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Functional Inequalities in Stratified Lie groups with
Sobolev, Besov, Lorentz and Morrey spaces

Diego Chamorro! Anca-Nicoleta Marcocil Liviu-Gabriel Marcocit

March 14, 2018

Abstract

The study of Sobolev inequalities can be divided in two cases: p =1 and 1 < p < 400. In the case p =1
we study here a relaxed version of refined Sobolev inequalities. When p > 1, using as base space classical
Lorentz spaces associated to a weight from the Arifio-Muckenhoupt class B,, we will study Gagliardo-Nirenberg
inequalities. As a by-product we will also consider Morrey-Sobolev inequalities. These arguments can be
generalized to many different frameworks, in particular the proofs are given in the setting of stratified Lie
groups.

Keywords: Improved Sobolev inequalities; Sobolev spaces; Besov spaces; Classical Lorentz spaces; Stratified
Lie groups.
Mathematics Subject Classification 46E35 ; 26D10 ; 46E30 ; 22E30

1 Introduction and presentation of the results

The aim of this article is to provide, in the setting of stratified Lie groups, a general proof for a par-
ticular type of improved Sobolev inequalities in the case when the parameter that defines the Sobolev
space WP in the right-hand side of the inequality satisfies p = 1 and to give some generalizations to
Lorentz-Sobolev spaces in the case p > 1. These inequalities are of the following general form

1 llyrsra < CUF e 11155 e (1)

where f € WP N B, Here we write WP for homogeneous Sobolev spaces and B for
homogeneous Besov spaces (see Section [3| below for precise definitions). The parameters s, s1,p,q
and 8 defining Sobolev and Besov spaces in the previous inequality are related by the conditions
l1<p<qg<+oo,0=p/qg s1 =0s—(1—-0)pand —5 < s1 < s, but they do not depend on the
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dimension and in this sense these inequalities are more general than classical Sobolev inequalities; of
course the inequalities above are sharper than classical ones.

It is worth noting that even for classical Sobolev inequalities, there are two types of proofs fol-
lowing the value of the index p of the LP norm defining the Sobolev space W*P in the right-hand
side of . Indeed, if 1 < p < 400, the Sobolev space WP can be defined by several and equivalent
characterizations, but we do not have the same freedom for the Sobolev space W'!. See [34] for a
discussion in the case of classical Sobolev inequalities.

This issue concerning Sobolev spaces remains when considering improved Sobolev inequalities and
it is also necessary to distinguish the case when p > 1 from the case when p = 1. Historically, the first
proof in the Euclidean setting of these inequalities is due to P. Gérard, F. Oru and Y. Meyer [21] and
is based on a Littlewood-Paley decomposition and interpolation results applied to dyadic blocks. The
inequalities obtained are of the form of above, but it is very important to stress that the value
p = 1 is forbidden here as the L' space does not admit a characterization via the Littlewood-Paley
analysis. Another proof of these inequalities using maximal function and Hedberg’s inequality is given
in [I1], but as the maximal function is not bounded in L' it is not possible to apply this argument to
the case of the Sobolev space W1,

A second method, studied by M. Ledoux in [24], use semi-group properties related to the Laplacian
and its associated heat kernel and allows us to treat the case p = 1. Indeed, if Vf € LP and f € B e
we have

1flle < CIV AL e (2)

with 1 <p < ¢ < +00,0 =p/qand f =6/(1—0). Here we can consider the Sobolev space WLl in the
right-hand side of the previous inequality, but is not possible to consider a Sobolev space W*¢ in the
left-hand side as the proof relies in a cut-off argument which is not well suited for fractional Sobolev
spaces. Another proof of this inequality based on non-increasing rearrangements functions was given
by J. Martin and M. Milman [27], but the important case p = 1 can not be treated by this method.

