TORUS T? 9

from which we infer that (thanks to Thereom 1.4)

/ IVl / lwollze + / 12046
6

(35) = lwl ey + 5752 IV%wll 3 zs)

< gtz + 5 ()l

Choosing t small enough such that ¢ < t% we get

/ IVa®)ly ' < Ot fut) g
6

1
This yields to the desired estimate

(36) law®l 5 < lla(t 1)HB§1 exp (C'12 [[uty)]| r2).

This concludes the proof on the propagatlon of thej regularity on the density function.

3.2. Regularity of the velocity field. Holding the regularity on the density, we are allowed to apply

Lemma 1.3, which gives rise to the following estimate, available, for any t € [0,7T], where T is a fixed
finite time.

(37)
fwll 1 Fllwll 55 +||VHH (53 < Cllut)] %+C/ IVw(t)||Le + WE))lwt) 4 dt,

Ly (32,1) Ly (B 2,1 21 B3, B2,1
where

def
W) 2™ aulitp ey + 2™ laullroey (L Nl +llaullh om):
i \Pay
We deduce from this estimate, by Gronwall Lemma,
38) el oy Al s (VT S COut)ll 3 exp ([Vwllpyzey +EW ().
Lty B LA(BE) b, P UV i) )

Concerning the term W (t), on the one hand, by the transport equation, we get immediately

law(t, )2 = llaw(0, ) L2,

, since spaces are inhomogeneous. One the other hand, by an inter-

which is bounded by ||a., (0)]| 3
B3,
polation argument, one has

1
2 2
foll 3 < ollzg ol

,1

1 1
< wll 72 l[wll -

It follows that, by vertue of Theorem 1.4,

[[]]

2 2
(39) sy S Wz el any

1 1 1
< u)lz: (lu@)lz: +[Vut)llzz)-
It results from these simple computations that the factor W (t) is bounded by
Vit € [0,T], W(t) < C|lu(ts)|l g

As it has been already noticed, the term [[Vw|[11 ;) satisfies

t
(40) | IvwE)lmat < €t futen)
0
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It results from all of this, that for any ¢ € [0, 7], we have

1
41 w 1+ |w VII < O u(ty 1 exp (C't2 ||u(ty 2).
)l el s VI < O]y e (O (i) e)

Combining with the estimate on the density function (36), we get ¢t € [0,T1], for a fixed time 7' > 0

1
(42) ||aw|| 3+ |lwl| 1wl s +||VHH 1 < Clluty)| 1 exp (Ct2 ||u(ty)| g2)-
“Uie(B2,) L (BZ)) L}(B2,) L}(BZ,) ( )

This ends up the proof of Theorem 1.1.

3
Bz,l

4. PROOF OF THE LOCAL WELLPOSEDNESS PART OF THE MAIN THEOREM

This section is devoted to the proof of Theorem 1.2. We give only the proof of the existence part of the
theorem, since the uniqueness part has been already proved in [3]. We only mention the start point of
the uniqueness proof.

4.1. Existence part. The existence proof can be achieved by a regularization process (e.g Fridriech
method). The idea is classical : we build smooth approximate solutions, perform uniform estimates
on them. A compactness argument leads us to the proof of the existence of a solution of 4. We skip
this part and provide some a priori estimates for smooth enough solution (a,u).

Let us start by proving the estimate (7) on the density. Applying the frequencies localization opera-
tor A, on the transport equation, we get

OAga+u-VAja = —[Ag,u-Vl]a
Taking the L?-inner product with Aja, the divergence-free condition implies that
HA alzz = —([Ag,u V]a|Aga)
< [1Agallrz [ [Ag, u- V] al| 2.

2dt

By vertue of Gronwall’s Lemma 6.1 (given in the appendix), we infer that
3¢ 3¢ s [* )
2% 1 ayalze < 2% |Agaolla +2% [ 18,0 Vlala dt.
0

A classical commutator estimate (see for instance Lemma 2.100 in [5]) shows there exists a sequence
(cq) belonging to ¢*(Z) such that

3q
22 [[[Ag,uV]allzz <cqllall g ull s
2

3
1 B;

and therefore,
0% / 1120 V) allz2 dt' < sup c,(¢ / Jolt)],3 )] '
2,
By summing on q € Z, we get

HaH 3
BZ2
Bsa

The classical Gronwall’s Lemma yields the proof of (7).

Let us prove estimate (8) on the velocity. Actually, we prove Lemma 1.3, which is a bit more general
than we want to get.
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Proof of Lemma 1.5.
We may rewrite the system (4), after decomposing (1 + a) into (1 + Spa) + (a — Sna).
(43) ou+u-Vu— (1+ Spa)Au+ (14 Spa) VIL = (a — Spa)(Au — VII)
Notice that (1 + Sy,a) VII = V((1+ Sppa) ) — IIVS,,a, which implies
du+u-Vu— (1+ Spa) Au+ V((1+ Spa) ) = (a — Spa)(Au — VII) 4+ IIVS,a.

Let us introduce the notation E,, def (a — Sma)(Au — VII). We reduce the problem to the system

below

du+u-Vu—(1+Spa)Au+ V(14 Spa)lI) = Ep + IIVS,a.
(44) divu = 0
(a’u)\tzo = (a0, uo),

Step 1: Frequency localization.
Applying the operator A, in (44), we localize the velocity in a ring, with a size 29, and we get

W Aqu+ Ag(u-Vu) — Ag((1 + Sma) Au) + Ay (V((1 + Spa)IT)) = AgEn, + Ay(IIVSy,a).

By definition of the commutator Ag(u- Vu) def o VAqu + [Ag,u- V] u, this gives

W Aqu+u VA — Ag((1+ Spa) Au) + Ay (V((1+ Spa)T)) = — [Ag,u V]u + AgEn,
+ A,(IIVSpa).
In particular, a simple computation gives
—Ag((1+ Spa) Au) = —div((1 4 Sma) AgVu) — div([Ag, Sma] Vu) + Ag(VSma Vu).
As a consequence, we get
B Agu + us VAqu — div<(1 + Spa) AgVu + A, (V((l + Spma) H)) = —[Agu V]u + AgEp,

(45)
+ A1V Sya) + div([Ag, Smal Vu) — Ag(VSmaVu).

