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About the possibility of minimal blow up for

Navier-Stokes solutions with data in Ḣs (R 3 ) Eugénie Poulon

Introduction and statement of main result

We consider the Navier-Stokes system for incompressible viscous fluids evolving in the whole space IR 3 . Denoting by u the velocity, a vector field in IR 3 , by p in IR the pressure function, the Cauchy problem for the homogeneous incompressible Navier-Stokes system is given by ( 1)

   ∂ t u + u • ∇u -∆u = -∇p div u = 0 u |t=0 = u 0 .
We recall a crucial property of the Navier-Stokes equation : the scaling invariance. Let us define the operator

∀α ∈ IR + , ∀λ ∈ IR + * , ∀x 0 ∈ IR 3 , Λ α λ,x 0 u(t, x) def = 1 λ α u t λ 2 , x -x 0 λ .
If α = 1, we note Λ 1 λ,x 0 = Λ λ,x 0 .

(2)

Clearly, if u is smooth solution of Navier-Stokes system on [0, T ] × IR 3 with pressure p associated with the initial data u 0 , then, for any positive λ, the vector field and the pressure u λ def = Λ λ,x 0 u and p λ def = Λ 2 λ,x 0 p is a solution of Navier-Stokes system on the interval [0, λ 2 T ] × IR 3 , associated with the initial data u 0,λ = Λ λ,x 0 u 0 . This leads to the definition of scaling invariant space. Definition 1.1. A Banach space X is said to be scaling invariant (or also critical), if its norm is invariant under the scaling transformation defined by u → u λ

||u λ || X = ||u|| X .
Let us give some exemples of critical spaces in dimension 3

Ḣ 1 2 (IR 3 ) ֒→ L 3 (IR 3 ) ֒→ Ḃ-1+ 3 p p,∞ (IR 3 ) p<∞ ֒→ BMO -1 (IR 3 ) ֒→ Ḃ-1 ∞,∞ (IR 3
). The framework of this work is functional spaces which are above the natural scaling of Navier-Stokes equations. More precisely, our statements will take place in some Sobolev and Besov spaces, with a regularity index s such that

1 2 < s < 3 2 •
Notations. We shall constantly be using the following simplified notations:

L ∞ T ( Ḣs ) def = L ∞ ([0, T ], Ḣs ) and L 2 T ( Ḣs+1 ) def = L 2 ([0, T ], Ḣs+1 ),
and the relevant function space we shall be working with in the sequel is

X s T def = L ∞ T ( Ḣs ) ∩ L 2
T ( Ḣs+1 ), endowed with the norm u 2

X s T def = u 2 L ∞ T ( Ḣs ) + u 2 L 2 T ( Ḣs+1 ) .
Let us start by recalling the local existence theorem for data in the Sobolev space Ḣs .

Theorem 1.1. Let u 0 be in Ḣs , with 1 2 < s < 3 2

• Then there exists a time T and there exists a unique solution N S(u 0 ) such that N S(u 0 ) belongs to L ∞ T ( Ḣs ) ∩ L 2 T ( Ḣs+1 ). Moreover, denoting by T * (u 0 ) the maximal time of existence of such a solution, there exists a positive constant c such that

(3) T * (u 0 ) u 0 σs Ḣs c, with σ s def = 1 1 2 (s -1 2 ) • Remark 1.1.
Throughout this paper, we will adopt the useful notation N S(u 0 ) to mean the maximal solution of the Navier-Stokes system, associated with the initial data u 0 . Notice that our whole work relies on the hypothesis there exists some blowing up N S-solutions, e.g some N S-solutions with a finite lifespan T * (u 0 ). This is still an open question.

Remark 1.2. We point out that the infimum of the quantity T * (u 0 ) u 0 σs Ḣs exists and is positive (because of the constant c). It has been proved in [START_REF] Poulon | About the behaviour of regular Navier-Stokes solutions near the blow up[END_REF] that there exists some intial data which reach this infimum and that the set of such data is compact, up to dilations and translations. N S(u 0 )(t) σs Ḣs = +∞.

Our motivation here is to wonder if there exist some Navier-Stokes solutions which stop living in finite time (e.g T * (u 0 ) < ∞) and which blows up at a minimal rate, namely: there exists a positive constant M such that (T * (u 0 )t) N S(u 0 ) σs Ḣs M . In others terms, Question: Does there exist some blowing up N S-solutions such that (T * (u 0 )t) N S(u 0 ) σs

Ḣs

M ? If yes, what do they look like ?

We assume an affirmative answer and we search to characterize such solutions.

Hypothesis H: There exist some blowing up N S-solutions such that (T * (u 0 )t) N S(u 0 ) σs

Ḣs

M .

Notice that a very close question to this one is to prove that If T * (u 0 ) < ∞, does lim sup t→T * (u 0 ) (T * (u 0 )t) N S(u 0 )(t) σs Ḣs = +∞ ?

We underline that this question about blowing-up Navier-Stokes solutions has been highly developed in the context of critical spaces, namely Ḣ 1 2 (IR 3 ) and L 3 (IR 3 ). Indeed, L. Escauriaza, G. Seregin and V. Sverák showed in the fundamental work [START_REF] Escauriaza | L3,∞-solutions of Navier-Stokes equations and backward uniqueness[END_REF] that any "Leray-Hopf" weak solution which remains bounded in L 3 (IR 3 ) can not develop a singularity in finite time. Alternatively, it means that [START_REF] Bahouri | Lack of compactness in the 2D critical Sobolev embedding, the general case[END_REF] If T * (u 0 ) < +∞, then lim sup t→T * (u 0 )

N S(u 0 )(t) L 3 = +∞.

I. Gallagher, G. Koch and F. Planchon revisited the above criteria in the context of mild Navier-Stokes solutions. They proved in [START_REF] Gallagher | A profile decomposition approach to the L ∞ t (L 3 x ) Navier-Stokes regularity criterion, to appear[END_REF] that strong solutions which remain bounded in L 3 (IR 3 ), do not become singular in finite time. To perform it, they develop an alternative viewpoint : the method of "critical elements" (or "concentration-compactness"), which was introduced by C. Kenig and F. Merle to treat critical dispersive equations. Recently, same authors extend the method in [START_REF] Gallagher | Blow-up of critical Besov norms at a Navier-Stokes singularity[END_REF] to prove the same result in the case of the critical Besov space Ḃ-1+ 3 p p,q (IR 3 ), with 3 < p, q < ∞. Notice the work of J.-Y.Chemin and F. Planchon in [START_REF] Chemin | Self-improving bounds for the Navier-Stokes equations[END_REF], who gives the same answer in the case of the Besov space Ḃ-1+ 3 p p,q (IR 3 ), with 3 < p < ∞, q < 3 and with an additional regularity assumption on the data. To conclude the nonexhaustive list of blow up results, we mention the work of C. Kenig and G. Koch who carried out in [START_REF] Kenig | An alternative approach to the Navier-Stokes equations in critical spaces[END_REF] such a program of critical elements for solutions in the simpler case Ḣ 1 2 (IR 3 ). More precisely, they proved for any data u 0 belonging to the smaller critical space

Ḣ 1 2 (IR 3 ), (6) If T * (u 0 ) < +∞, then lim t→T * (u 0 ) N S(u 0 )(t) Ḣ 1 2 = +∞.
In our case (remind : we consider Sobolev spaces Ḣs (IR 

M σs c = sup A > 0, sup t<T * (u 0 ) (T * (u 0 ) -t) N S(u 0 ) σs Ḣs A ⇒ T * (u 0 ) = +∞ .
But unfortunately, such a point of view makes no sense, owing to the meaning of (T * (u 0 )t) when T * (u 0 ) = +∞. We have to proceed in an other way and it may be removed by defining a new object

M σs c M σs c def = inf u 0 ∈ Ḣs T * (u 0 )<∞ lim sup t→T * (u 0 ) (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs .
Clearly, (4) implies that M σs c exists and is positive. As we have decided to work under hypothesis H, a fortiori, this implies that M σs c is finite. The definition below is the key notion of critical solution in this context.

Definition 1.2. (Sup-critical solution)

Let u 0 be an element in Ḣs . We say that u = N S(u 0 ) is a sup-critical solution if N S(u 0 ) satisfies the two following assumptions:

T * (u 0 ) < ∞ and lim sup t→T * (u 0 ) (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs = M σs c .
A natural question is to know if such elements exist. The statement given below gives an affirmative answer and provides a general procedure to build some sup-critical solutions. Our main result follows.

Theorem 1.2. (Key Theorem)

Let us assume that there exists u 0 in Ḣs and M in IR + * such that T * (u 0 ) < ∞ and (T * (u 0 )t) N S(u 0 )(t) σs

Ḣs

M.

