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ABOUT THE POSSIBILITY OF MINIMAL BLOW UP FOR NAVIER-STOKES

SOLUTIONS WITH DATA IN Ḣs(IR3)

EUGÉNIE POULON

Abstract. Considering initial data in Ḣ
s, with 1

2
< s <

3
2
, this paper is devoted to the study

of possible blowing-up Navier-Stokes solutions such that (T∗(u0)− t)
1

2
(s− 1

2
) ‖u‖Ḣs is bounded. Our

result is in the spirit of the tremendous works of L. Escauriaza, G. Seregin, and V. S̆verák and I.
Gallagher, G. Koch, F. Planchon, where they proved there is no blowing-up solution which remain
bounded in L

3(IR3). The main idea is that if such blowing-up solutions exist, they satisfy critical
properties.

1. Introduction and statement of main result

We consider the Navier-Stokes system for incompressible viscous fluids evolving in the whole space IR3.
Denoting by u the velocity, a vector field in IR3, by p in IR the pressure function, the Cauchy problem
for the homogeneous incompressible Navier-Stokes system is given by

(1)





∂tu+ u · ∇u−∆u = −∇p
div u = 0
u|t=0 = u0.

We recall a crucial property of the Navier-Stokes equation : the scaling invariance. Let us define the
operator

∀α ∈ IR+, ∀λ ∈ IR+
∗ , ∀x0 ∈ IR3, Λα

λ,x0
u(t, x)

def
=

1

λα
u
( t

λ2
,x− x0

λ

)
.

If α = 1, we note Λ1
λ,x0

= Λλ,x0 .

(2)

Clearly, if u is smooth solution of Navier-Stokes system on [0, T ]× IR3 with pressure p associated with
the initial data u0, then, for any positive λ, the vector field and the pressure

uλ
def
= Λλ,x0 u and pλ

def
= Λ2

λ,x0
p

is a solution of Navier-Stokes system on the interval [0, λ2T ]× IR3, associated with the initial data

u0,λ = Λλ,x0 u0.

This leads to the definition of scaling invariant space.

Definition 1.1. A Banach space X is said to be scaling invariant (or also critical), if its norm is
invariant under the scaling transformation defined by u 7→ uλ

||uλ||X = ||u||X .
Let us give some exemples of critical spaces in dimension 3

Ḣ
1
2 (IR3) →֒ L3(IR3) →֒ Ḃ

−1+ 3
p

p,∞ (IR3)p<∞ →֒ BMO−1(IR3) →֒ Ḃ−1
∞,∞(IR3).

The framework of this work is functional spaces which are above the natural scaling of Navier-Stokes
equations. More precisely, our statements will take place in some Sobolev and Besov spaces, with a
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2 EUGÉNIE POULON

regularity index s such that
1

2
< s <

3

2
·

Notations. We shall constantly be using the following simplified notations:

L∞
T (Ḣs)

def
= L∞([0, T ], Ḣs) and L2

T (Ḣ
s+1)

def
= L2([0, T ], Ḣs+1),

and the relevant function space we shall be working with in the sequel is

Xs
T

def
= L∞

T (Ḣs) ∩ L2
T (Ḣ

s+1), endowed with the norm ‖u‖2Xs
T

def
= ‖u‖2

L∞
T
(Ḣs)

+ ‖u‖2
L2
T
(Ḣs+1)

.

Let us start by recalling the local existence theorem for data in the Sobolev space Ḣs.

Theorem 1.1. Let u0 be in Ḣs, with
1

2
< s <

3

2
· Then there exists a time T and there exists a unique

solution NS(u0) such that NS(u0) belongs to L∞
T (Ḣs) ∩ L2

T (Ḣ
s+1).

Moreover, denoting by T∗(u0) the maximal time of existence of such a solution, there exists a positive
constant c such that

(3) T∗(u0) ‖u0‖σs

Ḣs
> c, with σs

def
=

1
1
2 (s− 1

2)
·

Remark 1.1. Throughout this paper, we will adopt the useful notation NS(u0) to mean the maximal
solution of the Navier-Stokes system, associated with the initial data u0. Notice that our whole work
relies on the hypothesis there exists some blowing up NS-solutions, e.g some NS-solutions with a finite
lifespan T∗(u0). This is still an open question.

Remark 1.2. We point out that the infimum of the quantity T∗(u0) ‖u0‖σs

Ḣs
exists and is positive

(because of the constant c). It has been proved in [27] that there exists some intial data which reach
this infimum and that the set of such data is compact, up to dilations and translations.

Remark 1.3. Theorem 1.1 implies there exists a constant c > 0, such that

(4) (T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
> c,

and thus we get in particular the blow up of the Ḣs-norm

lim
t→T∗(u0)

‖NS(u0)(t)‖σs

Ḣs
= +∞.

Our motivation here is to wonder if there exist some Navier-Stokes solutions which stop living in finite
time (e.g T∗(u0) < ∞) and which blows up at a minimal rate, namely: there exists a positive con-
stant M such that (T∗(u0)− t) ‖NS(u0)‖σs

Ḣs
6M . In others terms,

Question: Does there exist some blowing up NS-solutions such that (T∗(u0)− t) ‖NS(u0)‖σs

Ḣs
6M ?

If yes, what do they look like ?

We assume an affirmative answer and we search to characterize such solutions.

Hypothesis H: There exist some blowing up NS-solutions such that (T∗(u0)− t) ‖NS(u0)‖σs

Ḣs
6M .

Notice that a very close question to this one is to prove that

If T∗(u0) <∞, does lim sup
t→T∗(u0)

(T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
= +∞ ?

We underline that this question about blowing-up Navier-Stokes solutions has been highly developed

in the context of critical spaces, namely Ḣ
1
2 (IR3) and L3(IR3). Indeed, L. Escauriaza, G. Seregin and
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V. S̆verák showed in the fundamental work [13] that any "Leray-Hopf" weak solution which remains
bounded in L3(IR3) can not develop a singularity in finite time. Alternatively, it means that

(5) If T∗(u0) < +∞, then lim sup
t→T∗(u0)

‖NS(u0)(t)‖L3 = +∞.

I. Gallagher, G. Koch and F. Planchon revisited the above criteria in the context of mild Navier-Stokes
solutions. They proved in [16] that strong solutions which remain bounded in L3(IR3), do not become
singular in finite time. To perform it, they develop an alternative viewpoint : the method of "critical
elements" (or "concentration-compactness"), which was introduced by C. Kenig and F. Merle to treat
critical dispersive equations. Recently, same authors extend the method in [17] to prove the same result

in the case of the critical Besov space Ḃ
−1+ 3

p
p,q (IR3), with 3 < p, q <∞. Notice the work of J.-Y.Chemin

and F. Planchon in [12], who gives the same answer in the case of the Besov space Ḃ
−1+ 3

p
p,q (IR3), with

3 < p <∞, q < 3 and with an additional regularity assumption on the data. To conclude the non-
exhaustive list of blow up results, we mention the work of C. Kenig and G. Koch who carried out

in [21] such a program of critical elements for solutions in the simpler case Ḣ
1
2 (IR3). More precisely,

they proved for any data u0 belonging to the smaller critical space Ḣ
1
2 (IR3),

(6) If T∗(u0) < +∞, then lim
t→T∗(u0)

‖NS(u0)(t)‖
Ḣ

1
2
= +∞.

In our case (remind : we consider Sobolev spaces Ḣs(IR3) with
1

2
< s <

3

2
which are non-invariant

under the natural scaling of Navier-Stokes equations), we can not expect to prove our result in the
same way, because of the scaling. Indeed, a similar proof leads us to define the critical quantity Mσs

c

Mσs
c = sup

{
A > 0, sup

t<T∗(u0)
(T∗(u0)− t) ‖NS(u0)‖σs

Ḣs
6 A ⇒ T∗(u0) = +∞

}
.

But unfortunately, such a point of view makes no sense, owing to the meaning of (T∗(u0) − t)
when T∗(u0) = +∞. We have to proceed in an other way and it may be removed by defining a
new object Mσs

c

Mσs
c

def
= inf

u0∈Ḣs

T∗(u0)<∞

{
lim sup
t→T∗(u0)

(T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs

}
.

Clearly, (4) implies that Mσs
c exists and is positive. As we have decided to work under hypothesis H,

a fortiori, this implies that Mσs
c is finite. The definition below is the key notion of critical solution in

this context.

Definition 1.2. (Sup-critical solution)

Let u0 be an element in Ḣs. We say that u = NS(u0) is a sup-critical solution if NS(u0) satisfies the
two following assumptions:

T∗(u0) <∞ and lim sup
t→T∗(u0)

(T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
= Mσs

c .

A natural question is to know if such elements exist. The statement given below gives an affirmative
answer and provides a general procedure to build some sup-critical solutions. Our main result follows.

Theorem 1.2. (Key Theorem)

Let us assume that there exists u0 in Ḣs and M in IR+
∗ such that

T∗(u0) <∞ and (T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
6M.

Then, there exists Φ0 ∈ Ḣs ∩ Ḃ
1
2
2,∞ such that Φ

def
= NS(Φ0) is a sup-critical solution, blowing up at

time 1, such that

(7) sup
τ<1

(1− τ) ‖NS(Φ0)(τ)‖σs

Ḣs
= lim sup

τ→1
(1− τ) ‖NS(Φ0)(τ)‖σs

Ḣs
= Mσs

c .
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In addition, there exists a positive constant C such that

(8) and for any τ < 1, ‖NS(Φ0)(τ)‖
Ḃ

1
2
2,∞

6 C,

where the Besov norm (for regularity index 0 < α < 1) is defined by

‖u‖Ḃα
2,∞

def
= sup

x∈IR
d

‖u(· −x) − u‖L2

|x|α ·

We postpone the proof of (7) of the Key Theorem 1.2 to the next section. The proof of (8) will be
given in Section 5. We stress on the fact that (8) is somewhat close to a question raised by the paper
of I. Gallagher, G. Koch and F. Planchon [17], in which they prove that for any initial data in the

critical Besov space Ḃ
−1+ 3

p
p,q , with 3 < p, q < ∞, the NS-solution, (the lifespan of which is assumed

finite) becomes unbounded at the blow-up time. Let us say a few words about the limit case Ḃ
−1+ 3

p
p,∞ .