Let us take the L? inner product with Aqu in the above equation (45). Because of the divergence free
condition, we have

(u- VAqu| Aqu)L2 =0 and (Aq (V((l + Spa) H)) | Aqu)L2 =0.
As a result,

1d
gaplAaule [ (14 8,0) 18,5l do < [Agullze (1 {Ag,w T ulle + 1Bl + 1841 VS0
+ 27| [Ag, Sma) Va2 + |4 (VSma V) 12 )

Let us point that 1+ S,,a =1+ a + S;a —a. As we assume that S,,a — a is small enough in norm
3
Lg°(Bg,), it follows that

1+ Spa >

)

| o

which along with Lemma 6.3, ensures that

1d b

5 g7 18aullze + 5 227 1Agul 72 < [ Aqullr (II [AgsuV]ullp2 + [[AgEmll 2 + | ATV Sma)l| 2

+ 27| [Ag, Sma] Vg2 + |4 (VSma V) 12 )
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Applying a Gronwall’s argument, we get
d b
ZlAqulzz + 5 2271 Agullre < [[[Aguw Vullzz + [Ag B2 + [|24(TTVSma)llr2

+ 27| [Ag, Sma| Vul| 2 + ||Aq(VSma Vu)HLz.

An integration in time yields

t t
2% | Agull 2 + Cb2% / 1Agulle di’ < 2% |Aquollze + / 24 || [Ags - V] dt’
0 0
t q t q
+/ 23 | AyEpm | p2dt! +/ 23 | A, (TIV Spa)]| 12 dt’
0 0

t t
4 [ 2% 1180, Smal Vulliadt + [ 288,(VSia V) et
0 0

Taking the supremium in time and then summing on ¢ € Z provides us the norm ||ul| ( 3 : and thus
L (Bs,
full oy A+ Cbllull s < ol y + 1Emll 3+ TV Spal g
1§ (BF)) L3(B3, B}, "Bz ke
q

+ 322 |[[Ag,u Vull g g2y

(46) s
+222 1[Ag; Sma) V|1 Lz)—i—HVSmaVuH sl

qu 2,1

Step 2: Estimate of each term in the right-hand-side of the above inequality.

* Estimate of || Ey,|| 1
L}(B3,)
Product laws in Besov spaces (cf Lemma 6.2 in Appendix) yield
1Emll , 3 <Clla—Snmal [Au—VII|| 4
) LB " 82 L}(BE)
<Clla=Snal s (IVT0, o+l ).
Ly (Bzy) Li (B3, L (B 1)

* Estimate of ||TI VSmaH :
t (BQ 1)
Concerning the pressure term, as it is defined up to a constant, we can assume it is mean free. Same

remark holds for the term HVSmaH Bl since obviously the term VSpa is mean free. In this way,
the norms [|-||p1_and [ ||, ~are equivalent. By vertue of paradifferential calculus in inhomogeneous
s 2,2

Besov norm, we get

[TLV Spmall sh, S <O ipy, IVSmal sy,
(48) SO gy, IVSmall gy,
= C||VIL |12 IV Small g1
which leads to
[IIV Sall Lk S CIVIT [z z2) IV Small oo g1y
2,1

* Estimate of |[VSna VuH 4 - Above arguments still provide
BQ 1

IVSma VUHBQ%1 <C ||VSmQHB%’2 HVUHB;’2

(49)
< CVull g [V Small g1
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Therefore, we deduce that

1VSmavull , 4| < Cllullzygrm 19Smaleqn),

3
B31)

* Estimate of 23 || [A su- V]u|p172y. By vertue of commutator estimate, we infer that
q Li(r2)- DY
qEZ

1[Ag - Vul 2 < Cdy 273 IVull g lul

1
2.1 B22,1
Therefore, we deduce that
t
q
> 2% |[[Ag,u Vw2 < C /0 IVu(t) | oo lu(t)]]

q€EZ

dt’.

3
By,

* Estimate of 23 ||[A ,Smal Vullr1.72y. We can prove the estimate below (see Lemma 6.3
q Li(L?)
qEZ

39 m
(50) D27 ||[Ag, Sma] Vaul| g2y < C27 [lal e (rov) el

3+ 22" ||al| Lo £2) lll Ly o2y
qu t(BQ,l)

Plugging all the above estimates in (46), we finally get

Ch < s s (vn
Jull + Cbllull s luoll 1+ +la malle(BEI) | VII]|

1 5 5
L (Bz,) Li(B3,) :

) by Pl s )
B2, Lt(BQ,l) Lt(Bg,l)

1 t
t
(51) + /0 V() a3 dt’ + 27 all ez
1

. 3
5} L}(B34)
+ 227 [lal oo az) (Il iy + IV 2z )
where we have used
19 Smallze iy = IV Small e 2y < 2 lall oz

Step 3: Estimate of | VII|| 1.
L{(B35)
We take the divergence operator in (43) and thus

div((1 + Spma)VIT) = — div(u: Vuu) + Au- VSpa + div((Sma — a)(VII - Au)).
Applying the operator A, and taking the L? inner product with A,II yield
(A (14 Sma)VIT) [AGT) 1o = (Ag (- V) [AgVIT) 1o + (Ag (At VSpa ) |ATT) 5
+ (A¢((Sma — a)VIT) [A VD) 5 — (Ag((Sma — a)Au)|A,VIT) .
In particular, the left-hand-side can be rewritten and bounded from below as follows
(Aq((l + Sma)VH) [AVIT) , = (AVITAGVIL) , + ([Ag, Sma] VITIAGVIT)
+ (Sma AGVII|AVIT)
= ((1 4 Sma) AGVIIAVIT) ,, + ([Ag, Sma] VII|A,VIT)
> b[|AVIT|72 + ([Ag, Sma] VII|AGVIT) 5.