Then, there exists

Φ 0 ∈ Ḣs ∩ Ḃ 1 2 2,∞ such that Φ def = N S(Φ 0 ) is a sup-critical solution, blowing up at time 1, such that (7) sup τ <1 (1 -τ ) N S(Φ 0 )(τ ) σs Ḣs = lim sup τ →1 (1 -τ ) N S(Φ 0 )(τ ) σs Ḣs = M σs c .
In addition, there exists a positive constant C such that [START_REF] Chemin | Remarques sur l'existence globale pour le systéme de Navier-Stokes incompressible[END_REF] and for any τ < 1, N S(Φ 0 )(τ )

Ḃ 1 2 2,∞ C,
where the Besov norm (for regularity index 0 < α < 1) is defined by

u Ḃα 2,∞ def = sup x∈IR d u(• -x) -u L 2 |x| α •
We postpone the proof of (7) of the Key Theorem 1.2 to the next section. The proof of (8) will be given in Section 5. We stress on the fact that ( 8) is somewhat close to a question raised by the paper of I. Gallagher, G. Koch and F. Planchon [START_REF] Gallagher | Blow-up of critical Besov norms at a Navier-Stokes singularity[END_REF], in which they prove that for any initial data in the critical Besov space Ḃ-1+ 3 p p,q , with 3 < p, q < ∞, the N S-solution, (the lifespan of which is assumed finite) becomes unbounded at the blow-up time. Let us say a few words about the limit case Ḃ-1+ 3 p p,∞ . We may wonder if the result holds in the limit case q = ∞. As far as the author is aware, the answer is still open. Actually, if it holds, a fortiori it holds in the smaller space

Ḃ 1 2 2,∞ , by vertue of the embedding Ḃ 1 2 2,∞ ֒→ Ḃ-1+ 3 p p,∞ .
In others terms, it would mean there is no blowing-up solution, bounded in the critical space Ḃ 1 2 2,∞ . This is related to the concern of our paper since we build some blowing-up solutions bounded in this critical space, under the assumption of blow up at minimal rate. We mention the very interesting work of H. Jia and V. Sverák [START_REF] Jia | Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions[END_REF], where they prove that -1-homogeneous initial data generate global -1-homogeneous solutions. Unfortunately, the uniqueness of such solutions is not guaranteed.

Existence of sup-critical solutions

The goal of this section is to give a partial proof of Key Theorem 1.2. It relies on the two Lemmas below.

Lemma 2.1. (Existence of sup-critical solutions in Ḣs ) Let (v 0,n ) n∈IN be a bounded sequence in Ḣs such that [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] τ * (v 0,n ) = 1 and for any τ < 1, (1τ ) N S(v 0,n )(τ, • ) σs

Ḣs

M σs c + ε n , where ε n is a generic sequence which tends to 0 when n goes to +∞.

Then, there exists Ψ 0 in Ḣs such that Ψ def = N S(Ψ 0 ) is a sup-critical solution blowing up at time 1 and satisfies [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] sup

τ <1 (1 -τ ) N S(Ψ 0 )(τ ) σs Ḣs = lim sup τ →1 (1 -τ ) N S(Ψ 0 )(τ ) σs Ḣs = M σs c .
Moreover, the initial data of such element is a weak limit of the sequence (v 0,n ) translated, e.g

(11) ∃ (x 0,n ) n 0 , v 0,n (• +x 0,n ) ⇀ n→+∞ Ψ 0 .
The proof of Lemma 2.1 will be the purpose of Section 4. It relies essentially on scaling argument and profile theory, which will be introduced in the next Section 3.

Lemma 2.2. (Fluctuation estimates)

Let u = N S(u 0 ) be a NS-solution associated with a data u 0 ∈ Ḣs , with

1 2 < s < 3 2 , such that (T * (u 0 ) -t) 1 σs N S(u 0 )(t) Ḣs M.
Then, the following estimates on the fluctuation part B(u, u)(t)

def = u -e t ∆ u 0 yield (12) for any s < s ′ < 2s - 1 2 , (T * (u 0 ) -t) 1 σ s ′ B(u, u)(t) Ḣs ′ F s ′ (M 2 )
Moreover, for the critical case = 1 2 , we have

(13) B(u, u)(t) Ḃ 1 2 2,∞ C M 2 .
The proof of this lemma is postpone to Section 8. It merely stems from product laws in Besov spaces, interpolation inequalities and from judicious splitting into low and high frequencies in the following sense (T *t)2 2j 1 and (T *t)2 2j 1.

Remark 2.1. Let us point out that estimates of Lemma 2.2 do not hold if 0 < α < 1 2 , owing to low frequencies. Indeed, arguments similar to the ones used in the proof of Lemma 2.2 lead only to the following estimate

B(u, u)(t) Ḃα 2,∞ C M 2 T * (u 0 ) 1 2 (α-1 2 ) .

Partial proof of Key Theorem 1.2

In all this text, we denote by (ε n ) a non increasing sequence, which tends to 0, when n tend to +∞.

• Step 1 : Existence of sup-critical elements in Ḣs , with

1 2 < s < 3 2 •
Let us consider the sequence (M c + ε n ) n 0 . By definition of M c , there exists a sequence (u 0,n ) belonging to Ḣs , with a finite lifespan T * (u 0,n ), such that for any t < T * (u 0,n ) :

lim sup t→T * (u 0 ) (T * (u 0,n ) -t) N S(u 0,n ) σs Ḣs M σs c + ε n .
By definition of lim sup, there exists a nondecreasing sequence of time t n , converging to T * (u 0 ), such that

(14) ∀t t n , (T * (u 0,n ) -t) N S(u 0,n )(t, x) σs Ḣs M σs c + ε n .
By rescaling, we consider the sequence

v 0,n (y) = T * (u 0,n ) -t n 1 2 N S(u 0,n ) t n , (T * (u 0,n ) -t n 1 2 y .
and we have

v 0,n σs Ḣs = T * (u 0,n ) -t n N S(u 0,n )(t n ) σs Ḣs . ( 15 
)
By vertue of ( 14), the sequence (v 0,n ) n 1 is bounded by M σs c + ε 0 in the space Ḣs . Moreover, such a sequence generates a Navier-Stokes solution, which keeps on living until the time τ * = 1 and satisfies

N S(v 0,n )(τ, y) = T * (u 0,n ) -t n 1 2 N S(u 0,n ) t n + τ T * (u 0,n ) -t n , T * (u 0,n ) -t n 1 2 y . (16) 
We introduce t n = t n + τ T * (u 0,n )t n . Notice that, because of scaling, an easy computation yields [START_REF] Gallagher | Blow-up of critical Besov norms at a Navier-Stokes singularity[END_REF] (

1 -τ ) N S(v 0,n )(τ ) σs Ḣs = T * (u 0,n ) -t n N S(u 0,n ) t n σs Ḣs .
As t n t n for any n (by definition of t n ) we combine [START_REF] Gallagher | Blow-up of critical Besov norms at a Navier-Stokes singularity[END_REF] with ( 14) and we get, for any τ

∈ [0, 1[, (1 -τ ) N S(v 0,n )(τ, x) σs Ḣs M σs c + ε n .
The sequence (v 0,n ) satisfies the hypothesis of Lemma 2.1. Applying it, we build a sup-critical solution Φ = N S(Ψ 0 ) in Ḣs which blows up at time 1, e.g

lim sup τ →1 (1 -τ ) N S(Ψ 0 )(τ ) σs Ḣs = M σs c .
This proves the first part of the statement of Theorem 1.2.

• 2,∞ and obviously we have

N S(Ψ 0 )(t) Ḃ 1 2 2,∞ N S(Ψ 0 )(t) -e t∆ Ψ 0 Ḃ 1 2 2,∞ + e t∆ Ψ 0 Ḃ 1 2 2,∞
.

The paper is structured as follows. In Section 3, we recall the main tools of this paper. Essentially, it deals with the profile theory of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] and a structure lemma concerning a N S-solution associated with a sequence which satisfies hypothesis of profile theory. We also recall some basics facts on Besov spaces.

In Section 4, we are going to establish the proof of crucial Lemma 2.1, which provides the proof of the first part of Theorem 1.2 : there exists some sup-critical elements in Ḣs . The second part of the proof is postponed in Section 6, where we build some sup-critical elements not only in Ḣs , but also in others spaces, such as

Ḃ 1 2 2,∞ and Ḃs ′ 2,∞ , with s < s ′ < 2s - 1 2
• To carry out this, we need some estimates on the fluctuation part of the solution, which will be provided in Section 5. Then in Section 7, we give an analogue sup-inf critical criteria. It turns out that among sup-critical solutions, there exists some of them which are sup-inf-critical in the sense of they reach the biggest infimum limit. Section 8 is devoted to the proof of Lemma 3.2, which gives the structure of a Navier-Stokes solution associated with a bounded sequence of data in Ḣs . We recall to the reader that such structure result has been partially proved in [START_REF] Poulon | About the behaviour of regular Navier-Stokes solutions near the blow up[END_REF], except for the orthogonality property of Navier-Stokes solution in Ḣs -norm. As a result, we give the proof of such a property, after reminding the ideas of the complete proof.

Profile theory and Tool Box

We recall the fundamental result due to P. Gérard : the profile decomposition of a bounded sequence in the Sobolev space Ḣs . The original motivation of this theory was the desciption, up to extractions, of the defect of compactness in Sobolev embeddings (see for instance the pionneering works of P.-L. Lions in [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case I[END_REF], [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case II[END_REF] and H. Brezis, J.-M. Coron in [START_REF] Brézis | Convergence of solutions of H-Systems or how to blow bubbles[END_REF]. Here, we will use the theorem of P. Gérard [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF], which gives, up to extractions, the structure of a bounded sequence of Ḣs , with s between 0 and 3 2 •

More precisely, the defect of compactness in the critical Sobolev embedding Ḣs ⊂ L p is described in terms of a sum of rescaled and translated orthogonal profiles, up to a small term in L p . For more details about the history of the profile theory, we refer the reader to the paper [START_REF] Poulon | About the behaviour of regular Navier-Stokes solutions near the blow up[END_REF].

Theorem 3.1. (Profile Theorem [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF])

Let (u 0,n ) n∈IN be a bounded sequence in Ḣs . Then,

up to an extraction:

-There exists a sequence vectors fields, called profiles (ϕ j ) j∈IN in Ḣs .