We may wonder if the result holds in the limit case q = ∞. As far as the author is aware, the answer

is still open. Actually, if it holds, a fortiori it holds in the smaller space Ḃ
1
2
2,∞, by vertue of the

embedding Ḃ
1
2
2,∞ →֒ Ḃ

−1+ 3
p

p,∞ . In others terms, it would mean there is no blowing-up solution, bounded

in the critical space Ḃ
1
2
2,∞. This is related to the concern of our paper since we build some blowing-up

solutions bounded in this critical space, under the assumption of blow up at minimal rate. We mention
the very interesting work of H. Jia and V. S̆verák [20], where they prove that −1-homogeneous initial
data generate global −1-homogeneous solutions. Unfortunately, the uniqueness of such solutions is not
guaranteed.

2. Existence of sup-critical solutions

The goal of this section is to give a partial proof of Key Theorem 1.2. It relies on the two Lemmas
below.

Lemma 2.1. (Existence of sup-critical solutions in Ḣs)

Let (v0,n)n∈IN be a bounded sequence in Ḣs such that

(9) τ∗(v0,n) = 1 and for any τ < 1, (1− τ) ‖NS(v0,n)(τ, · )‖σs

Ḣs
6 Mσs

c + εn,

where εn is a generic sequence which tends to 0 when n goes to +∞.

Then, there exists Ψ0 in Ḣs such that Ψ
def
= NS(Ψ0) is a sup-critical solution blowing up at time 1

and satisfies

(10) sup
τ<1

(1− τ) ‖NS(Ψ0)(τ)‖σs

Ḣs
= lim sup

τ→1
(1− τ) ‖NS(Ψ0)(τ)‖σs

Ḣs
= Mσs

c .

Moreover, the initial data of such element is a weak limit of the sequence (v0,n) translated, e.g

(11) ∃ (x0,n)n>0, v0,n(·+x0,n)⇀n→+∞ Ψ0.

The proof of Lemma 2.1 will be the purpose of Section 4. It relies essentially on scaling argument and
profile theory, which will be introduced in the next Section 3.

Lemma 2.2. (Fluctuation estimates)

Let u = NS(u0) be a NS-solution associated with a data u0 ∈ Ḣs, with
1

2
< s <

3

2
, such that

(T∗(u0)− t)
1
σs ‖NS(u0)(t)‖Ḣs 6M.

Then, the following estimates on the fluctuation part B(u, u)(t)
def
= u− et∆u0 yield

(12) for any s < s′ < 2s− 1

2
, (T∗(u0)− t)

1
σ
s′ ‖B(u, u)(t)‖Ḣs′ 6 Fs′(M

2)
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Moreover, for the critical case =
1

2
, we have

(13) ‖B(u, u)(t)‖
Ḃ

1
2
2,∞

6 CM2.

The proof of this lemma is postpone to Section 8. It merely stems from product laws in Besov spaces,
interpolation inequalities and from judicious splitting into low and high frequencies in the following
sense

(T∗ − t)22j 6 1 and (T∗ − t)22j > 1.

Remark 2.1. Let us point out that estimates of Lemma 2.2 do not hold if 0 < α <
1

2
, owing to low

frequencies. Indeed, arguments similar to the ones used in the proof of Lemma 2.2 lead only to the
following estimate

‖B(u, u)(t)‖Ḃα
2,∞

6 CM2 T∗(u0)
1
2
(α− 1

2
).

Partial proof of Key Theorem 1.2

In all this text, we denote by (εn) a non increasing sequence, which tends to 0, when n tend to +∞.

• Step 1 : Existence of sup-critical elements in Ḣs, with
1

2
< s <

3

2
·

Let us consider the sequence (Mc + εn)n>0. By definition ofMc, there exists a sequence (u0,n) belonging

to Ḣs, with a finite lifespan T∗(u0,n), such that for any t < T∗(u0,n) :

lim sup
t→T∗(u0)

(T∗(u0,n)− t) ‖NS(u0,n)‖σs

Ḣs
6Mσs

c + εn.

By definition of lim sup, there exists a nondecreasing sequence of time tn, converging to T∗(u0), such
that

(14) ∀t > tn, (T∗(u0,n)− t) ‖NS(u0,n)(t, x)‖σs

Ḣs
6Mσs

c + εn.

By rescaling, we consider the sequence

v0,n(y) =
(
T∗(u0,n)− tn

) 1
2 NS(u0,n)

(
tn, (T∗(u0,n)− tn

) 1
2 y

)
.

and we have

‖v0,n‖σs

Ḣs
=

(
T∗(u0,n)− tn

)
‖NS(u0,n)(tn)‖σs

Ḣs
.(15)

By vertue of (14), the sequence (v0,n)n>1 is bounded
(
by Mσs

c + ε0
)

in the space Ḣs. Moreover, such a
sequence generates a Navier-Stokes solution, which keeps on living until the time τ∗ = 1 and satisfies

NS(v0,n)(τ, y) =
(
T∗(u0,n)− tn

) 1
2 NS(u0,n)

(
tn + τ

(
T∗(u0,n)− tn

)
,
(
T∗(u0,n)− tn

) 1
2 y

)
.(16)

We introduce t̃n = tn + τ
(
T∗(u0,n)− tn

)
. Notice that, because of scaling, an easy computation yields

(17) (1− τ) ‖NS(v0,n)(τ)‖σs

Ḣs
=

(
T∗(u0,n)− t̃n

)
‖NS(u0,n)

(
t̃n
)
‖σs

Ḣs
.

As t̃n > tn for any n (by definition of t̃n) we combine (17) with (14) and we get, for any τ ∈ [0, 1[,

(1− τ)‖NS(v0,n)(τ, x)‖σs

Ḣs
6Mσs

c + εn.

The sequence (v0,n) satisfies the hypothesis of Lemma 2.1. Applying it, we build a sup-critical solution

Φ = NS(Ψ0) in Ḣs which blows up at time 1, e.g

lim sup
τ→1

(1− τ) ‖NS(Ψ0)(τ)‖σs

Ḣs
= Mσs

c .

This proves the first part of the statement of Theorem 1.2.
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• Step 2 : Existence of sup-critical elements in Ḣs∩Ḃ
1
2
2,∞∩Ḣs′, with s and s′ such that s < s′ < 2s− 1

2
·

This will be proved in Section 6. Notice that proving that NS(Ψ0) is bounded in the Besov space Ḃ
1
2
2,∞

is equivalent to prove that Ψ0 belongs to Ḃ
1
2
2,∞, since, by vertue of Lemma 2.2, the fluctuation part is

bounded in Ḃ
1
2
2,∞ and obviously we have

‖NS(Ψ0)(t)‖
Ḃ

1
2
2,∞

6 ‖NS(Ψ0)(t) − et∆Ψ0‖
Ḃ

1
2
2,∞

+ ‖et∆Ψ0‖
Ḃ

1
2
2,∞

.

The paper is structured as follows. In Section 3, we recall the main tools of this paper. Essentially,
it deals with the profile theory of P. Gérard [18] and a structure lemma concerning a NS-solution
associated with a sequence which satisfies hypothesis of profile theory. We also recall some basics facts
on Besov spaces.
In Section 4, we are going to establish the proof of crucial Lemma 2.1, which provides the proof of the
first part of Theorem 1.2 : there exists some sup-critical elements in Ḣs. The second part of the proof
is postponed in Section 6, where we build some sup-critical elements not only in Ḣs, but also in others

spaces, such as Ḃ
1
2
2,∞ and Ḃs′

2,∞, with s < s′ < 2s− 1

2
· To carry out this, we need some estimates on

the fluctuation part of the solution, which will be provided in Section 5.
Then in Section 7, we give an analogue sup-inf critical criteria. It turns out that among sup-critical
solutions, there exists some of them which are sup-inf-critical in the sense of they reach the biggest
infimum limit. Section 8 is devoted to the proof of Lemma 3.2, which gives the structure of a Navier-
Stokes solution associated with a bounded sequence of data in Ḣs. We recall to the reader that such
structure result has been partially proved in [27], except for the orthogonality property of Navier-Stokes

solution in Ḣs-norm. As a result, we give the proof of such a property, after reminding the ideas of
the complete proof.

3. Profile theory and Tool Box

We recall the fundamental result due to P. Gérard : the profile decomposition of a bounded sequence
in the Sobolev space Ḣs. The original motivation of this theory was the desciption, up to extractions,
of the defect of compactness in Sobolev embeddings (see for instance the pionneering works of P.-L.
Lions in [24], [25] and H. Brezis, J.-M. Coron in [6]. Here, we will use the theorem of P. Gérard [18],

which gives, up to extractions, the structure of a bounded sequence of Ḣs, with s between 0 and
3

2
·

More precisely, the defect of compactness in the critical Sobolev embedding Ḣs ⊂ Lp is described in
terms of a sum of rescaled and translated orthogonal profiles, up to a small term in Lp. For more
details about the history of the profile theory, we refer the reader to the paper [27].

Theorem 3.1. (Profile Theorem [18])

Let (u0,n)n∈IN be a bounded sequence in Ḣs. Then, up to an extraction:

- There exists a sequence vectors fields, called profiles (ϕj)j∈IN in Ḣs.
- There exists a sequence of scales and cores (λn,j , xn,j)n,j∈IN, such that, up to an extraction

∀J > 0, u0,n(x) =
J∑

j=0

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x) with lim
J→+∞

lim sup
n→+∞

‖ψJ
n‖Lp = 0, and p =

6

3− 2s
·

Where, (λn,j, xn,j)n∈IN,j∈IN
∗ are sequences of (IR∗

+ × IR3)IN with the following orthogonality property:
for every integers (j, k) such that j 6= k, we have

either lim
n→+∞

(λn,j
λn,k

+
λn,k

λn,j

)
= +∞ or λn,j = λn,k and lim

n→+∞

|xn,j − xn,k|
λn,j

= +∞.
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Moreover, for any J ∈ IN, we have the following orthogonality property

(18) ‖u0,n‖2Ḣs =

J∑

j=0

‖ϕj‖2
Ḣs + ‖ψJ

n‖2Ḣs + ◦(1), when n→ +∞.