2=

It follows
1A < 118V (14, (ur Vu) 22 + 1A (Sma — a)VII) 2
(52) 1184 ((Sma — a)Au) [ 2 + | [Ag, Sma] VI 12 )
+ 1 AgIL 2 [|Ag (Au- VSpa) || 2



14 EUGENIE POULON

In particular, Lemma 6.3 provides the inequality below
1AMz < 277 [|[AgVII| 2,
which gives rise to
(53) bl|AgVII| 2 < | Ag(ur V)l 2 + [ Aq ((Sma — a)VII) [l 2 + [ A ((Sma — a)Au) | 12
+ | [Ag, Sma] VII|[ 2 + 279 | Ag(Au VSpa) || 2.

Multiplying by 23 and summing on g € Z, we have

bIVII| g S llw Vaull_y + [I(Sma—a)VII| 3 +[|(Sma —a)Aul 4
BQ 1 21 2 1 BQ,I
+ | A VSmall 3+ 25| [Ag, Sma] VII|| 2.
By {
’ qEZ
Notice that
1A VSmall__y < ClIVSmallg | Aulzz.
21
On the one hand, product laws in Besov spaces (cf Lemma 6.2) give
lu-Vull g < lull_y [1Vulze.
B3y B2,
1(Sma —a)Bull_y < Cll(Sma—a)ll g lAu]_y -
21 BQl 2 1
1(Sma —a)VI| 3 < Cl(Sma—a)l 5 (VI ;.
21 B21 2 1
On the other hand, a classical commutator estimate yields
> 23| [Ay, Sma] VIT|| 12 < C [V Smal g [|VIT] 2.
qE€Z
As a result, previous estimates imply
(54)
b |VII 1 / u(t 1 ||IVu(t)||fee dt’ + [|(Sa —a 3 ||Au 1
191, 1 S [ 1@y 19 I(Sma =l _ o 18w,
+ /(S — a>llL§o oty IV o+ 19 Sy (19T lzguny + 8wl )

The smallness condition on ||(Sy,a — a)l] 3 allows to write
L (B

2,1
qunu / el g 19Ol dt'+ [Sna=a] s ol
5 L " iy " sl
+ uvsman@oml) (197110 3 2y + uAunLg(Lz))-
Obviously, HVSmaHLoo A1y S c2°m |al| o (z2)- Therefore,
b
— [|VIL \V4 o dt’ Sma —
3 IV, / L T [CA AT B

1 gm uaumm (19T 0y + ol e )

1
This ends up the estimate on the pressure term in L%(B;l)—norm. It is left with estimate the pressure

term in the L} (L?)-norm, in order to get rid of it in the above estimate, and thus, it is likely to applying
with success Gronwall Lemma in the estimate of the velocity term.
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Step 4: Estimate of ||VII|[L1(2).

Once again, we take the divergence in the momentum equation, and the H ' -norm, so that we get

| div((1 4 Sma)VI) || -1 < || div(w V)| g-1 + [[Aw VSpal -1 + || div<(Sma —a)(VII - Au)) | =1

b
We recall that the smallness condition implies that (1 + Sp,a) > 3 and thus

b[|VIL|| 2 < C||(1 4 Spma)VIL||2 < C|lu- Vul| g2 + [[Au- VSpal -1 + [[(Sma — a)(VII — Au)|| 2.

Thanks to the smallness condition and product law, we have
(56) SHVHHLQ S llullgs [[Vulls + [Au-VSmall -1 + |(Sma — a) Aul| 2.
On the one hand, Gagliardo-Niremberg inequality (notice that average of Vu is nul) yields
gHVHHLQ < llullzs V2ull 2 + [|Auw- VSpall -1 + llal| e || Aul| 2.
On the other hand, we prove easily thanks to the divergence free condition that
[Au-VSmall g1 < C lal|zee [[Au] 2.

Despite the fact that average of u is not nul, we have ||u||z3 < C(po)|lu|]| 1 . Hence, one has

3
Bz,l

b
(57) SIVIT 12y S ([l + 2)lallzeo (nooy) 1l 1 g2y -
2 t 1 (H?)

1
L (B31)

Plugging (57) in the estimate (55), we finally get an estimate of the pressure, in which the right-hand
side is independent of the pressure: we got rid of the term ||VII||z2. Indeed, (55) becomes

" SV, o5 [y 19Ul el el s
+ 2% ||aHL§°(L2) ull £ 42y <1 + ||UHL?0(B2%I) + ||aHL§°(L°°))-
Plugging (57) in the estimate (51), we also get
(59)
lull b, €Ml g < ol y + o= Sl (K9, g+l g )

Vu(t)| e ||u 1 odt + 2" |al| feo (e || 3
/ IVttt lallszecuy el 1

+ 22" lall o g2 el g g2y (1 + [l +2]lall e p=) )
¢ (H?)

1
L (B31)
Suuming (59) with (58) and using obvious estimates on the transport equation below
lallLge(zoey < llaollzee  and lal|pge(12) < laoll L2,

leads to
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lull o3 +COlull —HVHH1 1 S luoll g 5
Ly (B3y) 21) Li(BE,) "~ B;
— VII
+la mauL N "LI(BQ%l)*"““Lg(BQ%l))
IVu@)llzee lu@)l g dt" + 2™ [laollpee lull | s
/ 322,1 Ltl(B22,1)
2m+1 .
2 ol ol (1 ol g Do)
- 2 ).
g (Il 1+ 2leol)
Once again, the smallness condition simplifies the above estimate
b t
lull 3 +CbHUH A VI g oS fluoll g +2/ luC)I 5 Nu@) 4 dt
L; (B2,1) 21) Ly (B2,1) B2,1 0 B2,1 B2,1
(60) (22 ol Bl ey (L4l laol)

+2% [laofl e flull |, g -
L{(B3y)

Let us recall somme interpolation properties. The following inequalities hold on the torus:

1 3 1
[ullgrz < Cllull” ) Jlull® s and HUHBQ% CHUHQ lull ¢

2,1 32,1 )1 2 1 32,1

They are due the product laws in Besov spaces (cf Lemma 6.2). For instance, the first one stems from
[ull go = IVull g < Vullgr < IVallpy, < CHVUI|4 1 IIVUH“
B, 1 2,1