-There exists a sequence of scales and cores (λ n,j , x n,j ) n,j∈IN , such that, up to an extraction

∀J 0, u 0,n (x) = J j=0 Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n (x) with lim J→+∞ lim sup n→+∞ ψ J n L p = 0, and p = 6 3 -2s •
Where, (λ n,j , x n,j ) n∈IN,j∈IN * are sequences of (IR * + × IR 3 ) IN with the following orthogonality property: for every integers (j, k) such that j = k, we have

either lim n→+∞ λ n,j λ n,k + λ n,k λ n,j = +∞ or λ n,j = λ n,k and lim n→+∞ |x n,j -x n,k | λ n,j = +∞.
Moreover, for any J ∈ IN, we have the following orthogonality property

(18) u 0,n 2 Ḣs = J j=0 ϕ j 2 Ḣs + ψ J n 2 Ḣs + •(1), when n → +∞.
Let us recall a structure Lemma, based on the crucial profils theorem of P. Gérard (see [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF]). Let (u 0,n ) be a bounded sequence in the Sobolev space Ḣs , which profile decomposition is given by

u 0,n (x) = j∈J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n (x),
with the appropriate properties on the error term ψ J n . By vertue of orthogonality of scales and cores given by Theorem 3.1, we sort profiles according to their scales

u 0,n (x) = j∈J 1 j J ϕ j (x -x n,j ) + j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n (x) (19) 
where for any j ∈ J 1 , for any n ∈ IN, λ n,j ≡ 1. Under these notations, we claim we have the following structure Lemma of the Navier-Stokes solutions, which proof will be provided in Section 8.

Lemma 3.2. (Profile decomposition of a sequence of Navier-Stokes solutions)

Let (u 0,n ) n 0 be a bounded sequence of initial data in Ḣs which profile decomposition is given by

u 0,n (x) = J j=0 Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n (x).
Then, lim inf

n 0 T * (u 0,n ) T def = inf j∈J 1
T * (ϕ j ) and for any t < T * (u 0,n ), we have

N S(u 0,n )(t, x) = j∈J 1 N S(ϕ j )(t, x -x n,j ) + e t∆ j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n (x) + R J n (t, x) (20)
where the remaining term R J n satisfies for any T < T , lim

J→+∞ lim n→+∞ R J n X s T = 0.

Moreover, we have the orthogonality property on the Ḣs -norm for any

t < T N S(u 0,n )(t) 2 Ḣs = j∈J 1 N S(ϕ j )(t) 2 Ḣs + e t∆ j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j + ψ J n 2 Ḣs + γ J n (t). (21) with lim J→+∞ lim sup n→+∞ sup t ′ <t |γ J n (t ′ )| = 0.
For the convenience of the reader, we recall the usual definition of Besov spaces. We refer the reader to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], from page 63, for a detailed presentation of the theory and analysis of homogeneous Besov spaces.

Definition 3.1. Let s be in IR, (p, r) in [1, +∞] 2 and u in S ′ . A tempered distribution u is an element of the Besov space Ḃs p,r if u satifies lim j→∞ || Ṡj u|| L ∞ = 0 and u Ḃs p,r def = j∈Z 2 jrs || ∆j u|| r L p 1 r < ∞,
where ∆j is a frequencies localization operator (called Littlewood-Paley operator), defined by

∆j u(ξ) def = F -1 ϕ(2 -j |ξ|) u(ξ) , with ϕ ∈ D([ 1 2 , 2]), such that j∈Z ϕ(2 -j t) = 1, for any t > 0.
Remark 3.1. Notice that the characterization of Besov spaces with positive indices in terms of finite differences is equivalent to the above definition (cf [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). In the case where the regularity index is between 0 and 1, one has the following property. Let s be in ]0, 

u Ḃθ s 1 +(1-θ) s 2 p,1 C(s 1 , s 2 , θ) u θ Ḃs 1 p,∞ u 1-θ Ḃs 2 p,∞ . 

Application of profile theory to sup-critical solutions

This section is devoted to the proof of Lemma 2.1. The statement given below is actually a bit stronger and clearly entails Lemma 2.1. We shall prove the following proposition. 

Ḣs

M σs c + ε n , where ε n is a generic sequence which tends to 0 when n goes to +∞. Then, up to extractions, we get the statements below • the profile decomposition of such a sequence of data has a unique profile ϕ j 0 with constant scale such that N S(ϕ j 0 ) is a sup-critical solution which blows up at time 1, e.g [START_REF] Lemarié-Rieusset | Recent Developments in the Navier-Stokes Problem[END_REF] lim sup τ →1

(1τ ) N S(ϕ j 0 )(τ ) σs Ḣs = M σs c .

• "The limsup is actually a sup"

(24) sup τ <1 (1 -τ ) N S(ϕ j 0 )(τ ) σs Ḣs = M σs c .
Proof. Let (v 0,n ) n 1 be a bounded sequence in Ḣs , satisfiying the assumptions of Proposition 4.1. Therefore, (v 0,n ) n 1 has the profile decomposition below

v 0,n (x) = j∈J 1 j J ϕ j (x -x n,j ) + j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n (x). (25) 
We denote by τ *

j 0 def = inf j∈J 1 T * (ϕ j ).
• Step 1 : we start by proving by a contradiction argument that τ * j 0 = 1.

We have already known by vertue of Lemma 3.2, that τ * j 0

1. Assuming that τ * j 0 < 1, we expect a contradiction. Moreover, orthogonal Estimate ( 21) can be bounded from below by

N S(v 0,n )(τ ) 2 Ḣs N S(ϕ j 0 )(τ ) 2 Ḣs -|γ J n (τ )|. (26)
On the one hand, it seems clear by assumption that for any τ < τ * j 0 , we have

(1 -τ * j 0 ) 2 σs (1 -τ ) 2 σs .
On the other hand, hypothesis on N S(v 0,n ) yields

(1 -τ ) 2 σs N S(v 0,n )(τ ) 2 Ḣs M 2 c + ε n .
Therefore, from the above remarks, we get

(27) N S(v 0,n )(τ ) 2 Ḣs M 2 c + ε n (1 -τ * j 0 )
2 σs

•

Combining the above estimate with (26), we finally get, after multiplication by the factor (τ

* j 0 -τ ) 2 σs , M 2 c + ε n (1 -τ * j 0 ) 2 σs (τ * j 0 -τ ) 2 σs (τ * j 0 -τ ) 2 σs N S(ϕ j 0 )(τ ) 2 Ḣs -(τ * j 0 -τ ) 2 σs |γ J n (τ )|. (28) Notice that (τ * j 0 -τ ) 2
σs is always less than 1, which allows us to get rid of it in front of the remaining term |γ J n (τ )|. In addition, applying (4) and hypothesis on the sequence ε n , one has

M 2 c + ε 0 (1 -τ * j 0 ) 2 σs (τ * j 0 -τ ) 2 σs c -|γ J n (τ )|.
We first choose τ = τ c such that τ c < τ * j 0 and

M 2 c + ε 0 (1 -τ * j 0 ) 2 σs (τ * j 0 -τ c ) 2 σs = c 4
• Then, we take J and n

large enough such that |γ J n (τ c )| c 2
• Therefore, we get a contradiction, which proves that τ * j 0 = 1. • Step 2 : we prove here that N S(ϕ j 0 ) is a sup-critical solution in Ḣs .

Let us come back to Inequality [START_REF] Meyer | Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics[END_REF], which we multiply by the factor (1τ ) 2 σs . As we have shown that τ * j 0 = 1, hypothesis on N S(v 0,n ) implies that for any τ < 1,

(29) M 2 c + ε n (1 -τ ) 2 σs N S(ϕ j 0 )(τ ) 2 Ḣs -|γ J n (τ )|.
Our aim is to prove that the particular profile ϕ j 0 generates a sup-critical solution. If not, it means that

∃α 0 > 0, ∀ε > 0, ∃τ ε , such that 0 < (1 -τ ε ) 2 σs < ε and (1 -τ ε ) 2 σs N S(u 0,n )(τ ε ) 2 Ḣs M 2
c + α 0 . Taking the above inequality at time τ ε , one has

M 2 c + ε n M 2 c + α 0 -|γ J n (τ ε )|. Moreover, assumption on the remaining term γ J n implies that ∀η > 0, ∃ J(η) ∈ IN, ∃N η ∈ IN such that ∀J J(η), ∀n N η , |γ J n (τ ε )| η. Let η > 0.
For any J J (η) and for any n N η , we get at time τ ε ,

M 2 c M 2 c + α 0 -η. Now, choosing η small enough (namely η = α 0 2
) we get a contradiction which proves that N S(ϕ j 0 ) is a sup-critical solution. This concludes the proof of step 2 and thus the point ( 23) is proved.

• Step 3 : let us prove the point (24) of Proposition 4.1. The proof is a straightforward adaptation of the previous one. We shall use that N S(ϕ j 0 ) is a sup-critical solution:

lim sup τ →1 (1 -τ ) N S(ϕ j 0 )(τ ) σs Ḣs = M σs c .
As we always have sup τ <1

(1τ ) N S(ϕ j 0 )(τ ) σs Ḣs lim sup τ →1

(1τ ) N S(ϕ j 0 )(τ ) σs Ḣs , we get a first inequality : sup τ <1

(1τ ) N S(ϕ j 0 )(τ ) σs Ḣs M σs c . According to the previous computations, we have, for any τ < 1, (1τ ) N S(ϕ j 0 )(τ ) σs

M 2 c + ε n (1 -τ ) 2 σs N S(ϕ j 0 )(τ )

Ḣs

M σs c , which provides the second desired inequality. This ends up the proof of [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case I[END_REF].