Let us recall a structure Lemma, based on the crucial profils theorem of P. Gérard (see [18]). Let (u0,n)

be a bounded sequence in the Sobolev space Ḣs, which profile decomposition is given by

u0,n(x) =
∑

j∈J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x),

with the appropriate properties on the error term ψJ
n . By vertue of orthogonality of scales and cores

given by Theorem 3.1, we sort profiles according to their scales

u0,n(x) =
∑

j∈J1
j6J

ϕj(x− xn,j) +
∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x)(19)

where for any j ∈ J1, for any n ∈ IN, λn,j ≡ 1.
Under these notations, we claim we have the following structure Lemma of the Navier-Stokes solutions,
which proof will be provided in Section 8.

Lemma 3.2. (Profile decomposition of a sequence of Navier-Stokes solutions)

Let (u0,n)n>0 be a bounded sequence of initial data in Ḣs which profile decomposition is given by

u0,n(x) =
J∑

j=0

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x).

Then, lim inf
n>0

T∗(u0,n) > T̃
def
= inf

j∈J1

T∗(ϕ
j) and for any t < T∗(u0,n), we have

NS(u0,n)(t, x) =
∑

j∈J1

NS(ϕj)(t, x− xn,j) + et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x)
)
+ RJ

n(t, x)(20)

where the remaining term RJ
n satisfies for any T < T̃ , lim

J→+∞
lim

n→+∞
‖RJ

n‖Xs
T
= 0.

Moreover, we have the orthogonality property on the Ḣs-norm for any t < T̃

‖NS(u0,n)(t)‖2Ḣs =
∑

j∈J1

‖NS(ϕj)(t)‖2
Ḣs +

∥∥∥et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj + ψJ

n

)∥∥∥
2

Ḣs
+ γJn (t).(21)

with lim
J→+∞

lim sup
n→+∞

sup
t′<t

|γJn (t′)| = 0.

For the convenience of the reader, we recall the usual definition of Besov spaces. We refer the reader
to [1], from page 63, for a detailed presentation of the theory and analysis of homogeneous Besov
spaces.

Definition 3.1. Let s be in IR, (p, r) in [1,+∞]2 and u in S ′. A tempered distribution u is an element

of the Besov space Ḃs
p,r if u satifies lim

j→∞
||Ṡju||L∞ = 0 and

‖u‖Ḃs
p,r

def
=

(∑

j∈Z

2jrs ||∆̇ju||rLp

) 1
r
<∞,
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where ∆̇j is a frequencies localization operator (called Littlewood-Paley operator), defined by

∆̇ju(ξ)
def
= F−1

(
ϕ(2−j |ξ|)û(ξ)

)
,

with ϕ ∈ D([12 , 2]), such that
∑

j∈Z

ϕ(2−jt) = 1, for any t > 0.

Remark 3.1. Notice that the characterization of Besov spaces with positive indices in terms of finite
differences is equivalent to the above definition (cf [1]). In the case where the regularity index is
between 0 and 1, one has the following property. Let s be in ]0, 1[ and (p, r) in [1,∞]2. A constant C
exists such that, for any u ∈ S ′,

(22) C−1 ‖u‖Ḃs
p,r

6
∥∥∥‖u(· −y) − u‖Lp

|y|s
∥∥∥
Lr(IRd; dy

|y|d
)
6 C ‖u‖Ḃs

p,r
.

Remark 3.2. Notice that Ḣs ⊂ Ḃs
2,2 and both spaces coincide if s <

3

2
·

We recall an interpolation property in Besov spaces, which will be useful in the sequel.

Proposition 3.3. A constant C exists which satisifes the following property. If s1 and s2 are real
numbers such that s1 < s2 and θ ∈]0, 1[, then we have for any p ∈ [1,+∞]

‖u‖
Ḃ

θ s1+(1−θ) s2
p,1

6 C(s1, s2, θ) ‖u‖θḂs1
p,∞

‖u‖1−θ

Ḃ
s2
p,∞

.

4. Application of profile theory to sup-critical solutions

This section is devoted to the proof of Lemma 2.1. The statement given below is actually a bit stronger
and clearly entails Lemma 2.1. We shall prove the following proposition.

Proposition 4.1. Let (v0,n)n∈IN be a bounded sequence in Ḣs such that

τ∗(v0,n) = 1 and for any τ < 1, (1− τ) ‖NS(v0,n)(τ, )‖σs

Ḣs
6 Mσs

c + εn,

where εn is a generic sequence which tends to 0 when n goes to +∞.
Then, up to extractions, we get the statements below
• the profile decomposition of such a sequence of data has a unique profile ϕj0 with constant scale such
that NS(ϕj0) is a sup-critical solution which blows up at time 1, e.g

(23) lim sup
τ→1

(1− τ) ‖NS(ϕj0)(τ)‖σs

Ḣs
= Mσs

c .

• "The limsup is actually a sup"

(24) sup
τ<1

(1− τ) ‖NS(ϕj0)(τ)‖σs

Ḣs
= Mσs

c .

Proof. Let (v0,n)n>1 be a bounded sequence in Ḣs, satisfiying the assumptions of Proposition 4.1.
Therefore, (v0,n)n>1 has the profile decomposition below

v0,n(x) =
∑

j∈J1
j6J

ϕj(x− xn,j) +
∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x).(25)

We denote by τ∗j0
def
= inf

j∈J1

T∗(ϕ
j).

• Step 1 : we start by proving by a contradiction argument that τ∗j0 = 1.
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We have already known by vertue of Lemma 3.2, that τ∗j0 6 1. Assuming that τ∗j0 < 1, we expect

a contradiction. Moreover, orthogonal Estimate (21) can be bounded from below by

‖NS(v0,n)(τ)‖2Ḣs > ‖NS(ϕj0)(τ)‖2
Ḣs − |γJn (τ)|.(26)

On the one hand, it seems clear by assumption that for any τ < τ∗j0 , we have

(1− τ∗j0)
2
σs 6 (1− τ)

2
σs .

On the other hand, hypothesis on NS(v0,n) yields

(1− τ)
2
σs ‖NS(v0,n)(τ)‖2Ḣs 6 M2

c + εn.

Therefore, from the above remarks, we get

(27) ‖NS(v0,n)(τ)‖2Ḣs 6
M2

c + εn

(1− τ∗j0)
2
σs

·

Combining the above estimate with (26), we finally get, after multiplication by the factor (τ∗j0 − τ)
2
σs ,

M2
c + εn

(1− τ∗j0)
2
σs

(τ∗j0 − τ)
2
σs > (τ∗j0 − τ)

2
σs ‖NS(ϕj0)(τ)‖2

Ḣs − (τ∗j0 − τ)
2
σs |γJn (τ)|.(28)

Notice that (τ∗j0 − τ)
2
σs is always less than 1, which allows us to get rid of it in front of the remaining

term |γJn (τ)|. In addition, applying (4) and hypothesis on the sequence εn, one has

M2
c + ε0

(1− τ∗j0)
2
σs

(τ∗j0 − τ)
2
σs > c − |γJn (τ)|.

We first choose τ = τc such that τc < τ∗j0 and
M2

c + ε0

(1− τ∗j0)
2
σs

(τ∗j0 − τc)
2
σs =

c

4
· Then, we take J and n

large enough such that |γJn (τc)| 6
c

2
· Therefore, we get a contradiction, which proves that τ∗j0 = 1.

• Step 2 : we prove here that NS(ϕj0) is a sup-critical solution in Ḣs.

Let us come back to Inequality (26), which we multiply by the factor (1 − τ)
2
σs . As we have shown

that τ∗j0 = 1, hypothesis on NS(v0,n) implies that for any τ < 1,

(29) M2
c + εn > (1− τ)

2
σs ‖NS(ϕj0)(τ)‖2

Ḣs − |γJn (τ)|.
Our aim is to prove that the particular profile ϕj0 generates a sup-critical solution. If not, it means
that

∃α0 > 0,∀ε > 0, ∃τε, such that 0 < (1− τε)
2
σs < ε and (1− τε)

2
σs ‖NS(u0,n)(τε)‖2Ḣs >M2

c + α0.

Taking the above inequality at time τε, one has

M2
c + εn > M2

c + α0 − |γJn (τε)|.
Moreover, assumption on the remaining term γJn implies that

∀η > 0, ∃J̃(η) ∈ IN, ∃Nη ∈ IN such that ∀J > J̃(η), ∀n > Nη, |γJn (τε)| 6 η.

Let η > 0. For any J > J̃(η) and for any n > Nη , we get at time τε,

M2
c >M2

c + α0 − η.

Now, choosing η small enough (namely η =
α0

2
) we get a contradiction which proves that NS(ϕj0) is

a sup-critical solution. This concludes the proof of step 2 and thus the point (23) is proved.
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• Step 3 : let us prove the point (24) of Proposition 4.1. The proof is a straightforward adaptation
of the previous one. We shall use that NS(ϕj0) is a sup-critical solution:

lim sup
τ→1

(1− τ) ‖NS(ϕj0)(τ)‖σs

Ḣs
= Mσs

c .

As we always have sup
τ<1

(1− τ) ‖NS(ϕj0)(τ)‖σs

Ḣs
> lim sup

τ→1
(1− τ) ‖NS(ϕj0)(τ)‖σs

Ḣs
, we get a first in-

equality : sup
τ<1

(1− τ) ‖NS(ϕj0)(τ)‖σs

Ḣs
>Mσs

c .