Obviously, by integration in time and thanks to Holder’s inequality, we have

3 1
lll 3 o2y CHUH“ Mt L and Jul g <Clal? , ful?
L) B LB LH(BE) BB LR
By vertue of Young’s inequalities
- z? n 3y% q - z? n Y
Estimate (60) becomes
b
full oy 4+ Cbllull | s —HVHH 1 S uoll g /HVU Mo u)ll 4
Lge (322,1) L% (322,1) 2 22 1) 22 22,1
+ L+ 2% laollge) lull |y (4 flull® 4 Hllaole) + —H H 3
( 2yt € LBl =) + (B32)
2%m ~ - :
+ 2 ool ol g+l
which can be simplified by
b t
Jull 1 +C—HUI| gt VI, S ol s +2/ IVu()lzee [lu@) ) dt’
L?O(BQ%I) 2 22 ) 2 21) 221 B22,1

n (1+ 25 |lag||%,) Hul! L+ full* o+ llaol|7)

%
21) t 2,1

+ 22 laol|% oo |Ju 1.
ol | ||L%(B§1)
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This concludes the proof of Lemma 1.3.

Continuation of the proof of existence part of Theorem 1.2. This stems from the obvious fact :
3
B3, — L* and thus
IVullre <[Vl 3 -
B3,

Therefore, we get

b
[Jul] 1 +CbHuH 5 —HVHH S luoll 1 +2/ [Ju(t’ o3 Hut( Oy dt’
Lg* (B, (B#,) 2 321) BZ, BZ,

+(1+28m||a0\|L2)||uH (+Hu||4oo v+ llaol|Ze)

1( 21) Lt B271

+ 22" [lao | s [ull

LB
As a result, we get
(61)
full 4 O ful I R / Jull 5 el 3
L?(Bé’,l) LY(B 21> "3 Li(B2) "~ BZ, 22

o NGI 22muao||%oo+(1+28m||aou‘z2>(1+||uu;(
2 t

Let €9 > 0. Let us introduce the time T such that

e

To def sup{0 <t < T™ | [Ju(t) B% <eo}-
Hence, for any ¢ < TO, we have

!
el shy

/ [t % 22m Hao\\%m + (1+ 2% lag||72) (1 + €5 + Haou‘im)> dt'.

2

[

l\DIG“

VI, S ol +2€0/ lu(®)] 5 d
21) 2 2

Cbh
Choosing ¢¢ small enough, namely gy < R Gronwall lemma implies that for any ¢ < Tp,

b
t5 HVHH S Juol|

3
BQ

%
21) 1

b 4
xexp ((To (2°™ aol|F + (14 2% [laolz2) (1 + (7) + laolZ<))-

As a result, we get the a priori estima on the velocity

b
63 Rorany ¢<To, ful 4+l 5 45 IVT < Cluol
( ) Lge( 22,1) BQ 1) 2 Ltl(322,1 21
This concludes the proof of (8) : until the (small) time Tp, the solution is controlled by initial data,
up to a multiplicative constant. This ends up the proof of the local-existence part of Theorem 1.2.

4.2. Uniqueness part. The uniqueness part has been already done in [3]. We refer the reader to it
for more details. Let us recall some details. Let (a1, u1, VII1) and (a2, us2, VII3) be two solutions of
the system (4), satisfying the smallness hypothesis [[a — Spal| 3 < c and such that

B

2,1
3 1

(64) (ai,u;, VIL) € C([0,T], B3,) x C([0,T], B3,) n L'([0,T], B3,) x L'([0,7], B3,)-

[un
(s
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We define as one expects

(6a, du, VOII) def (ag —ay,uy — uy, VIIp — VII;),

so that (da, du, VIII) solves the following system

Oi0a + ug- Voa = —du - Vay
(65) Opdu + ug - Vou — (1 + ag) (=VOIl — +Adu) = —ou-Vuy + da(Au; — VII;)
div du = 0
(667” 5u)|t:0 = (0’ 0)

We prove that such solution of this system satisifies

1

3 _1 3 _1
(66)  (da,d0u, VOII) €, C([0,T], B3,) x C([0,T], B, ) N L'([0,T],B3,) x L'([0,T],B,¢)-

Remark 4.1. Notice that, owing to the presence of a transport equation, we loose one derivative in
the estimate involving da.

5. PROOF OF THE GLOBAL WELLPOSEDNESS PART OF THE MAIN THEOREM

This section is devoted to the proof of Theorem 1.4, which provides the global property of the main
Theorem 1.1.

Op +u-Vp = 0
(67) p(Ou+u-Vu) — Au+ VII = 0
divu = 0

(p; ) =0 = (po,uo)-

In a sake of simplicity, we skip the regularisation process (Friedrich methods) and we only present the
a priori estimates for smooth enough solution (p,u), which provide the existence part of Theorem 1.4.
Concerning the uniqueness part, we refer the reader to the paper of M. Paicu, P. Zhang and Z. Zhang
(see [17]). We underline that Lagragian coordinates are necessary to prove the uniqueness, owing to
the very low regularity hypothesis on the density( which is only supposed to be bounded from above
and from below). Let us proceed firstly to an L2-energy estimate, which leads to the result on By.
Then we will get estimate on By, thanks to an H!-energy estimate.

e Proof of (12). Taking the L? inner product of momentum equation with u in the system (67), we
get :

(p(Ou+u-Vu)|u),, — (Aulu),, +0=0.

1d
We check that (p(dpu+u-Vu)|u),, = 5@”@“”%%

This stems from the computations below

2
_1d
S 2dt T3

1 1
(p(@tu+u-Vu)]u)L2:—/ p Os|ul? dz +—/ p u-Vul* dx
T3 2 T3
2 1 2 1 2
plul® — = Oplul®de+ = [ pu V|ulde.
2 T3 2 T3

However, / pu-V|u* = —/ (u- Vp)|u|?. Therefore, the transport equation yields
T3 T3

1d
2dt T3
1d

_ - 2
24t Tsp‘u’ )

(p(Ou+u-Vu),u),,

1
pluf — 3 / (@t Vo) ul?
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Finally, an integration in time provides the desired estimate

1 ¢ 1
(68) S IVAu®|z: + /O [Vu()lIZ2 dt' = S[lv/pous|l7-

This concludes the proof of (12). Now let us proceed to the proof of (13).