A different method was proposed by A. Cohen, W. Dahmen, I. Daubechies & R. De Vore in
[16] where these authors use a BV-norm weak estimation using wavelet coefficients and isoperimetric
inequalities and they obtain the following inequality for a function f such that f € BV(R"™) and
f e B (R

1 1-1
1 lera < CUEIENAI (3)

where 1 < ¢ <2,0< s <1/qgand 8 = (1—-151q)/(q—1). When s; = 0, this last result implies
with p = 1, but is limited by the fact that 1 < g < 2 since the proof relies in the embedding
Billif{zq} C Wi C B;le"i (2.0} which at some point excludes the case ¢ > 2. Furthermore, the geo-
metric arguments such as isoperimetric inequalities used in [16] considerably reduce the possibility to

generalize this inequality to other settings.

In particular, for the general framework of stratified Lie groups that will be used here (which are
very natural generalizations of the Euclidean space R™), it is not possible to apply those arguments.



Concerning some geometric issues of stratified Lie groups see [20] or [30].

Finally, there is the following weak-type inequality given in [11]:

[ f s < C||vf”L1||f|B 5000 (4)

where 1 < ¢ < 400,0<s<1/g<1,0=1/qand = 1q_flq, 21 is a Sobolev space based in
a weak L%-space. Let us recall that one key point needed to obtain this previous estimate is given by
the following bound (see [I1] for a proof), which will be used in the sequel

1T2f = Hi(T5 )| < Ct = |[VFln, (0<s<1), (5)

where 72 is the fractional power of the sub-Laplacian J and H; is the heat semi-group. See Section
for a precise definition. The proof of these inequalities relies in spectral theory and it was given in
the setting of stratified Lie groups, see also [12] for more general frameworks.

However, even though we can consider the Sobolev space W1 in the right-hand side of and
we have a Sobolev space in the left-hand side of the inequality and we do not have any restriction on
the parameter ¢ (here 1 < ¢ < +00), the inequality is of weak type and the proof given in [I1]
does not allow us to treat strong inequalities with usual Sobolev spaces.

Our first result is then a relaxed generalization of the inequalities , and . The proof
exposed here can be easily applied to more general frameworks than the Euclidean one as the tools
used rely only on harmonic analysis arguments.

Theorem 1 Let G be a stratified Lie group with homogeneous dimension N >4 and let f : G — R
be a function such that Vf € LY(G) and f € BO_O/B’OO(G). Then we have the following inequality:

£l < CIVAIG (197120 + 1l pre) ©

where 1 < ¢ < 400, 0 <5< % s small, B = 1(;31‘1, 0= % and C is a universal constant.

1-60
Of course we have | lyyws < CIV A1} 5 o < CUVIG (ISl + 1l gpoe ) s0 0ur previ-

ous result can still be improved, but in the setting of stratified Lie groups the first inequality seems
out of reach.

Let us mention now that in the case of Lorentz spaces LP?, H. Bahouri and A. Cohen [4] proved

the inequality
1 o1 1 s
uﬂmasmmWMuqu with = =~ — . (7)

s—n/q,00

B! » qg n
Remark that in this estimate, the index ¢ defining the Lorentz and the Besov spaces is related to the
parameters p, s and the dimension n. This inequality was generalized in the Euclidean setting by D.
Chamorro & P-G. Lemarié-Rieusset [13] to other values of the parameter ¢ using interpolation tech-
niques and pointwise estimates. In a recent article, V.I. Kolyada and F.J. Pérez Léazaro [23] gave an



interesting proof for inequalities of type , and based on the use of rearrangement inequalities
and the properties of the Gauss-Weierstrass kernel. However, inequalities with Sobolev spaces in the
left-hand side in the spirit of or seemed to be out of the range of this work.