According to the previous computations, we have, for any τ < 1,

M2
c + εn > (1− τ)

2
σs ‖NS(ϕj0)(τ)‖2

Ḣs − |γJn (τ)|.

Hypothesis on the remaining term |γJn | implies that sup
τ<1

(1− τ) ‖NS(ϕj0)(τ)‖σs

Ḣs
6Mσs

c , which pro-

vides the second desired inequality. This ends up the proof of (24).

Let us recall some notation and add a few words about profiles with constant scale. Thanks to

Lemma 3.2 and obvious boundaries from below we get for any τ < τ∗j0
def
= inf

j∈J1

T∗(ϕ
j) = 1

‖NS(v0,n)(τ)‖2Ḣs >
∑

j∈J1

‖NS(ϕj)(τ)‖2
Ḣs − |γJn (τ)|.(30)

Among profiles with a scale equal to 1 (e.g j ∈ J1), we distinguish profiles with a lifespan equal
to τ∗j0 = 1 and profiles with a lifespan τ∗j strictly greater than 1. In other words, we consider the set

J̃1
def
= {j ∈ J1 | τ∗j = 1}.

Therefore, for any τ < 1,

‖NS(v0,n)(τ)‖2Ḣs > ‖NS(ϕj0)(τ)‖2
Ḣs +

∑

j∈J̃1, j 6=j0

‖NS(ϕj)(τ)‖2
Ḣs

+
∑

j∈J1\J̃1

‖NS(ϕj)(τ)‖2
Ḣs − |γJn (τ)|,

which be bounded from below once again by

‖NS(v0,n)(τ)‖2Ḣs > ‖NS(ϕj0)(τ)‖2
Ḣs +

∑

j∈J̃1, j 6=j0

‖NS(ϕj)(τ)‖2
Ḣs − |γJn (τ)|,(31)

since obviously the term
∑

j∈J1\J̃1

‖NS(ϕj)(τ)‖2
Ḣs is positive.

• Step 4 : in order to complete the proof of Lemma 2.1, we have to prove that there exists a unique
profile with a lifespan τ∗j0 = 1, namely |J̃1| = 1. Once again, we assume that there exists at least two

profiles in J̃1. We expect a contraction. Arguments of the proof are similar to the ones used in the

step 2. We shall use the fact (1− τ)
2
σs ‖NS(ϕj)(τ)‖2

Ḣs can not be small as we want, by vertue of (4).

Indeed, let us come back to Inequality (31). We have already proved that ϕj0 generates a sup-critical
solution, blowing up at time 1. It means that for any ε > 0, there exists a time τε such that

0 < (1− τε)
2
σs < ε and M2

c − ε 6 (1− τε)
2
σs ‖NS(ϕj0)(τε)‖2Ḣs 6M2

c + ε.

Therefore, Inequality (31) becomes at time τε

(32) M2
c + εn >M2

c − ε +
∑

j∈J̃1,j 6=j0

(1− τε)
2
σs ‖NS(ϕj)(τε)‖2Ḣs − |γJn (τε)|.
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By vertue of (4), there exists a universal constant c > 0 such that for any j ∈ J̃1 and j 6= j0

(33) (1− τ)
2
σs ‖NS(ϕj)(τ)‖2

Ḣs > c2.

As a result, taking the limit for n and J large enough, we infer that (still under the hypothesis |J̃1| > 1)

(34) M2
c >M2

c − ε + (|J̃1| − 1) c2 − η.

Choosing ε small enough, we get a contradiction and as a consequence, |J̃1| = 1. It means there exists
a unique profile generating a sub-critical solution, blowing up at time 1. This completes the proof of
Proposition 4.1, and thus the proof of Lemma 2.1. �

5. Fluctuation estimates in Besov spaces

This section is devoted to the proof of Lemma 2.2. We shall prove some estimates on the fluctuation
part which is given by the bilinear form

B(u, u)(t)
def
= NS(u0)(t)− et∆u0 = u− et∆u0.

We distinguish the case Ḃ
1
2
2,∞ from the case Ḃs′

2,∞, even if proves ideas are similar : we cut-off according
low and high frequencies in the following sense :

(T∗ − t)22j 6 1 and (T∗ − t)22j > 1.

Concerning high frequencies, we shall use the regularization effet of the Laplacian. Let us start by
proving the critical part of Lemma 2.2.

Lemma 5.1. Let
1

2
< s <

3

2
and u0 ∈ Ḣs. It exists a positive constant Cs such that

If T∗(u0) <∞ and Mu
def
= (T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
<∞,

then, we have

‖u− et∆u0‖
Ḃ

1
2
2,∞

< CsM
2
u .

Proof. Duhamel formula gives

(35) u− et∆u0
def
= B(u, u) = −

∫ t

0
e(t−t′)∆

P(div(u⊗ u) dt′.

By vertue of classsical estimates on the heat term (see for instance Lemma 2.4 in [1]), we have

(36) ‖∆je
t∆ a‖L2 6 C e−ct 22j ‖∆ja‖L2 .

Therefore, the fluctuation part becomes

‖∆jB(u, u)(t)‖L2 .

∫ t

0
e−c(t−t′) 22j 2j ‖∆j(u⊗ u)(t′)‖L2 dt′

.

∫ t

0
e−c(t−t′) 22j 2j 2−j(2s− 3

2
) ‖u⊗ u(t′)‖

Ḃ
2s− 3

2
2,∞

dt′.

(37)

We infer thus, thanks to the product laws in Sobolev spaces

2
j
2 ‖∆jB(u, u)(t)‖L2 .

∫ t

0
e−c(t−t′) 22j 2j(3−2s) ‖u(t′)‖2

Ḣs dt
′.(38)

By hypothesis, we have supposed that

M2
u

def
= (T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
<∞.
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As a result,

2
j
2 ‖∆jB(u, u)(t)‖L2 6 Cs

∫ t

0
e−c(t−t′) 22j 2j(3−2s) M2

u

(T∗(u0)− t′)
2
σs

=

∫ t

0
1{(T∗(u0)−t′)22j61} e

−c(t−t′) 22j 2j(3−2s) M2
u

(T∗(u0)− t′)
2
σs

dt′

+

∫ t

0
1{(T∗(u0)−t′)22j>1} e

−c(t−t′) 22j 2j(3−2s) M2
u

(T∗(u0)− t′)
2
σs

dt′·

(39)

We apply Young inequality : in the first integral, we consider L∞ ⋆ L1, whereas in the second one, we
consider L1 ⋆ L∞ in order to use the regularization effect of the Laplacian.

2
j
2 ‖∆jB(u, u)(t)‖L2 6 CsM

2
u

∫ T∗(u0)

T∗(u0)−2−2j

2j(3−2s) dt′

(T∗(u0)− t′)
2
σs

+ CsM
2
u

∫ t

0
e−c(t−t′) 22j 2j(3−2s) 22j(s−

1
2
) dt′.

(40)

We recall that
2

σs

def
= s− 1

2
and s− 1

2
< 1. As a result,

2
j
2 ‖∆jB(u, u)(t)‖L2 6 CsM

2
u

(
2j(2s−3) 2j(3−2s) +

1

22j
2j(3−2s) 22j(s−

1
2
)
)
. CsM

2
u .(41)

This concludes the proof on the fluctuation estimate in the critical case. �

The statement given below is a bit more general than the one of Lemma 2.2, which we deduce imme-
diately by an interpoaltion argument (the same as given at the end of the proof of Theorem 1.2).

Lemma 5.2. Let
1

2
< s <

3

2
and u0 ∈ Ḣs. It exists a positive constant Cs such that

If T∗(u0) <∞ and Mu
def
= (T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
<∞,

then, we have for any s < s′ < 2s − 1

2

(T∗(u0)− t)
1
2
(s′− 1

2
) ‖u(t)− et∆u0‖Ḃs′

2,∞
<∞.

Proof. Same arguments as above yield

‖∆jB(u, u)(t)‖L2 .

∫ t

0
e−c(t−t′) 22j 2j 2−j(2s− 3

2
) ‖u⊗ u(t′)‖

Ḃ
2s− 3

2
2,∞

dt′.(42)

Product laws in Sobolev spaces and hypothesis on u imply

2js
′ ‖∆jB(u, u)(t)‖L2 .

∫ t

0
e−c(t−t′) 22j 2j(

5
2
−2s+s′) ‖u(t′)‖2

Ḣs dt
′

.

∫ t

0
e−c(t−t′) 22j 2j(

5
2
−2s+s′) C

(T∗(u0)− t′)s−
1
2

·
(43)

We split (the same cut off as before) according low and high frequencies. Concerning high frequencies,
since T∗(u0)− t 6 T∗(u0)− t′, we get

2js
′ ‖∆jB(u, u)(t) 1{(T∗−t)22j>1}‖L2 .

∫ t

0
e−c(t−t′) 22j 2j(

5
2
−2s+s′) C

(T∗(u0)− t)s−
1
2

dt′

. 2j(
1
2
−2s+s′) C

(T∗(u0)− t)s−
1
2

·
(44)



ABOUT THE POSSIBILITY OF MINIMAL BLOW UP FOR NAVIER-STOKES SOLUTIONS WITH DATA IN Ḣs(IR3)13

Choosing s′ such that
1

2
− 2s+ s′ < 0, we get

2js
′ ‖∆jB(u, u)(t) 1{(T∗−t)22j>1}‖L2 . C

(T∗(u0)− t)
1
2
(− 1

2
+2s−s′)

(T∗(u0)− t)s−
1
2

= C (T∗(u0)− t)−
1
2
(s′− 1

2
),

which yields the desired estimate, as far as high frequencies are concerned.
Concerning low frequencies, let us come back to the very beginning.

2js
′ ‖∆jB(u, u)(t) 1{(T∗(u0)−t)22j61}‖L2 . 2j(s

′−s) 2js ‖∆jB(u, u)‖L2

. 2j(s
′−s) ‖u(t)− et∆u0‖Ḃs

2,∞
.