e Proof of (13). The idea is the same as the previous one : we take the L? inner product of momentum
equation with Jyu in the system (67), we get :

1d
(\/ﬁ&gul\/ﬁ&tu)L2 + (\/ﬁu-Vu\\/ﬁatu)LQ + 3 EHVu(t)H%Q =0,

which leads to

| =

IVu(®)z2 + Ve du®)72 < IVpu- Vu®)| 2 [Ivporu()| 2
[Vou®)l s [Vu®)lLs vpdru(@)| 2

Applying Proposition 2.5 on the term ||u(t)|| s and Proposition 2.3 on the term ||Vu(t)||zs gives rise
to

DN | =
QL

(69) ¢

<
<

| =

IVu(®)Z2 + Ve dwu®)|72 < Clpo) [Vu(®)|l 2 IIVU(t)H%z HVQU(t)H%z 1V/pOru(t)]| 2

3 1
< Clpo) Va2 Va7 Iv/pOru(t)] 2

DO | =
=N

(70) t

Then, Young inequality yields

1d
2 dt

1 1
IVu®)Z + 5 IVPOu®|72 < 5 Cloo) IVu®) 72 1V u(®)]lze-

() ;

We have to estimate the term ||V2u| ;2. Applying the L?-norm in the momentum equation, we get
1

IV2u(t)l| 2 + [IVIL(E) ]| 22 < [lp(t)]| 7o <||\/5<9tU(t)HL2 + H\/ﬁU(t)llLGHVUHLs)-

Once again, by vertue of Proposition 2.5 and Gagliardo-Niremberg inequality, one has
1 1
IVl 2 + ([ VTT]| 12 < C(po) <H\/ﬁ@tU(7f)||L2 + [Vu®)l 2 [[Vu®)]|7 ||VQU(75)||22)-
Young inequality implies
1 1

(72) SIVZu) 2 + IV L2 < Clpo) VpOru(®) 22 + 5 [IVu(®)[72-
Plugging Inequality (72) in (71) and applying Young inequality gives

1d 1 1
5 7 IVu®lze + 5lvedu®)z. < Cloo) [Vu®)l: + 71V o7

As a result, we have :

(73)

1d 1
(74) 5 7 IVuOIi: + ZIveou®Ilz: < Cloo) [Vu(®)]z:-
We sum (74) and (72) and we get :
1d 1
5 7 IVuOILz + ZIveou®Ilz: + [Viu®)lZ: + VB2 < Clpo) (IVu®)l2

1
+ 5 IVPdu®) 172 + [IVu(®)l72).
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Finally, we have by integration in time
(75)

1 ! 1
319Ul + [ (§IVROOIEs + IVAu(E)e + I VIEE:) b < 5 |Vl

t
+ Clon) [ IVa®)]5 at.
0

t
Let us focus for a while on the term / [Vu(t)||S, dt’. Tt seems clear that
0

t t
/0||vu(t’)\|§2dt'< ||vu\|§§o(L2)/0 [Vu()||2.dt,

which leads to, by vertue of (13) and définition of By

t
/O IVu(®)|Sadt’ < [luol2: B2().
Finally, we get
By(t <1 V|2 C 2, B3(t
1(t) < 2|| ugl|72 + Clpo) ||luol|72 Bi(t).

As long as the smallness condition on wuyg is satisfied, we obtain Estimate (13), which conclude the proof
of this estimate.

e Proof of (14). Firstly, we derive the momentum equations, with respect to the time ¢. Then, we take
the L? inner product with dyu.

The derivated momentum equation is given by the following formula :

(p(?ttu|8tu)L2 — (A@tumtu)LQ = —(atp (atu—l—u-Vu)|8tu)L2 - (patu-Vumtu)LQ
— (pu-V@tu\atu)LQ.
By hypothesis on the density, the left-hand side can be bounded from below by :
m 2 2 m 2
B (6wul72) + [[VOul72 < B 0wull7: — (p O~ Vu|du) ., — (p u Vou|du),,
— ( Op (9tu|8tu)L2 — ( Op u-Vu) |8tu)L2.

&=

Let us point out that (p u- Voyu | Opu ) 2 18 in fact nul, by vertue of the divergence free condition.
Taking the modulus, applying triangular inequality and finally, using the mass equation on the density:

| =

m
2

m
(10wul72) + [VOwuZ: < 5} |72 + /S‘P(atu'vu) 3tu‘d$
T

=Y

t
(divipw) | (Or)?) .

+ ‘( div(pu) u- Vu) | Opu)

(76) *

6
< Z I (1),

k=1
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with
1(t) = 5 |90l 72 da,
p (Owu - Vu) 8tu‘d
T3
(77)
/ p((u-Vu)-Vu)- atu‘ dx

/ p((u @) : ) - O
Iﬁ(t)_/W (u-Vu) - (u- V(Btu))‘d

As far as I5(t) is concerned, firstly we apply Holder’s inequality and we get

t) = / !p (Oru - Vu) 8tu‘ dx
T3
< M {|Bpu(®)l| L2 18ru(®)l| Lo [V u(®)| s

(78)

Once again, classical Sobolev embedding can not be applied directly to the term ||0pu(t)| ;6. We shall
consider the term dyu(t) and adapt Lemma 2.4. Firstly, notice that / p(t,x) dpu(t,x) dz = 0, due
3

to an integration of the momentum equation in (67)). Hence, the average method gives rise to the
following computation

/11‘3(p(t z) — p(t) (Opu(t, ©) — Opu(t)) da —/ p(t,x) Qyu(t,x) de — p(t) Oyul(t).

T3

By vertue of remarks 1.1 and 1.3, one has
10| < —llpo = ol 00u(t) = OO
which gives, thanks to Poincaré-Wirtinger
90| < = I = ol V02

Therefore, we deduce from the above computation that

[0cu(t)]l s < N|0pult) — du(t)re + [Oru(t)] < Clpo) [V Oru(t)]|Lz-
Thanks to Gagliardo-Niremberg and Young inequalities, we infer that

Iy(t) < Clpo) |0put)ll 2 IV Ou()l 22 [[Vul) | 22 IV2u(t)]| 72
1
(79) < Clpo) 19172 [IVu@®) 2 [ V2u®)llz2 + 7 1VOu(®)]7:

1
< Clpo) o) 32 (IVa(®)32 + I92u(@)132 ) + 71V 0ru(t) 2.