Let us recall some notation and add a few words about profiles with constant scale. Thanks to Lemma 3.2 and obvious boundaries from below we get for any τ < τ *

j 0 def = inf j∈J 1 T * (ϕ j ) = 1 N S(v 0,n )(τ ) 2 Ḣs j∈J 1 N S(ϕ j )(τ ) 2 Ḣs -|γ J n (τ )|. ( 30 
)
Among profiles with a scale equal to 1 (e.g j ∈ J 1 ), we distinguish profiles with a lifespan equal to τ * j 0 = 1 and profiles with a lifespan τ * j strictly greater than 1. In other words, we consider the set

J1 def = {j ∈ J 1 | τ * j = 1}. Therefore, for any τ < 1, N S(v 0,n )(τ ) 2 Ḣs N S(ϕ j 0 )(τ ) 2 Ḣs + j∈ J1 , j =j 0 N S(ϕ j )(τ ) 2 Ḣs + j∈J 1 \ J1 N S(ϕ j )(τ ) 2 Ḣs -|γ J n (τ )|,
which be bounded from below once again by

N S(v 0,n )(τ ) 2 Ḣs N S(ϕ j 0 )(τ ) 2 Ḣs + j∈ J1 , j =j 0 N S(ϕ j )(τ ) 2 Ḣs -|γ J n (τ )|, (31) 
since obviously the term

j∈J 1 \ J1 N S(ϕ j )(τ ) 2
Ḣs is positive.

• Step 4 : in order to complete the proof of Lemma 2.1, we have to prove that there exists a unique profile with a lifespan τ *

j 0 = 1, namely | J1 | = 1.
Once again, we assume that there exists at least two profiles in J1 . We expect a contraction. Arguments of the proof are similar to the ones used in the step 2. We shall use the fact (1τ )

2 σs N S(ϕ j )(τ ) 2
Ḣs can not be small as we want, by vertue of (4). Indeed, let us come back to Inequality (31). We have already proved that ϕ j 0 generates a sup-critical solution, blowing up at time 1. It means that for any ε > 0, there exists a time τ ε such that

0 < (1 -τ ε ) 2 σs < ε and M 2 c -ε (1 -τ ε ) 2 σs N S(ϕ j 0 )(τ ε ) 2 Ḣs M 2 c + ε. Therefore, Inequality (31) becomes at time τ ε (32) M 2 c + ε n M 2 c -ε + j∈ J1 ,j =j 0 (1 -τ ε ) 2 σs N S(ϕ j )(τ ε ) 2 Ḣs -|γ J n (τ ε )|.
By vertue of ( 4), there exists a universal constant c > 0 such that for any j ∈ J1 and j = j 0

(33) (1 -τ ) 2 σs N S(ϕ j )(τ ) 2 Ḣs c 2 .
As a result, taking the limit for n and J large enough, we infer that (still under the hypothesis

| J1 | > 1) (34) M 2 c M 2 c -ε + (| J1 | -1) c 2 -η.
Choosing ε small enough, we get a contradiction and as a consequence, | J1 | = 1. It means there exists a unique profile generating a sub-critical solution, blowing up at time 1. This completes the proof of Proposition 4.1, and thus the proof of Lemma 2.1.

Fluctuation estimates in Besov spaces

This section is devoted to the proof of Lemma 2.2. We shall prove some estimates on the fluctuation part which is given by the bilinear form

B(u, u)(t) def = N S(u 0 )(t) -e t∆ u 0 = u -e t∆ u 0 .
We distinguish the case

Ḃ 1 2
2,∞ from the case Ḃs ′ 2,∞ , even if proves ideas are similar : we cut-off according low and high frequencies in the following sense :

(T * -t)2 2j 1 and (T * -t)2 2j 1.
Concerning high frequencies, we shall use the regularization effet of the Laplacian. Let us start by proving the critical part of Lemma 2.2.

Lemma 5.1. Let 1 2 < s < 3 2 and u 0 ∈ Ḣs . It exists a positive constant C s such that If T * (u 0 ) < ∞ and M u def = (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs < ∞, then, we have u -e t∆ u 0 Ḃ 1 2 2,∞ < C s M 2 u .
Proof. Duhamel formula gives

(35) u -e t∆ u 0 def = B(u, u) = - t 0 e (t-t ′ )∆ P(div(u ⊗ u) dt ′ .
By vertue of classsical estimates on the heat term (see for instance Lemma 2.4 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]), we have

(36) ∆ j e t∆ a L 2 C e -ct 2 2j ∆ j a L 2 .
Therefore, the fluctuation part becomes

∆ j B(u, u)(t) L 2 t 0 e -c(t-t ′ ) 2 2j 2 j ∆ j (u ⊗ u)(t ′ ) L 2 dt ′ t 0 e -c(t-t ′ ) 2 2j 2 j 2 -j(2s-3 2 ) u ⊗ u(t ′ ) Ḃ2s-3 2 2,∞ dt ′ . ( 37 
)
We infer thus, thanks to the product laws in Sobolev spaces

2 j 2 ∆ j B(u, u)(t) L 2 t 0 e -c(t-t ′ ) 2 2j 2 j(3-2s) u(t ′ ) 2 Ḣs dt ′ . ( 38 
)
By hypothesis, we have supposed that

M 2 u def = (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs < ∞.
As a result,

2 j 2 ∆ j B(u, u)(t) L 2 C s t 0 e -c(t-t ′ ) 2 2j 2 j(3-2s) M 2 u (T * (u 0 ) -t ′ ) 2 σs = t 0 1 {(T * (u 0 )-t ′ )2 2j 1} e -c(t-t ′ ) 2 2j 2 j(3-2s) M 2 u (T * (u 0 ) -t ′ ) 2 σs dt ′ + t 0 1 {(T * (u 0 )-t ′ )2 2j 1} e -c(t-t ′ ) 2 2j 2 j(3-2s) M 2 u (T * (u 0 ) -t ′ ) 2 σs dt ′ • (39) 
We apply Young inequality : in the first integral, we consider L ∞ ⋆ L 1 , whereas in the second one, we consider L 1 ⋆ L ∞ in order to use the regularization effect of the Laplacian.

2 j 2 ∆ j B(u, u)(t) L 2 C s M 2 u T * (u 0 ) T * (u 0 )-2 -2j 2 j(3-2s) dt ′ (T * (u 0 ) -t ′ ) 2 σs + C s M 2 u t 0 e -c(t-t ′ ) 2 2j 2 j(3-2s) 2 2j(s-1 2 ) dt ′ . ( 40 
)
We recall that

2 σ s def = s - 1 2 and s - 1 2 < 1.
As a result,

2 j 2 ∆ j B(u, u)(t) L 2 C s M 2 u 2 j(2s-3) 2 j(3-2s) + 1 2 2j 2 j(3-2s) 2 2j(s-1 2 ) C s M 2 u . (41)
This concludes the proof on the fluctuation estimate in the critical case.

The statement given below is a bit more general than the one of Lemma 2.2, which we deduce immediately by an interpoaltion argument (the same as given at the end of the proof of Theorem 1.2). (T * (u 0 )t)

1 2 (s ′ -1 2 ) u(t) -e t∆ u 0 Ḃs ′ 2,∞ < ∞.
Proof. Same arguments as above yield

∆ j B(u, u)(t) L 2 t 0 e -c(t-t ′ ) 2 2j 2 j 2 -j(2s-3 2 ) u ⊗ u(t ′ ) Ḃ2s-3 2 2,∞ dt ′ . (42)
Product laws in Sobolev spaces and hypothesis on u imply

2 js ′ ∆ j B(u, u)(t) L 2 t 0 e -c(t-t ′ ) 2 2j 2 j( 5 2 -2s+s ′ ) u(t ′ ) 2 Ḣs dt ′ t 0 e -c(t-t ′ ) 2 2j 2 j( 5 2 -2s+s ′ ) C (T * (u 0 ) -t ′ ) s-1 2 • ( 43 
)
We split (the same cut off as before) according low and high frequencies. Concerning high frequencies, since T * (u 0 )t T * (u 0 )t ′ , we get

2 js ′ ∆ j B(u, u)(t) 1 {(T * -t)2 2j 1} L 2 t 0 e -c(t-t ′ ) 2 2j 2 j( 5 2 -2s+s ′ ) C (T * (u 0 ) -t) s-1 2 dt ′ 2 j( 1 2 -2s+s ′ ) C (T * (u 0 ) -t) s-1 2 • (44) 
Choosing s ′ such that 1 2 -2s + s ′ < 0, we get

2 js ′ ∆ j B(u, u)(t) 1 {(T * -t)2 2j 1} L 2 C (T * (u 0 ) -t) 1 2 (-1 2 +2s-s ′ ) (T * (u 0 ) -t) s-1 2 = C (T * (u 0 ) -t) -1 2 (s ′ -1 2 ) ,
which yields the desired estimate, as far as high frequencies are concerned. Concerning low frequencies, let us come back to the very beginning.

2 js ′ ∆ j B(u, u)(t) 1 {(T * (u 0 )-t)2 2j 1} L 2 2 j(s ′ -s) 2 js ∆ j B(u, u) L 2 2 j(s ′ -s) u(t) -e t∆ u 0 Ḃs 2,∞ . (45) As u(t) -e t∆ u 0 Ḃs 2,∞ C (T * (u 0 ) -t) 1 2 (s-1 2 )
, we infer that

2 js ′ ∆ j B(u, u)(t) 1 {(T * (u 0 )-t)2 2j 1} L 2 2 j(s ′ -s) C (T * (u 0 ) -t) 1 2 (s-1 2 )
• Hypothesis of low frequencies implies

2 js ′ ∆ j B(u, u)(t) 1 {(T * (u 0 )-t)2 2j 1} L 2 C (T * (u 0 ) -t) 1 2 (s-1 2 )+ 1 2 (s ′ -s) = C (T * (u 0 ) -t) 1 2 (s ′ -1 2 )
• which ends up the proof for low frequency part. The proof of Lemma 5.2 is thus complete.