(45)

As ‖u(t)− et∆u0‖Ḃs
2,∞

6
C

(T∗(u0)− t)
1
2
(s− 1

2
)
, we infer that

2js
′ ‖∆jB(u, u)(t) 1{(T∗(u0)−t)22j61} ‖L2 . 2j(s

′−s) C

(T∗(u0)− t)
1
2
(s− 1

2
)
·

Hypothesis of low frequencies implies

2js
′ ‖∆jB(u, u)(t) 1{(T∗(u0)−t)22j61} ‖L2 .

C

(T∗(u0)− t)
1
2
(s− 1

2
)+ 1

2
(s′−s)

=
C

(T∗(u0)− t)
1
2
(s′− 1

2
)
·

which ends up the proof for low frequency part. The proof of Lemma 5.2 is thus complete. �

6. Existence of sup-critical solutions bounded in Ḃ
1
2
2,∞

This section is devoted to complete the proof of Theorem 1.2, namely the part concerning the Ḃ
1
2
2,∞-

norm of the sup-critical solutions. We have already built some sup-critical elements in the space Ḣs. It
turns out that, starting from this statement, we shall prove that data generating a sup-critical element

are not only in Ḣs, but also in some others spaces such as Ḃ
1
2
2,∞∩Ḃs′

2,∞, with s′ satisfiying the condition
given below, which stems from the proof of Lemma 2.2.
The statement given below is actually a bit stronger than the one we want to prove, since we are

going to catch some sup-critical solutions not only in Ḃ
1
2
2,∞ (as claimed by Theorem 1.2) but also in

Ḃs′

2,∞. The main idea to get such information on the regularity is to focus on the fluctuation part

which is more regular than the solution itself. Notice that, in all this section, we use regularity index s′

satisfying

s < s′ < 2s − 1

2
·

Theorem 6.1. There exists a data Φ0 ∈ Ḃ
1
2
2,∞ ∩ Ḣs ∩ Ḃs′

2,∞, such that T∗(Φ0) <∞ and

sup
t<T∗(Φ0)

(T∗(Φ0)− t) ‖NS(Φ0)(t)‖σs

Ḣs
= lim sup

t→T∗(Φ0)
(T∗(Φ0)− t) ‖NS(Φ0)‖σs

Ḣs
=Mσs

c ,

and for any t < T∗(Φ0), ‖NS(Φ0)‖
Ḃ

1
2
2,∞

<∞.

Proof. The idea of the proof is to start with the existence of sup-sup-critical elements in Ḣs. Indeed,

we have proved previously that there exists a data Ψ0 ∈ Ḣs, such that Ψ
def
= NS(Ψ0) is sup-critical.

Therefore, by definition of lim sup, there exists a sequence tn ր T∗(Ψ0) such that

lim
n→+∞

(T∗(Ψ0)− tn) ‖NS(Ψ0)(tn)‖σs

Ḣs
=Mσs

c .

Let us introduce as before the rescaled sequence

v0,n(y) =
(
T∗(Ψ0)− tn

) 1
2 NS(Ψ0)(tn,

(
T∗(Ψ0)− tn

) 1
2 y).
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Such a sequence generates a solution which keeps on living until the time 1 and satisfies

‖v0,n‖σs

Ḣs
=

(
T∗(Ψ0)− tn

)
‖NS(Ψ0,n)(tn)‖σs

Ḣs
.(46)

In the sake of simplicity, we note

τn
def
= T∗(Ψ0)− tn.

Previous computations imply that (v0,n) is a bounded sequence of Ḣs. Now, inspired by the idea of
Y. Meyer (fluctuation-tendancy method, [26]), we decomposed the sequence (v0,n) into

(47) v0,n(y)
def
= v0,n(y)− τ

1
2
n e

tn∆Ψ0(τ
1
2
n y) + τ

1
2
n e

tn∆Ψ0(τ
1
2
n y),

where we have

v0,n(y)
def
= τ

1
2
n NS(Ψ0)(tn, τ

1
2
n y)

It follows

(48) v0,n(y)
def
= τ

1
2
n

(
NS(Ψ0)(tn, · ) − etn∆Ψ0

)

︸ ︷︷ ︸
B(Ψ,Ψ)(tn)=fluctuation part

(τ
1
2
n y) + τ

1
2
n etn∆Ψ0︸ ︷︷ ︸

tendancy part

(τ
1
2
n y).

Lemma 6.2. The rescaled fluctuation part φn
def
= τ

1
2
n B(Ψ,Ψ)(tn, τ

1
2
n · ) is bounded in Ḣs∩Ḃ

1
2
2,∞∩Ḃs′

2,∞.

Proof. Indeed, concerning the Ḃ
1
2
2,∞-norm, we use firstly the scaling invariance of this norm and then

we apply Lemma 2.2, which gives

(49) sup
n

‖φn‖
Ḃ

1
2
2,∞

= sup
n

‖NS(Ψ0)(tn, · )− etn∆Ψ0‖
Ḃ

1
2
2,∞

<∞.

Concerning the Ḣs-norm, we apply successively the following arguments : scaling, triangular inequality
and the fact that NS(Ψ0) is a sup-critical element in Ḣs.

‖φn‖σs

Ḣs
= τn ‖NS(Ψ0)(tn, · ) − etn∆Ψ0‖σs

Ḣs

. τn ‖NS(Ψ0)(tn, · )‖σs

Ḣs
+ τn ‖etn∆Ψ0‖σs

Ḣs

.
(
Mc +

1

n

)σs

+ τn ‖Ψ0‖σs

Ḣs
<∞.

(50)

Therefore, sup
n

‖φn‖σs

Ḣs
<∞.

Concerning the Ḃs′

2,∞-norm, scaling argument combinig with Lemma 2.2 yields

‖φn‖σs′

Ḃs′
2,∞

= τn ‖NS(Ψ0)(tn, · ) − etn∆Ψ0‖σs′

Ḃs′
2,∞

.(51)

This concludes the proof of this Lemma 6.2. �

By vertue of profile theory, we perform a profile decomposition of the sequence φn in the Sobolev
space Ḣs. But in this decomposition, there is only left profiles with constant scale, as Lemma below

will prove it. The idea is clear. As φn is bounded in the Besov space Ḣs ∩ Ḃ
1
2
2,∞, big scales vanish.

Likewise, the fact that φn is bounded in the Besov space Ḣs ∩ Ḃs′

2,∞ implies that small scales vanish.
That is the point in the Lemma below.

Lemma 6.3. • If (fn) is a bounded sequence in Ḃ
1
2
2,∞∩Ḣs and if lim sup

n→+∞
‖fn‖Ḃs

2,∞
= L > 0, then there

is no big scales in the profile decomposition of the sequence fn in Ḣs.

• If (fn) is a bounded sequence in Ḃs′

2,∞ ∩ Ḣs, with s′ > s >
1

2
and if lim sup

n→+∞
‖fn‖Ḃs

2,∞
= L > 0, then

there is no small scales in the profile decomposition of the sequence fn in Ḣs.
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Proof. We only proof the first part of the Lemma. The other one is similar. If lim sup
n→+∞

‖fn‖Ḃs
2,∞

= L > 0,

it means there exists an extraction ϕ(n) such that ‖fϕ(n)‖Ḃs
2,∞

>
L

2
· Otherwise, for any subsequence

of (fn), we would have

‖fϕ(n)‖Ḃs
2,∞

<
L

2
and thus, lim

n→+∞
‖fϕ(n)‖Ḃs

2,∞
6
L

2
·

As a result, we would have lim sup
n→+∞

‖fn‖Ḃs
2,∞

6
L

2
< L, which is wrong by hypothesis. Moreover, by

definition of the Besov norm, we can find a sequence (kn)n∈Z, such that

(52) lim
n→+∞

2kns‖∆kn fϕ(n)‖L2 = ‖fϕ(n)‖Ḃs
2,∞

.

Therefore, lim
n→+∞

2kns‖∆kn fϕ(n)‖L2 >
L

2
.

Let us introduce the scale λn
def
= 2−kn . As (up to extraction) 2kns‖∆kn fϕ(n)‖L2 >

L

2
, then one has

2kn(s−
1
2
) ‖fϕ(n)‖

Ḃ
1
2
2,∞

>
L

2
·

Hence, the infimum limit of the sequence kn is not −∞, otherwise, the term 2kn(s−
1
2
) would tend to 0

and thus L = 0 (since the sequence ‖fϕ(n)‖
Ḃ

1
2
2,∞

is bounded by hypothesis), which is false by hypothesis.

Therefore, λn 9 +∞ : big scales are excluded from the profile decomposition of the sequence fn. This
concludes the proof of Lemma 6.3. �

Continuation of the proof of Theorem 6.1.

Let us come back to the proof of sup-critical element in the Besov space Ḃ
1
2
2,∞ ∩ Ḃs′

2,∞. Firstly, we
check that φn satisfies hypothesis of Lemma 6.3. As it was already checked previously, φn is bounded

in Ḃ
1
2
2,∞ ∩ Ḣs ∩ Ḃs′

2,∞. Concerning assumption lim sup
n→+∞

‖φn‖Ḃs
2,∞

> 0, by scaling argument, one has

‖φn‖σs

Ḃs
2,∞

= τn ‖NS(Ψ0)(tn, · )− etn∆Ψ0‖σs

Ḃs
2,∞

= (T∗(Ψ0)− tn)‖NS(Ψ0)(tn, · ) − etn∆Ψ0‖σs

Ḃs
2,∞

> (T∗(Ψ0)− tn)‖NS(Ψ0)(tn, · )‖σs

Ḃs
2,∞

− (T∗(Ψ0)− tn)‖Ψ0‖σs

Ḣs
.

(53)

Obviously, the term (T∗(Ψ0)− tn)‖Ψ0‖σs

Ḣs
tends to 0 when n goes to +∞. By vertue of (4) and [23],

there exists a constant c > 0 such that (T∗(Ψ0)− tn)‖NS(Ψ0)(tn, · )‖σs

Ḃs
2,∞

> c. Therefore,

lim sup
n→+∞

‖φn‖Ḃs
2,∞

> 0

and thus profile decomposition of φn in the space Ḣs is reduced to (with notations of Theorem 3.1)

(54) φn =
J∑

j>0

V j(· −xn,j) + rJn .