Concerning estimate of I3(t), we get

= /S‘p uV(@tu(t))Btu(t)‘ dx
T
M Judyul| 2 [ VOrul 2

(80) .
<M ul g2 |yl o V0w 2
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Applying the average method for ||Oyu(t)| e and ||u(t)| 3, we infer that

I3(t) < Clpo) [lu(t) | s [V Oult) |72

(81) (po) IIVu(t)]| 2 [V u(t)]2.

c
c

NN

Concerning I4(t), I5(t), and Ig(t), previous computations hold (applying Proposition 2.5 and Young
inequality) :

:/ [ p (V) Vu) - dyu| da
T3

) <M Ju®) s V()3 [0l
< Clpo) [Vut) |2 IV%u(t) |32 |0 ()]
1
<1 Cl0) (IVu®IFe + 1V2u®)32) (IVu®F: + 1032 ).
/ ‘p ) : VHu- ol 1, da
<M ju? Opu(t) | [ V3u ()]
(83) < Clpo) u®) I3 [V Oru(t)l|z2 |70 ()] 2
< Clpo) IVu®) 32 | 0u(®)] 292l

(
1
< Clpo) [Vu@llze [IV*u(®2 + 7IVOu®)[72-
Similar computation holds for the last term Ig(¢).
(t) = /3‘;) (- V) - (u- V(8u))| dz
T
(84) <M u? Vu(t)| 2 [IVOu(t) | 2

1
Clpo) [Vullzz IV*u(®)72 + IVOu®) |12

Let us keep on the proof. Plugging these above estimates into the (76) gives rise to

(85)
m d 2 2 m 2 2 2 2 2
5 = (I9llfe) + [V0m(®) 22 < S 19ru®F2 +Cloo) [9ru®)F (IVu®IF + V()] )
1
+ £ IVau®) 3+ Clpo) Tut)l2 | VOru(t) |32
+ Clpo) (IVu®IB + V@) (V22 + 0@z )
1
+2C(po) IVl IV2u(t)|32 + 5 IV 0ru(t) |22,
so that
m d

L (0()3) + IVauOI < 5 103 + Cloo) Va2 V()3
+2C(po) [Vult)|2 IV2u(t) 3
+Clpo) (IVu®IEe + IV2u@®I3: ) (IV2u(@) 2 + 10z ):
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By integration in time, we have :

m 9 1 ! NI / 2 m [t N2 /
5 N0z +5 ; IVOu(t)l[72 dt” < lluollzre + 5 ; [Oru(t)| 72 dt

+ Clon) [ IV [ V0] dt
(86) !

t
+Con) [ IVl 93]z df
0
t
+ Clpo) /0 (V)3 + 1V2u@)132) (IV2u(@) 22 + 100(t)]3:) dt'

t
Concerning the term / IVu(t) || g2 |VOu(t) |32 dt’
0

t t
/0 IV ()2 IO 12 ¢ < [ Vull 22y /0 IV Ou()|2. dt,
which becomes, by vertue of Theorem 1.4,
t t
| 192 1900 3 dt < C 1 uallze [ 90| e
0 0
Same argument combining with Theorem 1.4 gives rise to
t
/O [Vut)|| 72 IV2ut)||72 dt’ < C||Vuol|f..

As a result, Inequation (86) can be rewritten as follows ( providing we choose ||Vug||r2 small enough)
1
3

t
- /0 (IVa@)IZ2 + 1V2u@)132) (IV2u(@)2: + 100u(t)2:) dt'
Moreover, the momentum equation given by

—Au+ VII = —p(@tu—i-u-Vu),

which along with the classical estimates on the Stokes system, ensures that

3 1
IV2u(t) 2 + [ VII(t)]| 2 < © (H(?tU(t)HLz + HVU(t)HizIIVQU(t)Iliz)

m
= I0ru(®)]|72+

t
m
. [ 190t 5 ol + 5 I9w0lEs + IVl

(87)

1
S 10u®llz2 + IVu®lz2 + 51V u(®)] e

So that, we get

1
(83) 5 IV2u(®)[ g2 + [VI@®)l|z2 S 0u(®)]z2 + [Vu(®)72-
By vertue of Theorem 1.4, we obtain
1
(59) sup. (5 IV%u(@)[s + I9T0)]3) S sup (10l22) + [Vuol 8
te[0,7) t€[0,7)

Remark 5.1. Let us point out that searching an estimate of ||lull 2 sy is a natural idea here since

the initial velocity ug belongs to the space H?. But actually, it is not relevant. Indeed, to perform it,
we shall use the theory of Stokes problems. We shall begin derivating the momentum equation with
respect to the space, and then, we shall take the L? norm. But, such an approach is doomed to fail,

because requires an estimate on sup ||Vpl||Lee, which is not our case here, since the density function
te[0,T)

only belongs to L>=([0,T] x T3).
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Once again, the momentum equation gives
—Au+ VII = — p(dyu + u - Vu).

We take the LS-norm and use the fact that ||u - Vu(t)|| ;s < C ||V (u- Vu(t))|| 2 since u - Vu = 0.
IV2u®)llzs + IV2p(t)llze < llp(Opu + u- V)| s

< o) (1902 + [(Tu(®)? 12 + ) (T2

< C(po) ( IVOu)lze + IVu@®)ls Va2 + llu@)lzs HVQU(t)HLG)
Applying Proposition 2.6 to the term ||Vu(t)| 13, we get

IV2u®)llgs + IV2p(t)llze S IVOu(®)] L2 + ||Vu(t)||%2 ||V2u(f)||%2 + [[Vu(®) | g2 [V2u(t)|| s

By integration in time :

t t t t
/ IV2u(t') |2 dt’ + / IV2p()| 2 dt’ < / IV Opu(t) |25 dt’ + / V()2 [V 2u(E)]2a de
0 0 0 0

t
IVl [ IVP ot

On the one hand, Theorem 1.4 provides ||Vu\|%%o(L2) < |[Vug||72, which implies that

t t
IVullig sy [ IVuOIF0de < [Vuolde [ 920030 dr.