Existence of sup-critical solutions bounded in

Ḃ 1 2 2,∞
This section is devoted to complete the proof of Theorem 1.2, namely the part concerning the Ḃ 1 2 2,∞norm of the sup-critical solutions. We have already built some sup-critical elements in the space Ḣs . It turns out that, starting from this statement, we shall prove that data generating a sup-critical element are not only in Ḣs , but also in some others spaces such as

Ḃ 1 2 2,∞ ∩ Ḃs ′ 2,∞
, with s ′ satisfiying the condition given below, which stems from the proof of Lemma 2.2. The statement given below is actually a bit stronger than the one we want to prove, since we are going to catch some sup-critical solutions not only in Ḃ 1 2 2,∞ (as claimed by Theorem 1.2) but also in Ḃs ′ 2,∞ . The main idea to get such information on the regularity is to focus on the fluctuation part which is more regular than the solution itself. Notice that, in all this section, we use regularity index s ′ satisfying

s < s ′ < 2s - 1 2 • Theorem 6.1. There exists a data Φ 0 ∈ Ḃ 1 2 2,∞ ∩ Ḣs ∩ Ḃs ′ 2,∞ , such that T * (Φ 0 ) < ∞ and sup t<T * (Φ 0 ) (T * (Φ 0 ) -t) N S(Φ 0 )(t) σs Ḣs = lim sup t→T * (Φ 0 ) (T * (Φ 0 ) -t) N S(Φ 0 ) σs Ḣs = M σs c ,
and for any t < T * (Φ 0 ), N S(Φ 0 )

Ḃ 1 2 2,∞ < ∞.
Proof. The idea of the proof is to start with the existence of sup-sup-critical elements in Ḣs . Indeed, we have proved previously that there exists a data Ψ 0 ∈ Ḣs , such that Ψ def = N S(Ψ 0 ) is sup-critical. Therefore, by definition of lim sup, there exists a sequence t n ր T * (Ψ 0 ) such that

lim n→+∞ (T * (Ψ 0 ) -t n ) N S(Ψ 0 )(t n ) σs Ḣs = M σs c .
Let us introduce as before the rescaled sequence

v 0,n (y) = T * (Ψ 0 ) -t n 1 2 N S(Ψ 0 )(t n , T * (Ψ 0 ) -t n 1 2 y).
Such a sequence generates a solution which keeps on living until the time 1 and satisfies

v 0,n σs Ḣs = T * (Ψ 0 ) -t n N S(Ψ 0,n )(t n ) σs Ḣs . (46)
In the sake of simplicity, we note

τ n def = T * (Ψ 0 ) -t n .
Previous computations imply that (v 0,n ) is a bounded sequence of Ḣs . Now, inspired by the idea of Y. Meyer (fluctuation-tendancy method, [START_REF] Meyer | Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics[END_REF]), we decomposed the sequence (v 0,n ) into (47) v 0,n (y)

def = v 0,n (y) -τ 1 2
n e tn∆ Ψ 0 (τ

1 2 n y) + τ 1 2
n e tn∆ Ψ 0 (τ

1 2
n y), where we have v 0,n (y)

def = τ 1 2 n N S(Ψ 0 )(t n , τ 1 2 n y) It follows (48) v 0,n (y) def = τ 1 2 n N S(Ψ 0 )(t n , • ) -e tn∆ Ψ 0 B(Ψ,Ψ)(tn)=fluctuation part (τ 1 2 n y) + τ 1 2 n e tn∆ Ψ 0 tendancy part (τ 1 2
n y).

Lemma 6.2. The rescaled fluctuation part

φ n def = τ 1 2 n B(Ψ, Ψ)(t n , τ 1 2 n • ) is bounded in Ḣs ∩ Ḃ 1 2 2,∞ ∩ Ḃs ′ 2,∞ .
Proof. Indeed, concerning the

Ḃ 1 2
2,∞ we use firstly the scaling invariance of this norm and then we apply Lemma 2.2, which gives ( 49)

sup n φ n Ḃ 1 2 2,∞ = sup n N S(Ψ 0 )(t n , • ) -e tn∆ Ψ 0 Ḃ 1 2 2,∞ < ∞.
Concerning the Ḣs -norm, we apply successively the following arguments : scaling, triangular inequality and the fact that N S(Ψ 0 ) is a sup-critical element in Ḣs . 

φ n σs Ḣs = τ n N S(Ψ 0 )(t n , • ) -e tn∆ Ψ 0 σs Ḣs τ n N S(Ψ 0 )(t n , • ) σs Ḣs + τ n e tn∆ Ψ 0 σs Ḣs M c + 1 n σs + τ n Ψ 0 σs Ḣs < ∞.
φ n σ s ′ Ḃs ′ 2,∞ = τ n N S(Ψ 0 )(t n , • ) -e tn∆ Ψ 0 σ s ′ Ḃs ′ 2,∞ . (51)
This concludes the proof of this Lemma 6.2.

By vertue of profile theory, we perform a profile decomposition of the sequence φ n in the Sobolev space Ḣs . But in this decomposition, there is only left profiles with constant scale, as Lemma below will prove it. The idea is clear. As φ n is bounded in the Besov space Ḣs ∩ Ḃ 1 2 2,∞ , big scales vanish. Likewise, the fact that φ n is bounded in the Besov space Ḣs ∩ Ḃs ′ 2,∞ implies that small scales vanish. That is the point in the Lemma below.

Lemma 6.3. • If (f n ) is a bounded sequence in Ḃ 1 2 2,∞ ∩ Ḣs and if lim sup n→+∞ f n Ḃs 2,∞
= L > 0, then there is no big scales in the profile decomposition of the sequence f n in Ḣs .

• If (f n ) is a bounded sequence in Ḃs ′ 2,∞ ∩ Ḣs , with s ′ > s > 1 2 and if lim sup n→+∞ f n Ḃs 2,∞ = L > 0, then
there is no small scales in the profile decomposition of the sequence f n in Ḣs .

Proof. We only proof the first part of the Lemma. The other one is similar. If lim sup

n→+∞ f n Ḃs 2,∞ = L > 0, it means there exists an extraction ϕ(n) such that f ϕ(n) Ḃs 2,∞ L 2
• Otherwise, for any subsequence of (f n ), we would have

f ϕ(n) Ḃs 2,∞ < L 2 and thus, lim n→+∞ f ϕ(n) Ḃs 2,∞ L 2 •
As a result, we would have lim sup 

n→+∞ f n Ḃs 2,∞ L 2 < L,
2 kns ∆ kn f ϕ(n) L 2 = f ϕ(n) Ḃs 2,∞ . Therefore, lim n→+∞ 2 kns ∆ kn f ϕ(n) L 2 L 2 .
Let us introduce the scale λ n def = 2 -kn . As (up to extraction)

2 kns ∆ kn f ϕ(n) L 2 L 2
, then one has

2 kn(s-1 2 ) f ϕ(n) Ḃ 1 2 2,∞ L 2 •
Hence, the infimum limit of the sequence k n is not -∞, otherwise, the term 2 kn(s-1 2 ) would tend to 0 and thus L = 0 (since the sequence

f ϕ(n) Ḃ 1 2 2,∞
is bounded by hypothesis), which is false by hypothesis.

Therefore, λ n +∞ : big scales are excluded from the profile decomposition of the sequence f n . This concludes the proof of Lemma 6.3.

Continuation of the proof of Theorem 6.1.

Let us come back to the proof of sup-critical element in the Besov space

Ḃ 1 2 2,∞ ∩ Ḃs ′ 2,∞
. Firstly, we check that φ n satisfies hypothesis of Lemma 6.3. As it was already checked previously,

φ n is bounded in Ḃ 1 2 2,∞ ∩ Ḣs ∩ Ḃs ′ 2,∞ . Concerning assumption lim sup n→+∞ φ n Ḃs 2,∞
> 0, by scaling argument, one has

φ n σs Ḃs 2,∞ = τ n N S(Ψ 0 )(t n , • ) -e tn∆ Ψ 0 σs Ḃs 2,∞ = (T * (Ψ 0 ) -t n ) N S(Ψ 0 )(t n , • ) -e tn∆ Ψ 0 σs Ḃs 2,∞ (T * (Ψ 0 ) -t n ) N S(Ψ 0 )(t n , • ) σs Ḃs 2,∞ -(T * (Ψ 0 ) -t n ) Ψ 0 σs Ḣs . (53) 
Obviously, the term (T * (Ψ 0 )t n ) Ψ 0 σs Ḣs tends to 0 when n goes to +∞. By vertue of ( 4) and [START_REF] Lemarié-Rieusset | Recent Developments in the Navier-Stokes Problem[END_REF], there exists a constant c > 0 such that

(T * (Ψ 0 ) -t n ) N S(Ψ 0 )(t n , • ) σs Ḃs 2,∞ c. Therefore, lim sup n→+∞ φ n Ḃs 2,∞ > 0
and thus profile decomposition of φ n in the space Ḣs is reduced to (with notations of Theorem 3.1) (54)

φ n = J j 0 V j (• -x n,j ) + r J n .
Moreover, as the sequence φ n is bounded in

Ḃ 1 2 2,∞ ∩ Ḃs ′ 2,∞ , profiles V j belong also to Ḃ 1 2 2,∞ ∩ Ḃs ′ 2 
,∞ . That's the crucial point in the proof. Indeed, each profile V j can be seen as a translated (by x n,j ) weak limit of the sequence φ n . As a result, we get immediately

V j Ḃ 1 2 2,∞ lim inf n→+∞ φ n Ḃ 1 2 2,∞ < ∞ and V j Ḃs ′ 2,∞ lim inf n→+∞ φ n Ḃs ′ 2,∞ < ∞.
Let us come back to the sequence (v 0,n ) defined by

v 0,n def = φ n + τ 1 2 n e tn∆ Ψ 0 (τ 1 2 n • ).
As it has been already underlined previously, the term γ n def = τ n e tn∆ Ψ 0 (τ