Moreover, as the sequence φn is bounded in Ḃ
1
2
2,∞ ∩ Ḃs′

2,∞, profiles V j belong also to Ḃ
1
2
2,∞ ∩ Ḃs′

2,∞.

That’s the crucial point in the proof. Indeed, each profile V j can be seen as a translated (by xn,j)
weak limit of the sequence φn. As a result, we get immediately

‖V j‖
Ḃ

1
2
2,∞

6 lim inf
n→+∞

‖φn‖
Ḃ

1
2
2,∞

<∞ and ‖V j‖
Ḃs′

2,∞
6 lim inf

n→+∞
‖φn‖Ḃs′

2,∞
<∞.

Let us come back to the sequence (v0,n) defined by

v0,n
def
= φn + τ

1
2
n etn∆Ψ0(τ

1
2
n · ).
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As it has been already underlined previously, the term γn
def
= τ

1
2
n etn∆Ψ0(τ

1
2
n · ) tends to 0 in Ḣs-norm

(and thus in Lp-norm, by Sobolev embedding) since

(55) ‖τ
1
2
n etn∆Ψ0(τ

1
2
n · )‖σs

Ḣs
= τn ‖ etn∆Ψ0‖σs

Ḣs
6 τn ‖ Ψ0‖σs

Ḣs
.

Combining the profile decomposition of (φn) with the definition of (v0,n), we finally get

v0,n =
J∑

j>0

V j(· −xn,j) + rJn + γn,

with lim
J→+∞

lim sup
n→+∞

‖rJn‖Lp = 0 and lim
n→+∞

‖γn‖Lp = 0. By vertue of Lemma 3.2, one has for any τ < 1

NS(v0,n)(τ) =
J∑

j>0

NS(V j)(τ, · −xn,j) + eτ∆(rJn + γn) +RJ
n(τ).

By definition of the sequence (v0,n), NS(v0,n) is given by

NS(v0,n)(τ, · ) =
(
T∗(Ψ0)− tn

) 1
2 NS(Ψ0)

(
tn + τ

(
T∗(Ψ0)− tn

)
,
(
T∗(Ψ0)− tn

) 1
2 ·

)
.

Once again, we denote t̃n = tn + τ
(
T∗(Ψ0)− tn

)
and one has

(1− τ) ‖NS(v0,n)(τ, · )‖σs

Ḣs
=

(
T∗(Ψ0)− t̃n

)
‖NS(Ψ0)

(
t̃n, ·

)
‖σs

Ḣs
.

As t̃n > tn for any n, we get

(1− τ)‖NS(v0,n)(τ)‖σs

Ḣs
= (T∗(Ψ0)− t̃n)‖NS(Ψ0)(t̃n)‖σs

Ḣs
6Mσs

c +
2

n
·

Hence, Proposition 4.1 implies there exists some a unique profile Φ0 in Ḃ
1
2
2,∞ ∩ Ḣs ∩ Ḃs′

2,∞ such that

the NS-solution genrated by this profile is a sup-critical solution. As Φ0 belongs to Ḃ
1
2
2,∞, Lemma 2.2

implies that NS(Φ0) is bounded in the same space. This ends up the proof of Theorem 6.1.
Hence, we claim that the proof of Theorem 1.2 is over. Indeed, this stems from an interpolation
argument. By vertue of Proposition 3.3, we have for any s < s1 < s′

‖Φ0‖Ḣs1 6 ‖Φ0‖Ḃs1
2,1

6 ‖Φ0‖θḂs
2,∞

‖Φ0‖1−θ

Ḃs′
2,∞

6 ‖Φ0‖θḢs ‖Φ0‖1−θ

Ḃs′
2,∞

.(56)

This concludes the proof of Theorem 1.2. �

7. Another notion of critical solution

In this section, we wonder if among sup-critical solutions, we can find some of them which reach the
biggest infimum limit of the quantity (T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
. We define the following set Ec by

Ec def
=
{
u0 ∈ Ḃ

1
2
2,∞ ∩ Ḣs ∩ Ḃs′

2,∞ such that T∗(u0) <∞ ;

sup
t<T∗(u0)

(T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
= lim sup

t→T∗(u0)
(T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
= Mσs

c ;

for any t < T∗(u0), ‖NS(u0)(t)‖
Ḃ

1
2
2,∞

<∞ and (T∗(u0)− t) ‖NS(u0)(t)‖
σ
s′

Ḃs′
2,∞

<∞
}
.

Let us introduce the following quantity mσs
c

mσs
c

def
= sup

u0 ∈Ec

{
lim inf
t→T∗(u0)

(T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs

}
.

Definition 7.1. (sup-inf-critical solution)
A solution u = NS(u0) is said to be a sup-inf-critical solution if u0 belongs to Ec and

lim inf
t→T∗(u0)

(T∗(u0)− t) ‖NS(u0)(t)‖σs

Ḣs
= mσs

c .(57)
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Notice we need to look for such elements among sup-critical solutions, otherwise the definition of mσs
c

would be meaningless. We claim that there exist such elements.

Lemma 7.1. There exists some elements belonging to Ec, which are sup-inf-critical.

Proof. By definition of mσs
c , we can find a sequence (u0,n) ∈ Ḣs and a sequence tn ր T∗(u0,n) ≡ T∗

(we can assume this, up to a rescaling) such that

(58) mc − εn 6 (T∗ − tn)
1
σs ‖NS(u0,n)(tn)‖Ḣs 6 mc + εn

and

(59) For any t > tn, mc − εn 6 (T∗ − t)
1
σs ‖NS(u0,n)(t)‖Ḣs .

Assume in addition that the sequence (u0,n) belongs to the set Ec. As a consequence, we have

(60) For any t > tn ,mc − εn 6 (T∗ − t)
1
σs ‖NS(u0,n)(t)‖Ḣs 6Mc + εn.

Considering the rescaled sequence

v0,n(y) =
(
T∗ − tn

) 1
2 NS(u0,n)

(
tn, (T∗ − tn

) 1
2 y

)
.

Hence, v0,n satisfies properties below by scaling argument

‖v0,n‖σs

Ḣs
=

(
T∗ − tn

)
‖NS(u0,n)(tn)‖σs

Ḣs
, ‖v0,n‖

Ḃ
1
2
2,∞

= ‖NS(u0,n)(tn)‖
Ḃ

1
2
2,∞

and ‖v0,n‖σs′

Ḃs′
2,∞

=
(
T∗ − tn

)
‖NS(u0,n)(tn)‖σs′

Ḃs′
2,∞

.
(61)

Combining (58) with the fact that (u0,n) belongs to Ec, we infer that the sequence (v0,n)n>1 is

bounded in Ḃ
1
2
2,∞ ∩ Ḣs ∩ Ḃs′

2,∞. Moreover, concerning the Navier-Stokes solution generated by such

a data NS(v0,n), we know that it keeps on living until the time τ∗ = 1 and satisfies once again

(with t̃n = tn + τ
(
T∗ − tn

)
)

(62) (1− τ)
1
σs ‖NS(v0,n)(τ)‖Ḣs = (T∗ − t̃n)

1
σs ‖NS(u0,n)(t̃n)‖Ḣs .

As t̃n > tn for any n, we infer that for any τ < 1

(1− τ)
1
σs ‖NS(v0,n)(τ)‖Ḣs > mc − εn.

Let us sum up information we have on the sequence v0,n. Firstly, the lifespan of the Navier-Stokes
associated with the sequence v0,n is equal to 1. Then,

lim sup
τ→1

(1− τ)
1
σs ‖NS(v0,n)(τ)‖Ḣs = lim sup

t̃n→T∗

(T∗ − t̃n)
1
σs ‖NS(u0,n)(t̃n)‖Ḣs ,

which implies, thanks to (60) and definition of Mc , that for any τ < 1,

lim sup
τ→1

(1− τ)
1
σs ‖NS(v0,n)(τ)‖Ḣs =Mc and ‖NS(v0,n)(τ)‖

Ḃ
1
2
2,∞

= ‖NS(u0,n)(t̃n)‖
Ḃ

1
2
2,∞

<∞.

In addition,

(1− τ)
1

σ
s′ ‖NS(v0,n)(τ)‖Ḃs′

2,∞
= (T∗ − t̃n)

1
σ
s′ ‖NS(u0,n)(t̃n)‖Ḃs′

2,∞
<∞.(63)

To summerize, from the minimizing sequence (u0,n) of the set Ec, we build another sequence (v0,n)
(the rescaled sequence of (u0,n)) which also belongs to the set Ec. Moreover, as the sequence (v0,n) is

bounded in the spaces Ḃ
1
2
2,∞∩ Ḣs∩ Ḃs′

2,∞ and satisfies lim sup
n→+∞

‖v0,n‖Ḃs
2,∞

<∞, Lemma 6.3 implies that

profile decomposition in Ḣs of such a sequence is reduced, up to extractions, to a sum of translated
profiles and a remaining term (under notations of Theorem 3.1)

v0,n =
∑

j∈J1

ϕj(· −xn,j) + ψJ
n .
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By vertue of Theorem 3.2, combining with Proposition 4.1, we infer there exists only one profile ϕj0

which blows up at time 1 and such that

(64) NS(v0,n)(τ, · ) = NS(ϕj0)(τ, · −xn,j0) +
∑

j∈J1,j 6=j0

τ
j
∗>1

NS(ϕj)(· −xn,j) + eτ∆ψJ
n(· ) + RJ

n(τ, · ).