On the other hand, applying Estimates (12) and (13) of Theorem 1.4, to the term

t
/ V()2 V2|2 de,
0

leads to

t t
LIl IVl de = [ 19z 1920 19700 o
1 1
< s (IVuO13) ([ 19 ae)* ([ 19700150 at)

t€[0,T]

< lluollz2 [IVuoll 2 sup ([[V2u(®)]72)
te[0,T)

As a result, if |Vug||z2 is small enough, we have :
t t
o
S [ IV uOledt + [ IV S ol [Vwlz s (IV2()]:)

(90) t€[0,T]

t
+ [ 9o ar.
0
Summing (90) with (89) and (87), we recognize By(T) and we get
m
By(T) 5 [Vuolzz + [IVuollzz + lluolz
L (vue)2 V2u(t)|72) dt’ V2u(t)|13 ()|

+7 [ UVu@)llze + [V7u)] sup [[V7u(t)[[z2 + sup |[[dpu(t)]|z.

0 t€[0,7) t€[0,T]

t
+/ IVOwu(t)[72 dt" + [luollL2 [VuollLe sup ([IV2u(t)]72)
0 te[0,7)
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The smallness condition on ||ug||z2 [[Vuo 2 implies
m
By(T) 5 Vuollgz + [IVuollzz + lluollz

1 t
3 | (Ivu)IEs + 19 ) (

Now, we apply Gronwall lemma, and we have :

sup [[V2u(t)|} + sup [9u(t)|3).
te[0,T] te[0,7)

t
m
1) Bo(T) 5 (5 IVuold + [Vuoll§e + lluollfe ) exp( / IVa(®) |3 dt -+ [IV2u(t) |32 dt').
0
Once again Theorem 1.4 gives the expected estimate in the exponential term. Finally, we get

(92) By(T) S (1+ lluollf ) uolde exp (Jluoll3s + [ Fuol32 ).

This concludes the proof of 14. Up to the regularization procedure of Friedrich, we have proved the
global existence of solution of 67, with data (pg,ug) satisfiying hypothesis of Theorem 1.4.

6. APPENDIX
Lemma 6.1. (Gronwall’s Lemma,)

1d
Let f and g be two positive functions satisfying 3% f2(t) < f(t) g(t). Then, we have

£t < £(0)+ / (et

Proof. We introduce the function H (¢ def / f "Ydt'. As defined, we get immediately

(93) H'(t)=2f(t)g(t) and f3(t) = f*(0) < H(t).
This implies that for any € > 0,

f(t VH(t) + f2(0) + 2.
Moreover, we have in particular H'(t) < 2v/H(t) + f2(0) + €2 g(t) and thus

\/H + f2(0) + 2 < g(t).

By integration in time, we have

VH() + f2(0) + €2 < VH(0) + f2(0) + 2 + /tg(t') dt’.
0

Finally, we have for any ¢ > 0,

£ < VPO 12 + /0 ot dt,

which proves the result. ]

Lemma 6.2. The following properties hold
(1) Sobolev embedding: if p; < py and r1 < 19, then

s s—N(%—é)
Bp1 1 — BP2,7"2 .

(2) Product laws in Besov spaces: let 1 < r,p,p1,p2 < +00.
If 51,89 < % and s1 + s9 + N min(0,1 — %) > 0, then

||u'U|| sl+527ﬂ

v < C lull gy, 0],
p,T
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(3) Another product law: if |s| < %, then
luollgy, < Clulls;, HUHBP%OO

N

(4) Algebric properties: for s > 0, B;foo N L™ is an algebra. Moreover, for any p € [1,400, then
N N
P

B < Bloo N L™,

Lemma 6.3. Let C a ring of R®. A constant C exists so that for any positive real number \, any
non-negative integer k, the following hold

If Suppd C AC, then C UV FXN|ullpe < sup [|0%llze < CYHEN|ju|fa.
|a|=k
Lemma 6.4.

(94) 3227 ||, Smal Vul| 12y < C (27 Nl zge(zoe) 1wl
q€Z

L s + 2 Nallug e lelly e

Proof. By vertue of Bony’s decomposition, the commutator may be decomposed into
[Ag, Smal = Ay(Sma Vu) — SpalA,Vu
= Ay(Ts,,aVu) + Ag(TyuSma) + AqR(Sma, Vu)

(95) —15,,a8qVt — TA,vuSma — R(Sma, AjVu)
= [Ag. T5,0) Vu + Ag(TuSma) + AgR(Sma, V) — Th v, Sma,
where T9b def Tub + R(a,b). Let us analyse each term in the right-hand-side. Firstly, we decompose

the first commutator term into
[Aq, TSma] Vu = Aq(TSma Vu) — TsmaAun
- Aq< Y s /_1SmaAq/Vu) — Y Sy iSmaldgAVu
(96) lg—q’|<4 lg—q'|<4

= > [Ag Sy—1Sma] AgVu.

lg—q'|<4

Now, let us focus on the commutator term [Aq, Sq/,lSma] Ay Vu. We shall use definiton of Littlewood-
Paley theory.

(B, Sy 1Sma] Ay Vu = Ay (Sy 18ma 8y Vi) = Sy 18ma Ay Ay Vu
= 0(279|D]) Sy—15ma Ay Vi — Sy_1Sma (27 |D]) Ay Vu.