1 2 n • ) σs Ḣs = τ n e tn∆ Ψ 0 σs Ḣs τ n Ψ 0 σs Ḣs .
Combining the profile decomposition of (φ n ) with the definition of (v 0,n ), we finally get

v 0,n = J j 0 V j (• -x n,j ) + r J n + γ n ,
with lim J→+∞ lim sup n→+∞ r J n L p = 0 and lim n→+∞ γ n L p = 0. By vertue of Lemma 3.2, one has for any τ < 1

N S(v 0,n )(τ ) = J j 0 N S(V j )(τ, • -x n,j ) + e τ ∆ (r J n + γ n ) + R J n (τ ).
By definition of the sequence

(v 0,n ), N S(v 0,n ) is given by N S(v 0,n )(τ, • ) = T * (Ψ 0 ) -t n 1 2 N S(Ψ 0 ) t n + τ T * (Ψ 0 ) -t n , T * (Ψ 0 ) -t n 1 2 • .
Once again, we denote t n = t n + τ T * (Ψ 0 )t n and one has

(1 -τ ) N S(v 0,n )(τ, • ) σs Ḣs = T * (Ψ 0 ) -t n N S(Ψ 0 ) t n , • σs
Ḣs . As t n t n for any n, we get

(1 -τ ) N S(v 0,n )(τ ) σs Ḣs = (T * (Ψ 0 ) -t n ) N S(Ψ 0 )( t n ) σs Ḣs M σs c + 2 n •
Hence, Proposition 4.1 implies there exists some a unique profile

Φ 0 in Ḃ 1 2 2,∞ ∩ Ḣs ∩ Ḃs ′
2,∞ such that the N S-solution genrated by this profile is a sup-critical solution. As Φ 0 belongs to Ḃ 1 2 2,∞ , Lemma 2.2 implies that N S(Φ 0 ) is bounded in the same space. This ends up the proof of Theorem 6.1. Hence, we claim that the proof of Theorem 1.2 is over. Indeed, this stems from an interpolation argument. By vertue of Proposition 3.3, we have for any s < s

1 < s ′ Φ 0 Ḣs 1 Φ 0 Ḃs 1 2,1 Φ 0 θ Ḃs 2,∞ Φ 0 1-θ Ḃs ′ 2,∞ Φ 0 θ Ḣs Φ 0 1-θ Ḃs ′ 2,∞ . (56) 
This concludes the proof of Theorem 1.2.

Another notion of critical solution

In this section, we wonder if among sup-critical solutions, we can find some of them which reach the biggest infimum limit of the quantity (T * (u 0 )t) N S(u 0 )(t) σs Ḣs . We define the following set E c by

E c def = u 0 ∈ Ḃ 1 2 2,∞ ∩ Ḣs ∩ Ḃs ′ 2,∞ such that T * (u 0 ) < ∞ ; sup t<T * (u 0 ) (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs = lim sup t→T * (u 0 ) (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs = M σs c ; for any t < T * (u 0 ), N S(u 0 )(t) Ḃ 1 2 2,∞ < ∞ and (T * (u 0 ) -t) N S(u 0 )(t) σ s ′ Ḃs ′ 2,∞ < ∞ .
Let us introduce the following quantity m σs c

m σs c def = sup u 0 ∈ Ec lim inf t→T * (u 0 ) (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs . Definition 7.1. (sup-inf-critical solution) A solution u = N S(u 0 ) is said to be a sup-inf-critical solution if u 0 belongs to E c and lim inf t→T * (u 0 ) (T * (u 0 ) -t) N S(u 0 )(t) σs Ḣs = m σs c . (57) 
Notice we need to look for such elements among sup-critical solutions, otherwise the definition of m σs c would be meaningless. We claim that there exist such elements. Lemma 7.1. There exists some elements belonging to E c , which are sup-inf-critical.

Proof. By definition of m σs c , we can find a sequence (u 0,n ) ∈ Ḣs and a sequence t n ր T * (u 0,n ) ≡ T * (we can assume this, up to a rescaling) such that (58)

m c -ε n (T * -t n ) 1 σs N S(u 0,n )(t n ) Ḣs m c + ε n and (59) For any t t n , m c -ε n (T * -t) 1 σs N S(u 0,n )(t) Ḣs .
Assume in addition that the sequence (u 0,n ) belongs to the set E c . As a consequence, we have (60) For any t t n , m cε n (T *t)

1 σs N S(u 0,n )(t) Ḣs M c + ε n .
Considering the rescaled sequence

v 0,n (y) = T * -t n 1 2 N S(u 0,n ) t n , (T * -t n 1 2 y .
Hence, v 0,n satisfies properties below by scaling argument

v 0,n σs Ḣs = T * -t n N S(u 0,n )(t n ) σs Ḣs , v 0,n Ḃ 1 2 2,∞ = N S(u 0,n )(t n ) Ḃ 1 2 2,∞ and v 0,n σ s ′ Ḃs ′ 2,∞ = T * -t n N S(u 0,n )(t n ) σ s ′ Ḃs ′ 2,∞ . (61) 
Combining (58) with the fact that (u 0,n ) belongs to E c , we infer that the sequence

(v 0,n ) n 1 is bounded in Ḃ 1 2 2,∞ ∩ Ḣs ∩ Ḃs ′ 2,∞ .
Moreover, concerning the Navier-Stokes solution generated by such a data N S(v 0,n ), we know that it keeps on living until the time τ * = 1 and satisfies once again (with

t n = t n + τ T * -t n ) (62) (1 -τ ) 1 σs N S(v 0,n )(τ ) Ḣs = (T * -t n ) 1 σs N S(u 0,n )( t n ) Ḣs .
As t n t n for any n, we infer that for any τ < 1

(1τ )

1 σs N S(v 0,n )(τ ) Ḣs m c -ε n .
Let us sum up information we have on the sequence v 0,n . Firstly, the lifespan of the Navier-Stokes associated with the sequence v 0,n is equal to 1. Then,

lim sup τ →1 (1 -τ ) 1 σs N S(v 0,n )(τ ) Ḣs = lim sup tn→T * (T * -t n ) 1 σs N S(u 0,n )( t n ) Ḣs ,
which implies, thanks to (60) and definition of M c , that for any τ < 1, lim sup τ →1

(1τ )

1 σs N S(v 0,n )(τ ) Ḣs = M c and N S(v 0,n )(τ ) Ḃ 1 2 2,∞ = N S(u 0,n )( t n ) Ḃ 1 2 2,∞ < ∞.
In addition,

(1 -τ ) 1 σ s ′ N S(v 0,n )(τ ) Ḃs ′ 2,∞ = (T * -t n ) 1 σ s ′ N S(u 0,n )( t n ) Ḃs ′ 2,∞ < ∞. ( 63 
)
To summerize, from the minimizing sequence (u 0,n ) of the set E c , we build another sequence (v 0,n ) (the rescaled sequence of (u 0,n )) which also belongs to the set E c . Moreover, as the sequence

(v 0,n ) is bounded in the spaces Ḃ 1 2 2,∞ ∩ Ḣs ∩ Ḃs ′ 2,∞ and satisfies lim sup n→+∞ v 0,n Ḃs 2,∞
< ∞, Lemma 6.3 implies that profile decomposition in Ḣs of such a sequence is reduced, up to extractions, to a sum of translated profiles and a remaining term (under notations of Theorem 3.1)

v 0,n = j∈J 1 ϕ j (• -x n,j ) + ψ J n .
By vertue of Theorem 3.2, combining with Proposition 4.1, we infer there exists only one profile ϕ j 0 which blows up at time 1 and such that

(64) N S(v 0,n )(τ, • ) = N S(ϕ j 0 )(τ, • -x n,j 0 ) + j∈J 1 ,j =j 0 τ j * >1 N S(ϕ j )(• -x n,j ) + e τ ∆ ψ J n (• ) + R J n (τ, • ).
By orthogonality, we have

N S(v 0,n )(τ ) 2 Ḣs N S(ϕ j 0 )(τ ) 2 Ḣs + j∈J 1 ,j =j 0 τ j * >1 N S(ϕ j )(τ ) 2 Ḣs + + e τ ∆ ψ J n 2 Ḣs + |γ J n (τ )|. ( 65 
)
We want to prove that lim inf τ →1

(1τ ) N S(ϕ j 0 )(τ ) Ḣs = m c . Let us assume that is not the case. Therefore,

∃α 0 > 0, ∀ε > 0, ∃τ ε , such that 0 < (1 -τ ε ) 2 σs < ε and (1 -τ ε ) 2 σs N S(u 0,n )(τ ε ) 2 Ḣs m 2
cα 0 . From (65), we deduce that

(1 -τ ε ) 2 σs N S(v 0,n )(τ ε ) 2 Ḣs = (1 -τ ε ) 2 σs N S(ϕ j 0 )(τ ε ) 2 Ḣs + (1 -τ ε ) 2 σs j∈J 1 ,j =j 0 τ j * >1 N S(ϕ j )(τ ε ) 2 Ḣs + e τε∆ ψ J n 2 Ḣs + |γ J n (τ ε )| .
By hypothesis, (1τ ε )

1 σs N S(v 0,n )(τ ε ) Ḣs m c -ε n , and 1 -τ ε 1. Hence, we get m c -ε n 2 m 2 c -α 0 + (1 -τ ε ) 2 σs j∈J 1 ,j =j 0 τ j * >1 sup τ ∈[0,1] N S(ϕ j )(τ ) 2 Ḣs + ψ J n 2 Ḣs + |γ J n (τ ε )|. (66) 
On the one hand, as profiles ϕ j have a lifespan τ j * > 1, the quantity sup

τ ∈[0,1]
N S(ϕ j )(τ ) 2 Ḣs is finite.