By orthogonality, we have

‖NS(v0,n)(τ)‖2Ḣs > ‖NS(ϕj0)(τ)‖2
Ḣs +

∑

j∈J1,j 6=j0

τ
j
∗>1

‖NS(ϕj)(τ)‖2
Ḣs + +‖eτ∆ψJ

n‖2Ḣs + |γJn (τ)|.
(65)

We want to prove that lim inf
τ→1

(1− τ)
1
σs ‖NS(ϕj0)(τ)‖Ḣs > mc. By definition of mc, this will imply

that lim inf
τ→1

(1− τ)
1
σs ‖NS(ϕj0)(τ)‖Ḣs = mc. Let us assume that is not the case. Therefore,

∃α0 > 0,∀ε > 0, ∃τε, such that 0 < (1− τε)
2
σs < ε and (1− τε)

2
σs ‖NS(u0,n)(τε)‖2Ḣs 6 m2

c − α0.

From (65), we deduce that

(1− τε)
2
σs ‖NS(v0,n)(τε)‖2Ḣs = (1− τε)

2
σs ‖NS(ϕj0)(τε)‖2Ḣs + (1− τε)

2
σs

{ ∑

j∈J1,j 6=j0

τ
j
∗>1

‖NS(ϕj)(τε)‖2Ḣs

+ ‖eτε∆ψJ
n‖2Ḣs + |γJn (τε)|

}
.

By hypothesis, (1− τε)
1
σs ‖NS(v0,n)(τε)‖Ḣs > mc − εn, and 1− τε 6 1. Hence, we get

(
mc − εn

)2
6 m2

c − α0 + (1− τε)
2
σs

{ ∑

j∈J1,j 6=j0

τ
j
∗>1

sup
τ∈[0,1]

‖NS(ϕj)(τ)‖2
Ḣs + ‖ψJ

n‖2Ḣs

}
+ |γJn (τε)|.

(66)

On the one hand, as profiles ϕj have a lifespan τ
j
∗ > 1, the quantity sup

τ∈[0,1]
‖NS(ϕj)(τ)‖2

Ḣs is finite.

On the other hand, by vertue of profile decomposition of the sequence (v0,n), we have obviously

that ‖ψJ
n‖2Ḣs 6 ‖v0,n‖2Ḣs . As we have proved that (v0,n) is an element of the set Ec, we get in particular

that sup
τ<1

(1− τ)
1
σs ‖NS(v0,n)(τ)‖Ḣs =Mc, which leads to (at τ = 0) ‖v0,n‖Ḣs 6Mc. Finally, for all τε,

(1− τε)
2
σs

{ ∑

j∈J1,j 6=j0

τ
j
∗>1

sup
τ∈[0,1]

‖NS(ϕj)(τ)‖2
Ḣs + ‖ψJ

n‖2Ḣs

}
6
α0

4
,

we get

(
mc − εn

)2
6 m2

c − α0 +
α0

4
+ |γJn (τε)|.(67)

Now, by assumption of γJn , we take the limit for n and J large enough, and we get

(68) m2
c 6 m2

c − 3α0

4
+
α0

4
,

which is obviously absurd. Thus, we have proved that

lim inf
τ→1

(1− τ)
1
σs ‖NS(ϕj0)(τ)‖Ḣs = mc.

This concludes the proof of Lemma 7.1. �
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8. Structure Lemma for Navier-Stokes solutions with bounded data

The sequence (v0,n)n>0 be a bounded sequence of initial data in Ḣs. Thanks to Theorem 3.1, (v0,n)n>0

can be written as follows, up to an extraction

v0,n(x) =

J∑

j=0

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x),

which can be written as follows

v0,n(x) =
∑

j∈J1
j6J

ϕj(x− xn,j) +
∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n(x).(69)

Let η > 0 be the parameter of rough cutting off frequencies. We define by wη(x) and wcη(x) the
elements which Fourier transform is given by

(70) ŵη(ξ) = ŵ(ξ)1{ 1
η
6|ξ|6η} and ŵcη(ξ) = ŵ(ξ)

(
1− 1{ 1

η
6|ξ|6η}

)
.

After rough cutting off frequencies with respect to the notations (70) and sorting profiles supported
in the annulus 1{ 1

η
6|ξ|6η} according to their scale (thanks to the orthogonality property of scales and

cores, given by Theorem 3.1). We get the following profile decomposition

v0,n(x) =
∑

j∈J1

ϕj(x− xn,j) +
∑

j∈J0

Λ
3
p

λn,j ,xn,j
ϕj
η(x) +

∑

j∈J∞

Λ
3
p

λn,j ,xn,j
ϕj
η(x) + ψJ

n,η(x)

where ψJ
n,η(x)

def
=

∑

j∈J c
1
≡J0∪J∞

j6J

Λ
3
p

λn,j ,xn,j
V

j
cη(x) + ψJ

n(x),
(71)

for any j in J1 ⊂ J , λn,j = 1, for any j in J0, lim
n→+∞

λn,j = 0 and for any j in J∞, lim
n→+∞

λn,j = +∞.

As mentionned in the introduction, the whole Lemma 3.2 has been already proved in [27], except for
the orthogonality property of the Navier-stokes solution associated with such a sequence of initial data.
Therefore, we refer the reader to [27] for details of the proof and here, we focus on the "Pythagore
property". Let us recall the notations

U0
n,η

def
=

∑

j∈J0

Λ
3
p

λn,j ,xn,j
ϕj
η and U∞

n,η
def
=

∑

j∈J∞

Λ
3
p

λn,j ,xn,j
ϕj
η .

We recall some properties on profiles with small and large scale and remaining term. We refer the
reader to [27] to the proof of the two propositions below.

Proposition 8.1.

For any s1 < s, for any η > 0, for any j ∈ J0, (e.g lim
n→+∞

λn,j = 0), then lim
n→+∞

∥∥U0
n,η

∥∥
Ḣs1

= 0.

For any s2 > s, for any η > 0, for any j ∈ J∞, (e.g lim
n→+∞

λn,j = +∞), then lim
n→+∞

∥∥U∞
n,η

∥∥
Ḣs2

= 0.

Concerning the remaining term, we can show it tends to 0, thanks to Lebesgue Theorem.

Proposition 8.2.

lim
J→+∞

lim
η→+∞

lim sup
n→+∞

‖ψJ
n,η‖Lp = 0.
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Continuation of Proof of Lemma 3.2. By vertue of (20) in Lemma 3.2, it seems clear that for any t < T̃

‖NS(v0,n)(t, ·)‖2Ḣs =
∥∥∥
∑

j∈J1

NS(ϕj)(t, · − xn,j)
∥∥∥
2

Ḣs
+

∥∥∥et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

)∥∥∥
2

Ḣs

+ ‖RJ
n(t, ·)‖2Ḣs + 2

(∑

j∈J1

NS(ϕj)(t, · − xn,j) | et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

))
Ḣs

+ 2
(∑

j∈J1

NS(ϕj)(t, · − xn,j) | RJ
n

)
Ḣs

+ 2
(
et∆

(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

)
| RJ

n

)
Ḣs
.

Therefore, proving (21) is equivalent to prove Propositions 8.3 and 8.4 below. Both of them essentially
stem from the orthogonality of cores and a compactness argument.

Proposition 8.3. Let ε > 0. Then, for any t ∈ [0, T̃ − ε],

(72)
∥∥∥
∑

j∈J1

NS(ϕj)(t, · −xn,j)
∥∥∥
2

Ḣs
=

∑

j∈J1

∥∥NS(ϕj)(t, · )
∥∥2
Ḣs + γn,ε(t),

with lim
n→+∞

sup
t∈[0,T̃−ε]

|γn,ε(t)| = 0.

Proof. Once again, we developp the square of Ḣs-norm and we get for any t < T̃

∥∥∥
∑

j∈J1

NS(ϕj)(t, · −xn,j)
∥∥∥
2

Ḣs
=

∑

j∈J1

∥∥NS(ϕj)(t, · −xn,j)
∥∥2
Ḣs

+ 2
∑

(j,k)∈J1×J1
j 6=k

(
ΛsNS(ϕj)(t, · −xn,j) | ΛsNS(ϕk)(t, · −xn,k)

)
L2
,

where Λ =
√
−∆. Let ε > 0. Then, for any t in [0, T̃ − ε], we get

∥∥∥
∑

j∈J1

NS(ϕj)(t, · −xn,j)
∥∥∥
2

Ḣs
=

∑

j∈J1

∥∥NS(ϕj)(t, · )
∥∥2

Ḣs + 2
∑

(j,k)∈J1×J1
j 6=k

Γs,j,k
ε,n ,

where Γs,j,k
ε,n

def
=

(
ΛsNS(ϕj)(t, · −xn,j) | ΛsNS(ϕk)(t, · −xn,k)

)
L2

.

We denote by

KJ
ε

def
=

⋃

j∈J

ΛsNS(ϕj)([0, T̃ − ε]).

By vertue of the continuity of the map t ∈ [0, T̃ − ε] 7→ ΛsNS(ϕj)(t, · ) ∈ L2, we deduce that KJ
ε is

compact (and thus precompact) in L2. It means that it can be covered by a finite open ball with
an arbitrarily radius α > 0. Let α be a positive radius. There exists an integer Nα, and there
exists (θℓ)16ℓ6Nα

some elements of D(IR3), such that

(73) KJ
ε ⊂

Nα⋃

ℓ=1

B(θℓ, α).

Let us come back to the proof of 8.3. Thanks to the previous remark, we approach each pro-
fil ΛsNS(ϕj)(t, · ) (resp. ΛsNS(ϕk)(t, · )) by a smooth function: e.g there exists a integer ℓ ∈
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{1, · · ·Nα} and there exists a function θℓ(j,t) (resp. θℓ(k,t)) in D(IR3) and we get

Γs,j,k
ε,n =

(
ΛsNS(ϕj)(t, · −xn,j)− θℓ(j,t)(· −xn,j) | ΛsNS(ϕk)(t, · −xn,k)− θℓ(k,t)(· −xn,k)

)
L2

+
(
ΛsNS(ϕj)(t, · −xn,j)− θℓ(j,t)(· −xn,j) | θℓ(k,t)(· −xn,k)

)
L2

+
(
θℓ(j,t)(· −xn,j) | ΛsNS(ϕk)(t, · −xn,k)− θℓ(k,t)(· −xn,k)

)
L2

+
(
θℓ(j,t)(· −xn,j) | θℓ(k,t)(· −xn,k)

)
L2 .