Motivated by the use of Lorentz spaces in these previous works, in our second theorem we will
provide a generalization (in stratified Lie groups) of improved Sobolev inequalities of type by
considering weighted Lorentz-based Sobolev spaces defined as the set of measurable functions f :
G — R such that the quantity ||(_A)%f”Ap(w) is bounded where for s > 0 the fractional power of
the Laplacian is defined in Section below, and for 1 < p < 400 the space AP(w) denotes the classical
Lorentz space of functions introduced in [25] and [26] defined as

AP(w) = {fﬁ [f 1l arw) = (/;OO f*(t)pw(t)dt) " < +<>O},

where w is a weight in R}y and f* denotes the non-increasing rearrangement of f (see [5] for stan-
dard notations). Many of the properties of these spaces depend on the weight w: in particular, if
w = 1 we have AP(w) = LP and if w(t) = t?/971 with 1 < ¢ < +o0, we obtain AP(w) = L%, where
L%P are the usual Lorentz spaces. In this work we will consider the weighted Lorentz space AP(w)
such that the weight w satisfies the B, condition, the reason for this is given by the fact that M. A.
Arino and B. Muckenhoupt showed in [3] that this B, condition characterizes the boundedness of the
Hardy-Littlewood maximal operator on AP(w) and this particular property will be intensively used
in our proofs. See Section (3| for definitions and [3], [§], [10] and [33] for more details and properties
concerning these functional spaces.

In this direction of generalization, standard Sobolev inequalities have been studied by A. Cianchi
[15] in the context of Orlicz-Sobolev spaces, but improved inequalities of the general type ({§]) presented
in Theorem [2| below are, to the best of our knowledge, new.

Theorem 2 Let G a stratified Lie group. Let s > 0, w € B), be a weight and let f : G — R be a
function such that (—=A)2 f € AP(w)(G) and f € BO_OB’OO(G). Then we have the following version of
improved Sobolev inequalities:

18 Fllaogu) < ORIl (8)
where 1 < p < q < 400, 0 =p/q, s1=0s—(1—0)5 and —f < 51 < s.

The choice of the weights in the B, class is given by two important facts. First, these weights allow
us to consider general functional spaces, in particular we can easily recover standard Lorentz spaces.
Second, these weights ensure that maximal function is bounded in the spaces AP(w) for 1 < p < 400,
and this feature is crucial as the proof of Theorem 2] requires this property. Note in particular that
inequality is different from inequality @ since Lorentz-Sobolev spaces are not included in the scale
of Besov spaces.

Finally, since our proof of Theorem |2 relies essentially on a pointwise inequality and on the
boundedness of the Hardy-Littlewood maximal operator, it is possible to give a related result re-
placing classical Lorentz spaces by Morrey spaces MP® which are a useful generalization of Lebesgue



spaces. Classical Hardy-Littlewood-Sobolev inequalities were studied in this functional framework by
D. Adams [I] and by F. Chiarenza & M. Frasca [14] and our next theorem is an improvement of these
inequalities.

Theorem 3 Let G be a stratified Lie group. Let s > 0, 1 <p < 400 and 0 < a <n and let [ be a
function such that (—=A)% f € MP*(G) and f € Bx*°(G). Then we have

I(=2) flmae < ClI(=A)2 fl4pall /] i (9)

where 1 < p < q< 400, 0 =p/q, s1=0s— (1 —0)5 and —f < 51 < s.

The plan of this article is the following. In Section 2| we present our general framework which is
given by stratified Lie groups. These groups are quite natural generalization of R™ but they present
some particularities that should be taken into account in the computations. In Section [3| we give the
precise definition of all the functional spaces used in the previous inequalities and in Section [ - [f] we
present the proofs of Theorems [I] and Theorem [2] respectively. Finally, in Section [6] we give the proof
of Theorem [3] and some variations of the previous results.

2 Stratified Lie groups: notation and basic properties

As said in the introduction, stratified Lie groups are natural generalizations of R™ when considering
general dilation structures. Although stratified Lie groups share common features with R"™, there are
some special points that must be taken into account: for example these groups are no longer abelian
and this fact requires to be carefull in some computations, furthermore from the geometric point of
view, the inner geometric structure of these groups can be very different from the euclidean setting.
It is then necessary to recall some basic facts about stratified Lie groups, for further information see
[17], [18], [38], [35] and the references given there in.