(97)

In particular, writting h def 7 “Lo(|-]), we get

©(279|D|) Sy—15ma Ay Vu(x) d:ef/ 294 (2%y) Sq—1Sma(x —y) Ay Vu(x —y) dy

(98) 3

= / h(z) Sq—1Sma(r —2792) Ay Vu(x — 2792) dz.
T3

Likewise, we have

Sy—1Sma o279 D)) Ay Vu(z) & Sy 1S (x) / 214 1 (29) Ay Vu(z — 1) dy

(99) R
= / Sq—15ma (z) h(z) Ay Vu(x — 279%) dz.
T3
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Therefore, applying the first-order Taylor’s formula, we get, for any x € T3,
(100)

[Ag, Sy—1Sma] Ay Vu(z) = / hz) [Sy—1Sma(z —2792) — Sy_1Sma ()] AyVu(z —272)dz
T3

1
=— / / h(z)27% -V Sy_1Sma(x — 279 2t) Ay Vu(x — 27%%) dz dt
T3 Jo

1
=—-271 / / 207 1(29y) y- VSy_1Sma(z — yt) Ay Vu(z — y) dz dt.
T3 Jo
Therefore, we infer that, for any = € T3,
| [, Sy-15ma] Ay Vulz2 < IVSy-1Smalli 271 / 207 (27) h(27y) Ay V(- —y) dz|| .
T3

Applying Young’s inequality (L' x L? = L?), we infer that
(101) | [Ag; Sy—1Sma ] Ay V|2 < C||[VSy_1Smal|e 277 HAq/VuHLQ.
Obviously, we have
IVSg—1Smallzee <[[VSmallLe <27 [|af Lo
Finally, we get
| [Ag, Sqy—15ma ] Ay Vullrz < C2792™ ||al| e || Ay Vul| 2,
and thus,
(102) 1A, Tspa] Vullz <C Y7 27927 lal| o [|Ag V| 2.
la—q'|<4
As a consequence, we have
27|18 Ts,.a] Vulie <C Y 2927927 Jallzw 27 2% A V2
lg—q'[<4

<O fale 3 25 2% A, V.

lg—q'|<4

(103)

By definition of the Besov norm, there exists a serie (¢, )4ez belonging to ¢1(Z) such that

2% Ay Vull < Coy [Vl 4.
B22,1
And thus,
3q a—d
(104) 27 || [Ag, Topa] Vullzz  C2" flallie [Vull Ly D0 27 ¢
2,1
" la—q'|<4

We notice, by vertue of Young’s inequality, that the term Z 22" cq belongs to (Y(Z). Indeed, let
la—q'|<4
us define d, def Z 23" ¢y Thanks to Young’s inequality, we get
la—q'|<4

k
HdCIHél(Z) < HCCIH@(Z) X Z 22 < C.

—4<k<4
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Finally, we get
3q
> 272 [[[Ag, Tsa] V12 < C 27 |[a] oo IVul 3 > dg
2,

(105) q€Z 1 gez
<C2" i [Vul_, -
By
By integration in time, we infer that
3q
(106) S 2% 18y, T Vulzgzs) < O2" laleaon 1Vl Ly
t 2,1

qEZ
This gives the first term in the Lemma. The second term will stem from remainder terms in the Bony’s
3
decomposition. More precisely, concerning the term Z 27 ATy, Smal| Ll(r2), we have by definition

qE€Z
3q def
Y22 A TvuSmal L2 = IT9uSmall s -
qu 2,1
By vertue of Theorem 2.82 in the book [5], we have
(107) HTVuSrnallBQ%1 <C HVUHB;i 1Smallpz -

_1
Moreover, Bernstein result implies the following embedding 35,2 < B.%. Therefore, we have

(108) IT9uSmall 3 < ClIVullpy,=pr [1Smallps ,-

3
2
2,1

Applying Poincaré-Wirtinger to ||Vul|g1, (since the average of Vu is nul), we infer that the norms
|Vul| g1 and ||Vu|| ;. are equivalent and thus
(109) ITouSmall g < Cllull gz 1Smallp,-
2,1 ’
On the other hand, it seems obvious that [|Sal[pz < ]]Sma\\B§2 < ||Smal| g2 As a result,
(110) HTVuSmaHB% < o2 l[ull g2 |Small g2
2.1

Finally, by integration in time and by definition of S,,a, we get

def N 3
= Y 2% | ATvuSmall iz < C 22" |lull 1 g2y llall Lo (r2)-
- ¢ ¢ (H?)
qe

111 T, S
() FeuSnal, g

The estimate on the term 2% ||A R(Sma, Vu)||;1/72y is close to the previous one, by vertue of
q Ly (L?)
q€Z

Theorem page 2.85 in [5]. We recall it below.

Remind: If s1 and so are two real numbers, such that s1 4+ so > 0, then

1 gefr 1 1 1 gef 1 1
1R ) e < Clsvs o) ullgy | ol 2= 2t 2 and 2=t o
Therefore, we have
39 def
(112) Y 27 |AR(Sma, Vu)llpiz2y) = [[R(Sma, W)IIL%(Ble) < C2™ |lull g g2y Nlall e (r2)-

q€Z

3 /
Concerning the last term 27 || T Smal| 7172y, we write the definition. Indeed,
g ) AgVu LI(L2)»
qEZ

T/AunSma def Z Sq/+2AunAq/Sma_

q'>q—2
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Therefore, we get

/
1T, wuSmallz <C Y 18Vl pe Ay Small2

q'>q-2
(113) 2% |Ta,vuSmallis < C2F 3" 28278 || A, Vul|pe 272 2% || Ay Spnall
q'>q-2
<O Y 2D 278 | A V| 2% || Ay Smal| 12
q'>q-2

By definition of the Besov norm, there exists a sequence ¢, belonging to ¢*(Z) such that
2% || AgSmallz2 < Cey || Smallpz -

As a result, by summation on ¢, we infer that

3q / - g
(114 S 2% T Sl < € (32274 18 Vulli dy ) [Small sz,
q€Z qEL
i ., def 2(q—q") it i
where the sequence d,; stems from convolution product: d, = Z 2 cq - As defined, it is clear
q'2q—2
that, by vertue of Young’s inequality, [|dyl|¢2(z) < C. Finally, Cauchy-Schwarz inequality yields
3q ’
(115) S0 A wuSmal2 < CIVull_y [1Smallas,.
qu 00,2
1
Once again, the Bernstein’s embedding B%,Q — BOO?Q, combining with an integration in time gives
3q ’
(116) 22 2 HTAunSmaHLtl(w) <O HSmaHLfo(Bg’Q) HVUHLtI(B;Q)
q€Z
Therefore,
3q ’
(117) S 2% T4, wuSmall pirey < C22 lallier2) Il gy ey
qEZ

Conclusion Summing estimates (106), (111), (112), and (117) completes the proof of the Lemma. [
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