(74)

The three first terms in the right-hand side of the above estimate tend uniformly (in time) to 0, by

vertue of Cauchy-Schwarz and the translation-invariance of the Ḣs-norm (we just perform the estimate

for the first term, the others are similar). For any t ∈ [0, T̃ − ε]
(
ΛsNS(ϕj)(t, · −xn,j)− θℓ(j,t)(· −xn,j) | Λs

(
NS(ϕk)(t, · −xn,k)− θℓ(k,t)(· −xn,k)

))
L2

6 ‖ΛsNS(ϕj)(t)− θℓ(j,t)‖L2 ‖ΛsNS(ϕk)(t)− θℓ(k,t)‖L2

6 α2.

(75)

Therefore, for any α > 0, we have
(76)

sup
t∈[0,T̃−ε]

(
ΛsNS(ϕj)(t, · −xn,j)− θℓ(j,t)(· −xn,j) | ΛsNS(ϕk)(t, · −xn,k)− θℓ(k,t)(· −xn,k)

)
L2

6 α2.

For the last term
(
θℓ(j,t)(· −xn,j) | θℓ(k,t)(· −xn,k)

)
L2 , we have

(
θℓ(j,t)(· −xn,j) | θℓ(k,t)(· −xn,k)

)
L2 =

∫

IR3
θℓ(j,t)(x) θℓ(k,t)(x+ xn,j − xn,k) dx.

It follows immediately that the above term tends to 0, when n tend to +∞, by vertue of Lebesgue
theorem combining with the orthogonality property of cores(e.g. lim

n→∞
|xn,j − xn,k| = +∞). To sum

up, we have proved that Γs,j,k
ε,n tends to 0 when n tends to +∞, uniformly in time. This concludes the

proof of Proposition 8.3.
�

Concerning the crossed-terms in the profile decomposition, we have to prove they are also negligable,
uniformly in time. That is the point in the following proposition.

Proposition 8.4. Let ε > 0, We denote by

In(t, · ) def
=

(∑

j∈J1

NS(ϕj)(t, · − xn,j) | et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

))
Ḣs
,

then, one has lim
J→+∞

lim
η→+∞

lim
n→+∞

sup
t∈[0,T̃−ε]

In(t, · ) = 0,
(77)

lim
J→+∞

lim
n→+∞

sup
t∈[0,T̃−ε]

(∑

j∈J1

NS(ϕj)(t, · − xn,j) | RJ
n(t)

)
Ḣs

= 0,(78)

lim
J→+∞

lim
η→+∞

lim
n→+∞

sup
t∈[0,T̃−ε]

(
et∆

(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

)
| RJ

n(t)
)
Ḣs

= 0.
(79)

Proof. Let us start by proving (77). We shall use once again an approximation argument. Let us define

ΛJ
ε

def
=

⋃

j∈J

NS(ϕj)([0, T̃ − ε]).
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By vertue of the continuity of the map t ∈ [0, T̃ − ε] 7→ NS(ϕj)(t, · ) ∈ Ḣs, we deduce that ΛJ
ε is

compact (and thus precompact) in Ḣs. It means that it can be covered by a finite open ball with
an arbitrarily radius β > 0. Let β be a positive radius. There exists an integer Nβ, and there

exists (χℓ)16ℓ6Nβ
some elements of D(IR3), such that

(80) ΛJ
ε ⊂

Nβ⋃

ℓ=1

B(χℓ, β).

Let us come back to the proof of (77). Same arguments as previously imply there exists an integer ℓ ∈
{1· · ·Nβ} and a smooth function χℓ(t,j) in D(IR3) such that

In(t, · ) def
=

(∑

j∈J1

NS(ϕj)(t, · − xn,j) | et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj + ψJ

n

))
Ḣs

=
(∑

j∈J1

NS(ϕj)(t, · − xn,j)− χℓ(t,j)(· −xn,j) | et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj + ψJ

n

))
Ḣs

+
(∑

j∈J1

χℓ(t,j)(· −xn,j) | et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj + ψJ

n

))
Ḣs
.

(81)

As
∥∥et∆

(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj + ψJ

n

)∥∥
Ḣs 6 ‖v0,n‖Ḣs , we infer that

In(t, · ) 6 |J1|β
∥∥v0,n

∥∥
Ḣs +

(∑

j∈J1

χℓ(t,j)(· −xn,j) | et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj + ψJ

n

))
Ḣs(82)

Concerning the second part of above inequality, we shall use the splitting with respect to the parameter
of cut off η. We refer the reader to the beginning of this section for notations.

(∑

j∈J1

χℓ(t,j)(· −xn,j) | et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj + ψJ

n

))
Ḣs

= I1n(t, · ) + I2n(t, · ) + I3n(t, · ),

where I1n(t, · ) =
∑

j∈J1

(
χℓ(t,j)(· −xn,j) | et∆U0

n,η

)
Ḣs ; I2n(t, · ) =

∑

j∈J1

(
χℓ(t,j)(· −xn,j) | et∆U∞

n,η

)
Ḣs

and I3n(t, · ) =
∑

j∈J1

(
χℓ(t,j)(· −xn,j) | et∆ψJ

n,η

)
Ḣs .

Let us start with I1n(t, · ). One has

|I1n(t, · )| 6 |J1| ‖χℓ(t,j)‖Ḣ2s−s1 ‖et∆U0
n,η‖Ḣs1

6 |J1| ‖χℓ(t,j)‖Ḣ2s−s1 ‖U0
n,η‖Ḣs1 .

Proposition 8.1 (for η and j ∈ J1 fixed) implies thus lim
n→+∞

sup
t∈[0,T̃−ε]

|I1n(t, · )| = 0.

Concerning profiles with large scale, the proof is similar and we get for any t ∈ [0, T̃ − ε]

|I2n(t, · )| 6 |J1| ‖χℓ(t,j)‖Ḣ2s−s2

∥∥U∞
n,η(x)

∥∥
Ḣs2

.(83)
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Once again, Proposition 8.1 implies the result : lim
n→+∞

sup
t∈[0,T̃−ε]

|I2n(t, · )| = 0.

Concerning the last term I3n, Hölder inequality with
1

p
+

1

p′
= 1 yields

|I3n(t, · )| 6
∣∣(Λ2s χℓ(t,j) | et∆ψJ

n,η(·+xn,j)
)
L2

∣∣

6 ‖Λ2s χℓ(t,j)‖Lp′ ‖et∆ψJ
n,η(·+xn,j)‖Lp

)
.

By translation invariance of the Lp-norm and estimate on the heat equation, we get

|I3n(t, · )| 6 ‖Λ2s χℓ(t,j)‖Lp′ ‖ψJ
n,η‖Lp .(84)

Obviously the term ‖ψJ
n,η‖Ḣs is bounded by profiles hypothesis and the term ‖Λ2s χχℓ(t,j)‖Lp′ is

bounded too, since the function χ is as regular as we need. By vertue of Proposition 8.2, the term
‖ψJ

n,η‖Lp is small in the sense of for any ε > 0, there exists an integer N0 ∈ N , such that for any n > N0,

there exists η̃ > 0 and J̃ > 0, such that for any η > η̃ and for any J > J̃ , we have ‖ψJ
n,η‖Lp 6 ε. As a

result, we get for any

lim
J→+∞

lim
η→+∞

lim
n→+∞

sup
t∈[0,T̃−ε]

|I3n(t, · )| = 0.

This ends up the proof of estimate (77).

Concerning the proof of (78) and (79), the proof is very close in both cases and relies on the fact that

the error term RJ
n tends to 0 in the L∞

T (Ḣs)-norm. For any t ∈ [0, T̃ − ε], we have
∣∣(∑

j∈J1

NS(ϕj)(t, · − xn,j) | RJ
n

)
Ḣs

∣∣ 6
∑

j∈J1

∣∣(NS(ϕj)(t, · ) | RJ
n(t, ·+xn,j)

)
Ḣs

∣∣

6 |J1| ‖NS(ϕj)(t, · )‖L∞
T

(Ḣs) ‖RJ
n(t, · )‖L∞

T
(Ḣs).

(85)

Obviously, the term ‖NS(ϕj)(t, · )‖L∞
T

(Ḣs) is bounded since t ∈ [0, T̃ − ε]. As a result, Lemma 3.2

implies that

lim
J→+∞

lim
n→+∞

sup
t∈[0,T̃−ε]

|
(∑

j∈J1

NS(ϕj)(t, · − xn,j) | RJ
n

)
Ḣs |= 0.

As far as estimate (79) is concerned, the idea is the same. For any t ∈ [0, T̃ − ε],

∣∣(et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

)
| RJ

n

)
Ḣs

∣∣ 6
∣∣(et∆

(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

)
| RJ

n

)
Ḣs

∣∣

6 ‖et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

)
‖L∞

T
(Ḣs)‖RJ

n‖L∞
T̃−ε

(Ḣs)

6 ‖U0
n,η + U∞

n,η + ψJ
n,η‖Ḣs ‖RJ

n‖L∞
T̃−ε

(Ḣs).

(86)

Thanks to profile decomposition (71), we get

‖U0
n,η + U∞

n,η + ψJ
n,η‖2Ḣs 6 ‖v0,n‖2Ḣs + ◦(1).(87)

Thus, finally we get

∣∣(et∆
(∑

j∈J c
1

j6J

Λ
3
p

λn,j ,xn,j
ϕj(x) + ψJ

n

)
| RJ

n

)
Ḣs | 6 C

(∥∥v0,n
∥∥2
Ḣs + ◦(1)

)
‖RJ

n‖L∞
T̃−ε

(Ḣs).(88)

We end up the proof as before, thanks to the hypothesis on RJ
n. This completes the proof of Proposi-

tion 8.4 and thus Lemma 3.2. �
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