We start with the notion of homogeneous group G which is the data of R™ equipped with a structure
of Lie group and we will always suppose that the origin is the identity. We define a dilation structure
by fixing integers (a;)1<i<n such that 1 = a; < ... < a, and by writing:

do :R* — R" (10)

x > dulz] = (@ xy, .. a ).
We will often note aux instead of d,[z] and « will always indicate a strictly positive real number.

Of course, the Euclidean space R™ with its group structure and provided with its usual dilations
(i.e. a; =1, for i = 1,...,n) is a homogeneous group. Here is another example: if z = (x1,z9, z3)
is an element of R3, we can fix a dilation by writing d,[z] = (ax1,az2,a?r3) for a > 0. Then,
the well suited group law with respect to this dilation is given by z -y = (z1,z2,z3) - (y1,y2,y3) =
(r1 + y1, 22 + Y2, 23 + Y3 + %(:clyg — y1x2)). Remark in particular that this group law is no longer
abelian. The triplet (R3,-,d) corresponds to the Heisenberg group H' which is the first non-trivial
example of a homogeneous group. The homogeneous dimension with respect to dilation structure ((10))



is given by N = Z a;. We observe that it is always larger than the topological dimension n since
1<i<n

each integer a; verifies a; > 1 for all 4 = 1,...,n. For instance, in the Heisenberg group H'! we have
N = 4 and n = 3 while in the Euclidean case these two concepts coincide. Now we will say that a
function on G\ {0} is homogeneous of degree A € R if f(0,[z]) = o f(z) for all & > 0. In the same way,
we will say that a differential operator D is homogeneous of degree \ if D(f(6a[z])) = a*(Df)(6a[x)),
for all f in operator’s domain. In particular, if f is homogeneous of degree A and if D is a differential
operator of degree u, then D f is homogeneous of degree A — u. The presence of a dilation structure
is one of most important features of stratified Lie groups and the homogeneity with respect to these
dilations will play a useful role in our computations.

From the point of view of measure theory, homogeneous groups behave in a traditional way since
Lebesgue measure dx is bi-invariant and coincides with the Haar measure, thus for any subset E of G
we will note its measure as |E|. This fact also allows us to define Lebesgue spaces in a classical way
(see also Section 3| below). The convolution will be a very useful tool in our computations, and for
two functions f and g on G it is defined by

f gl /f dy—/fa:y1 ()dy, €G.

However, since the group law of a stratified Lie group is not necessarly commutative, we do not have
in general the identity f x g = g *x f and we need to take care of this fact. Nevertheless, we have at
our disposal Young’s inequalities:

Lemma 2.1 If 1 < p,q,r < +o00 such that 1 —I—% = %4— % If f € LP(G) and g € L"(G), then
f*g € LYG) and we have the inequality || f * gllra < || fllze gl

A proof is given in [I§]. A weak version of Young’s inequalities will be stated in Section

For a homogeneous group G = (R",-,§) we consider now its Lie algebra g whose elements can be
conceived in two different ways: as left-invariant vector fields or as right-invariant vector fields. The
left-invariant vectors fields (X;)1<j<n are determined by the formula

of (z - y) + Z
O:Uk

(X)) = =g

y=0

where qf(x) is a homogeneous polynomial of degree a; — a; and f is a smooth function on G. By
this formula one deduces easily that these vectors fields are homogeneous of degree a; and we have
X (flax)) = a%(X;f)(ax). We will note (Yj)i<j<n the right invariant vector fields defined in a
totally similar way:

Of(y - x)

Vi) = =5

y=0

A homogeneous group G is stratified if its Lie algebra g breaks up into a sum of linear sub-
spaces ¢ EBK < Fj such that E; generates the algebra g and [Eq,E;] = Ej4q for 1 < j < k
and [E1, Eg] = {O} and Ej # {0}, but E; = {0} if j > k. Here [E, E;] indicates the subspace of



g generated by the elements [U,V] = UV — VU with U € E; and V € E;. The integer k is called
the degree of stratification of g. For example, on Heisenberg group H!, we have k = 2 while in the
Fuclidean case k = 1.