On the other hand, by vertue of profile decomposition of the sequence (v 0,n ), we have obviously that

ψ J n 2 Ḣs v 0,n 2 
Ḣs . As we have proved that (v 0,n ) is an element of the set E c , we get in particular that sup τ <1

(1τ ) 1 σs N S(v 0,n )(τ ) Ḣs = M c , which leads to (at τ = 0) v 0,n Ḣs M c . Finally, for all τ ε ,

(1 -τ ε ) 2 σs j∈J 1 ,j =j 0 τ j * >1 sup τ ∈[0,1] N S(ϕ j )(τ ) 2 Ḣs + ψ J n 2 Ḣs α 0 4 , we get m c -ε n 2 m 2 c -α 0 + α 0 4 + |γ J n (τ ε )|. (67)
Now, by assumption of γ J n , we take the limit for n and J large enough, and we get

(68) m 2 c m 2 c - 3 α 0 4 + α 0 4 ,
which is obviously absurd. Thus, we have proved that lim inf τ →1

(1τ )

1 σs N S(ϕ j 0 )(τ ) Ḣs = m c .
This concludes the proof of Lemma 7.1.

Structure Lemma for Navier-Stokes solutions with bounded data

The sequence (v 0,n ) n 0 be a bounded sequence of initial data in Ḣs . Thanks to Theorem 3.1, (v 0,n ) n 0 can be written as follows, up to an extraction

v 0,n (x) = J j=0 Λ 3 p
λ n,j ,x n,j ϕ j (x) + ψ J n (x), which can be written as follows

v 0,n (x) = j∈J 1 j J ϕ j (x -x n,j ) + j∈J c 1 j J Λ 3 p
λ n,j ,x n,j ϕ j (x) + ψ J n (x). (69) Let η > 0 be the parameter of rough cutting off frequencies. We define by w η (x) and wc η (x) the elements which Fourier transform is given by (70)

w η (ξ) = w(ξ)1 { 1 η |ξ| η} and wc η (ξ) = w(ξ) 1 -1 { 1 η |ξ| η} .
After rough cutting off frequencies with respect to the notations (70) and sorting profiles supported in the annulus 1 { 1 η |ξ| η} according to their scale (thanks to the orthogonality property of scales and cores, given by Theorem 3.1). We get the following profile decomposition

v 0,n (x) = j∈J 1 ϕ j (x -x n,j ) + j∈J 0 Λ 3 p λ n,j ,x n,j ϕ j η (x) + j∈J∞ Λ 3 p λ n,j ,x n,j ϕ j η (x) + ψ J n,η (x)
where ψ J n,η (x)

def = j∈J c 1 ≡J 0 ∪J∞ j J Λ 3 p λ n,j ,x n,j V j c η (x) + ψ J n (x), (71) 
for any j in J 1 ⊂ J, λ n,j = 1, for any j in J 0 , lim n→+∞ λ n,j = 0 and for any j in J ∞ , lim n→+∞ λ n,j = +∞.

As mentionned in the introduction, the whole Lemma 3.2 has been already proved in [START_REF] Poulon | About the behaviour of regular Navier-Stokes solutions near the blow up[END_REF], except for the orthogonality property of the Navier-stokes solution associated with such a sequence of initial data. Therefore, we refer the reader to [START_REF] Poulon | About the behaviour of regular Navier-Stokes solutions near the blow up[END_REF] for details of the proof and here, we focus on the "Pythagore property". Let us recall the notations

U 0 n,η def = j∈J 0 Λ 3 p λ n,j ,x n,j ϕ j η and U ∞ n,η def = j∈J∞ Λ 3 p
λ n,j ,x n,j ϕ j η .

We recall some properties on profiles with small and large scale and remaining term. We refer the reader to [START_REF] Poulon | About the behaviour of regular Navier-Stokes solutions near the blow up[END_REF] to the proof of the two propositions below.

Proposition 8.1.

For any s 1 < s, for any η > 0, for any j ∈ J 0 , (e.g lim

n→+∞ λ n,j = 0), then lim n→+∞ U 0 n,η Ḣs 1 = 0.
For any s 2 > s, for any η > 0, for any j ∈ J ∞ , (e.g lim

n→+∞ λ n,j = +∞), then lim n→+∞ U ∞ n,η Ḣs 2 = 0.
Concerning the remaining term, we can show it tends to 0, thanks to Lebesgue Theorem. 

N S(v 0,n )(t, •) 2 Ḣs = j∈J 1 N S(ϕ j )(t, • -x n,j ) 2 Ḣs + e t∆ j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n 2 Ḣs + R J n (t, •) 2 Ḣs + 2 j∈J 1 N S(ϕ j )(t, • -x n,j ) | e t∆ j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n Ḣs + 2 j∈J 1 N S(ϕ j )(t, • -x n,j ) | R J n Ḣs + 2 e t∆ j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n | R J n Ḣs .
Therefore, proving ( 21) is equivalent to prove Propositions 8.3 and 8.4 below. Both of them essentially stem from the orthogonality of cores and a compactness argument.

Proposition 8.3. Let ε > 0. Then, for any t ∈ [0, T -ε], (72) 
j∈J 1 N S(ϕ j )(t, • -x n,j ) 2 Ḣs = j∈J 1 N S(ϕ j )(t, • ) 2 Ḣs + γ n,ε (t), with lim n→+∞ sup t∈[0, T -ε] |γ n,ε (t)| = 0.
Proof. Once again, we developp the square of Ḣs -norm and we get for any t < T

j∈J 1 N S(ϕ j )(t, • -x n,j ) 2 Ḣs = j∈J 1 N S(ϕ j )(t, • -x n,j ) 2 Ḣs + 2 (j,k)∈J 1 ×J 1 j =k Λ s N S(ϕ j )(t, • -x n,j ) | Λ s N S(ϕ k )(t, • -x n,k ) L 2 ,
where Λ = √ -∆. Let ε > 0. Then, for any t in [0, Tε], we get

j∈J 1 N S(ϕ j )(t, • -x n,j ) 2 Ḣs = j∈J 1 N S(ϕ j )(t, • ) 2 Ḣs + 2 (j,k)∈J 1 ×J 1 j =k Γ s,j,k ε,n , where Γ s,j,k ε,n def = Λ s N S(ϕ j )(t, • -x n,j ) | Λ s N S(ϕ k )(t, • -x n,k ) L 2 . We denote by K J ε def = j∈J Λ s N S(ϕ j )([0, T -ε]).

By vertue of the continuity of the map

t ∈ [0, T -ε] → Λ s N S(ϕ j )(t, • ) ∈ L 2 , we deduce that K J
ε is compact (and thus precompact) in L 2 . It means that it can be covered by a finite open ball with an arbitrarily radius α > 0. Let α be a positive radius. There exists an integer N α , and there exists (θ ℓ ) 1 ℓ Nα some elements of D(IR 3 ), such that (73)

K J ε ⊂ Nα ℓ=1 B(θ ℓ , α).
Let us come back to the proof of 8.3. Thanks to the previous remark, we approach each profil Λ s N S(ϕ j )(t, • ) (resp. Λ s N S(ϕ k )(t, • )) by a smooth function: e.g there exists a integer ℓ ∈ {1, • • • N α } and there exists a function θ ℓ(j,t) (resp. θ ℓ(k,t) ) in D(IR 3 ) and we get

Γ s,j,k ε,n = Λ s N S(ϕ j )(t, • -x n,j ) -θ ℓ(j,t) (• -x n,j ) | Λ s N S(ϕ k )(t, • -x n,k ) -θ ℓ(k,t) (• -x n,k ) L 2 + Λ s N S(ϕ j )(t, • -x n,j ) -θ ℓ(j,t) (• -x n,j ) | θ ℓ(k,t) (• -x n,k ) L 2 + θ ℓ(j,t) (• -x n,j ) | Λ s N S(ϕ k )(t, • -x n,k ) -θ ℓ(k,t) (• -x n,k ) L 2 + θ ℓ(j,t) (• -x n,j ) | θ ℓ(k,t) (• -x n,k ) L 2 . (74) 
The three first terms in the right-hand side of the above estimate tend uniformly (in time) to 0, by vertue of Cauchy-Schwarz and the translation-invariance of the Ḣs -norm (we just perform the estimate for the first term, the others are similar). For any t ∈ [0, Tε]

Λ s N S(ϕ j )(t, • -x n,j ) -θ ℓ(j,t) (• -x n,j ) | Λ s N S(ϕ k )(t, • -x n,k ) -θ ℓ(k,t) (• -x n,k ) L 2 Λ s N S(ϕ j )(t) -θ ℓ(j,t) L 2 Λ s N S(ϕ k )(t) -θ ℓ(k,t) L 2 α 2 . (75) 
Therefore, for any α > 0, we have ( 76)

sup t∈[0, T -ε] Λ s N S(ϕ j )(t, • -x n,j ) -θ ℓ(j,t) (• -x n,j ) | Λ s N S(ϕ k )(t, • -x n,k ) -θ ℓ(k,t) (• -x n,k ) L 2 α 2 .
For the last term θ ℓ(j,t) (

• -x n,j ) | θ ℓ(k,t) (• -x n,k ) L 2 , we have θ ℓ(j,t) (• -x n,j ) | θ ℓ(k,t) (• -x n,k ) L 2 = IR 3 θ ℓ(j,t) (x) θ ℓ(k,t) (x + x n,j -x n,k ) dx.
It follows immediately that the above term tends to 0, when n tend to +∞, by vertue of Lebesgue theorem combining with the orthogonality property of cores(e.g. lim n→∞ |x n,jx n,k | = +∞). To sum up, we have proved that Γ s,j,k ε,n tends to 0 when n tends to +∞, uniformly in time. This concludes the proof of Proposition 8.3.