We will suppose from now on that G is stratified with homogeneous dimensiorﬂ N > 4. Within
this framework, we will fix once and for all the family of vectors fields

X ={X1,...,Xm},

such that a; = ag = ... = a;, = 1 (m < n), then the family X is a base of F; and generates the
Lie algebra of g, which is precisely the Hérmander’s condition (see [I8] and [38]) and this particular
choice ensures several important properties, in particular to the family X is associated the Carnot-
Carathéodory distance d which is left-invariant and compatible with the topology on G (see [38] for
more details) and for any z € G we will denote by |z| = d(z,e) and for r > 0 we form open balls by
writing B(z,r) = {y € G : d(x,y) < r}. By simple homogeneity arguments we obtain that stratified
Lie groups have polynomial volume growth since we have |B(-,7)| = rV|B(-, 1)].

The main tools of this paper depend on the properties of the gradient, the Laplacian and the
associated heat kernel, but before introducing them, we make here some remarks on general vectors
fields X; and Y;. Let us fix some notation: for any multi-index I = (i1, ...,4,) € N", one defines X! by
X=X Xinand Y by Y = Y{' ...V, furthermore we denote by |I| =iy + ...+ i, the order
of the derivation of the operators X’ or Y! and d(I) = a1iy + ...+ ani, the homogeneous degree of
these ones. Now, for ¢, € C§°(G) we have the equality

/@(w)(XW)(w)dw: (1)”/(X1s0)(x)w(ﬂf)dw-
G G

The interaction of operators X! and Y/ with convolutions is clarified by the following identities:

XN frg)=fx(X"g), YNfrg) = "flxg,  (X'f)xg=fx(Y"g). (11)

Finally, one will say that a function f € C*°(G) belongs to the Schwartz class S(G) if the following

semi-norms are bounded for all ¥ € N and any multi-index I: Ny ;(f) = sup (1 + |z|)*| X f(2)].
zeG

Remark 2.1 To characterize the Schwartz class S(G) we can replace vector fields X/ in the semi-
norms Ny ; above by right-invariant vector fields Y.

For a proof of these facts and for further details see [I8] and [19].

We define now the gradient on G from vectors fields of homogeneity degree equal to one (i.e.
those composing the family X) by fixing V = (Xi,...,X,,). This operator is of course left in-
variant and homogeneous of degree 1. The length of the gradient is given by the formula |V f| =

(X124 e+ (X f)2) 2

!The lower bound N > 4 corresponds to the homogeneous dimension of the Heisenberg group H', which is the simplest
non-trivial stratified Lie group.

. We also define the right invariant gradient V= (Y1,...,Y,,), and using




lj we have the identity (Vf)xg = f * (%g) We define now the Laplacian we are going to work
with. Let us notice that in this setting there is not a single way to build a Laplacian, see for example
[19]. In this article we will use the Laplacian, denoted by J, which is given from the family X in the
following way

m
J=V'V=-> X2 (12)
j=1
This is a positive self-adjoint, hypo-elliptic operator (since the family X satisfies the Hormander’s

condition), having as domain of definition L?(G). Its associated heat operator on G x]0, +oo is given
by 0; +J. We recall now some well-known properties of the heat operator and its associated kernel.

Theorem 4 There exists a unique family of continuous linear operators (Hy)¢~o defined on L' +
L>(G) with the semi-group property Hyys = HiHg for all t,s > 0 and Hy = Id, such that:

1) the Laplacian J is the infinitesimal generator of the semi-group Hy = e~ ;
2) H, is a contraction operator on LP(G) for 1 < p < 400 and for t > 0;
3) the semi-group Hy admits a convolution kernel Hyf = fxh; where hy(z) = h(x,t) € C*°(Gx]0, +00])
is the heat kernel which satisfies the following points:
(a) (0y + T)hy =0 on Gx]0,+oc[, and h(z,t) = h(z~1,t), h(x,t) > 0 and /h(x,t)d:v =1,
G
(b) hy has the semi-group property: hy * hy = hyys for t,s > 0 and we have h(8[z],a’t) =
a™"h(,t),
(¢) For everyt >0, x — h(x,t) belong to the Schwartz class in G.
4) For f € C*(G) and fort > 0 we have JH(f) = H.T(f).