Concerning the crossed-terms in the profile decomposition, we have to prove they are also negligable, uniformly in time. That is the point in the following proposition. Proposition 8.4. Let ε > 0, We denote by By vertue of the continuity of the map t ∈ [0, Tε] → N S(ϕ j )(t, • ) ∈ Ḣs , we deduce that Λ J ε is compact (and thus precompact) in Ḣs . It means that it can be covered by a finite open ball with an arbitrarily radius β > 0. Let β be a positive radius. There exists an integer N β , and there exists (χ ℓ ) 1 ℓ N β some elements of D(IR 3 ), such that 

I n (t, • ) def = j∈J 1 N S(ϕ j )(t, • -x n,j ) | e t∆ j∈J c 1 j J Λ 3 p λ n,j ,x n,j ϕ j (x) + ψ J n Ḣs , then, one has lim J→+∞ lim η→+∞ lim n→+∞ sup t∈[0, T -ε] I n (t, • ) = 0, (77) lim J→+∞ lim n→+∞ sup t∈[0, T -ε] j∈J 1 N S(ϕ j )(t, • -x n,j ) | R J n (t) Ḣs = 0, (78) 
Concerning the second part of above inequality, we shall use the splitting with respect to the parameter of cut off η. We refer the reader to the beginning of this section for notations. λ n,j ,x n,j ϕ j + ψ J n Ḣs = I Obviously the term ψ J n,η Ḣs is bounded by profiles hypothesis and the term Λ 2s χχ ℓ(t,j) L p ′ is bounded too, since the function χ is as regular as we need. By vertue of Proposition 8.2, the term ψ J n,η L p is small in the sense of for any ε > 0, there exists an integer N 0 ∈ N , such that for any n N 0 , there exists η > 0 and J 0, such that for any η η and for any J J , we have ψ J n,η L p ε. As a result, we get for any lim This ends up the proof of estimate (77).

Concerning the proof of ( 78) and (79), the proof is very close in both cases and relies on the fact that the error term R J n tends to 0 in the L ∞ T ( Ḣs )-norm. For any t ∈ [0, Tε], we have λ n,j ,x n,j ϕ j (x)

+ ψ J n L ∞ T ( Ḣs ) R J n L ∞ T -ε ( Ḣs ) U 0 n,η + U ∞ n,η + ψ J n,η Ḣs R J n L ∞ T -ε ( Ḣs ) . (86) 
Thanks to profile decomposition (71), we get We end up the proof as before, thanks to the hypothesis on R J n . This completes the proof of Proposition 8.4 and thus Lemma 3.2.

U 0 n,η + U ∞ n,η + ψ J n,η 2 

Remark 1 . 3 .

 13 Theorem 1.1 implies there exists a constant c > 0, such that (4) (T * (u 0 )t) N S(u 0 )(t) σs Ḣs c, and thus we get in particular the blow up of the Ḣs -norm lim t→T * (u 0 )

Proposition 4 . 1 .

 41 Let (v 0,n ) n∈IN be a bounded sequence in Ḣs such that τ * (v 0,n ) = 1 and for any τ < 1, (1τ ) N S(v 0,n )(τ, ) σs

and u 0 ∈

 0 Ḣs . It exists a positive constant C s such that If T * (u 0 ) < ∞ and M u def = (T * (u 0 )t) N S(u 0 )(t) σs Ḣs < ∞, then, we have for any s < s ′ < 2s -1 2

  Concerning the Ḃs ′ 2,∞ -norm, scaling argument combinig with Lemma 2.2 yields

1 2 n 2 n

 122 e tn∆ Ψ 0 (τ 1 • ) tends to 0 in Ḣs -norm (and thus in L p -norm, by Sobolev embedding) since (55) τ 1 2

  ϕ j 0 )(τ ) Ḣs m c . By definition of m c , this will imply that lim inf τ →1 (1τ ) 1 σs

  j ,x n,j ϕ j (x) + ψ J n | R J n (t) Ḣs = 0. (79)Proof. Let us start by proving (77). We shall use once again an approximation argument. Let us defineΛ J ε def = j∈J N S(ϕ j )([0, Tε]).

j∈J 1 N 1 N 1 χ 1 χ

 1111 ℓ , β).Let us come back to the proof of (77). Same arguments as previously imply there exists an integer ℓ ∈ {1• • • N β } and a smooth function χ ℓ(t,j) in D(IR 3 ) such thatI n (t, • ) def = S(ϕ j )(t, •x n,j ) | e t∆ j ,x n,j ϕ j + ψ J n Ḣs = j∈J S(ϕ j )(t, •x n,j )χ ℓ(t,j) (• -x n,j ) | e t∆ j ,x n,j ϕ j + ψ J n Ḣs + j∈J ℓ(t,j) (• -x n,j ) | e t∆ j ,x n,j ϕ j + ψ J n Ḣs . j ,x n,j ϕ j + ψ J n Ḣs v 0,n Ḣs , we infer thatI n (t, • ) |J 1 | β v 0,n Ḣs + j∈J ℓ(t,j) (• -x n,j) | e t∆ j ,x n,j ϕ j + ψ J n Ḣs

j∈J 1 χ

 1 ℓ(t,j) (• -x n,j ) | e t∆

j∈J 1 N 1 N

 11 S(ϕ j )(t, •x n,j ) | R J n Ḣs j∈J 1 N S(ϕ j )(t, • ) | R J n (t, • +x n,j ) Ḣs |J 1 | N S(ϕ j )(t, • ) L ∞ T ( Ḣs ) R J n (t, • ) L ∞ T ( Ḣs ) .(85)Obviously, the term N S(ϕ j )(t,• ) L ∞ T ( Ḣs ) is bounded since t ∈ [0, Tε]. As a result, Lemma 3S(ϕ j )(t, •x n,j ) | R J n Ḣs |= 0.As far as estimate (79) is concerned, the idea is the same. For any t ∈ [0, Tj ,x n,j ϕ j (x) + ψ J n j ,x n,j ϕ j (x) + ψ J n

  j ,x n,j ϕ j (x) + ψ J n | R J n Ḣs | C v 0

  Step 2 : Existence of sup-critical elements in Ḣs ∩ Ḣs ′ , with s and s ′ such that s < s ′ < 2s -

	Ḃ 1 2 2,∞ ∩ 1 2 This will be proved in Section 6. Notice that proving that N S(Ψ 0 ) is bounded in the Besov space Ḃ 1 2 2,∞ • is equivalent to prove that Ψ 0 belongs to Ḃ 1 2 2,∞ , since, by vertue of Lemma 2.2, the fluctuation part is bounded in Ḃ 1 2

  1[ and (p, r) in [1, ∞] 2 . A constant C exists such that, for any u ∈ S ′ ,We recall an interpolation property in Besov spaces, which will be useful in the sequel.

	(22)	C -1 u Ḃs p,r	u(• -y) -u L p |y| s	L r (IR d ; dy |y| d )	C u Ḃs p,r	.
	Remark 3.2. Notice that Ḣs ⊂ Ḃs 2,2 and both spaces coincide if s <	3 2	•

Proposition 3.3. A constant C exists which satisifes the following property. If s 1 and s 2 are real numbers such that s 1 < s 2 and θ ∈]0, 1[, then we have for any p ∈ [1, +∞]

  which is wrong by hypothesis. Moreover, by definition of the Besov norm, we can find a sequence (k n ) n∈Z , such that

	(52)	lim n→+∞

  Continuation of Proof of Lemma 3.2. By vertue of (20) in Lemma 3.2, it seems clear that for any t < T

	Proposition 8.2.			
	lim J→+∞	lim η→+∞	lim sup n→+∞	ψ J n,η L p = 0.

  ḢsandI 3 n (t, • ) = j∈J 1 χ ℓ(t,j) (• -x n,j ) | e t∆ ψ J n,η Ḣs .Let us start with I 1 n (t, • ). One has|I 1 n (t, • )| |J 1 | χ ℓ(t,j) Ḣ2s-s 1 e t∆ U 0 n,η Ḣs 1 |J 1 | χ ℓ(t,j) Ḣ2s-s 1 U 0 n,η Ḣs 1 .Proposition 8.1 (for η and j ∈ J 1 fixed) implies thus limConcerning profiles with large scale, the proof is similar and we get for any t ∈ [0, Tε]|I 2 n (t, • )| |J 1 | χ ℓ(t,j) Ḣ2s-s 2 U ∞ n,η (x) Ḣs 2 . (83)Once again, Proposition 8.1 implies the result : lim • )| Λ 2s χ ℓ(t,j) | e t∆ ψ J n,η (• +x n,j ) L 2 Λ 2s χ ℓ(t,j) L p ′ e t∆ ψ J n,η (• +x n,j ) L p . By translation invariance of the L p -norm and estimate on the heat equation, we get

			n→+∞	sup t∈[0, T -ε]	|I 2 n (t, • )| = 0.
	Concerning the last term I 3 n , Hölder inequality with	1 p	+	1 p ′ = 1 yields
	(84)	|I 3 n (t, |I 3 n (t, • )|	Λ 2s χ ℓ(t,j) L p ′ ψ J n,η L p .
				n→+∞	sup t∈[0, T -ε]	|I 1 n (t, • )| = 0.

1 n (t, • ) + I 2 n (t, • ) + I 3 n (t, • ),

where

I 1 n (t, • ) = j∈J 1 χ ℓ(t,j) (• -x n,j ) | e t∆ U 0 n,η Ḣs ; I 2 n (t, • ) = j∈J 1 χ ℓ(t,j) (• -x n,j ) | e t∆ U ∞ n,η