For a detailed proof of these and other important facts concerning the heat semi-group see [I8] and [31].

To close this section we recall the definition of the Laplacian’s fractional powers. If s > 0 we write

1 oo k 17k
s = — t" T I H, dt 13
7@ = 7= |, TEH,f (@)t (13
for all f € C*°(G) with k an integer greater than s. The interaction between this operator and the
heat kernel is given by the following lemma.

R s+N(1-1)
Lemma 2.2 If1 < p < 400, for s >0 and for t > 0 we have the estimate || J2hy||py < Ct~ 2

See [31] for a proof.

3 Functional spaces

We give in this section the precise definition of all the functional spaces involved in Theorems [I} 2] and
In a general way, given a norm || - ||x, we will define the corresponding functional space X (G) by
{f € S(G) : || fllx < +o0}. The constant that appear in this paper such as C' may change from one
occurrence to the next.



e Lebesgue spaces LP(G). For a measurable function f : G — R and for 1 < p < +oo we
1/p

define Lebesgue space by the norm || f|zr = </ |f(x)[Pdx , while for p = 400 we have

G

|| fllzee = esssup|f(z)|. Let us notice that we also have the following characterization using the
G
Te oo
distribution function || f||, = p/ Pz € G : |f(x)] > a}|da.
0

e weak-Lebesgue spaces LP*°(G). We define them as the set of all measurable functions f :
G — R such that ||f|zre = sup{a - |[{z € G : |f(x)] > a}|'/P} is finite. We will need the
a>0

following version of Young’s inequality where weak LP spaces are involved:

Lemma 3.1 Let p,q,r > 1. If f € LP*®°(G) and if g € L"(G), then fxg € LYG) with
1+ % = % + L and we have the inequality || f  gl|ra < || fllze-=llgllzr-

See a proof of this Lemma in [22], Theorem 1.4.24.

e Sobolev spaces W*?(G). If 1 < p < +oo and for s > 0 we have || f||yi;s, = |72 f||1e, while if
p = s =1we will note || f{|;;;11 = [V f]lz1. We recall classical Sobolev inequalities in this setting:

1A, ey = IV Al and ([fllza = [ flisws  where 1l <p<gand = =s—3.  (14)

e weak Sobolev spaces WP (G). These spaces are defined just as classical Sobolev spaces, but
we replace the LP norm by the weak LP one as follows:

I £llyirse = 172 flliree  with 1 < p < 400 and 5 > 0.

e Besov spaces B;Y(G). There are many different (and equivalent) ways to define these spaces
in the setting of stratified Lie groups. In this article we will mainly use the thermic definition

given by
+oo 7t 1/q
R (m—s/2)q -
s = ([ e )

 t
for 1 < p,q < +00,s > 0 and m an integer such that m > s/2. For Besov spaces of indices
(=5, 00,00) which appear in all the improved Sobolev inequalities we have:

O"H. f

g ()

11l g0 = sup 772 Hy f|| oo
> t>0
Recall that for 0 < s < 1 we have the inequality

1T2 | pp=soe < M| fl| popooe (15)

where M is a universal constant.

e Lorentz spaces AP(w)(G). Let f : G — R be a measurable function. We define f*, the
non-increasing rearrangement of the function f, by the expression f*(t) = inf{a > 0:|{z € G :



|f(z)] > a}| < t}. We will say that a nonnegative locally integrable function w : RT — RT
belongs to the Arino-Muckenhoupt class B), for 1 < p < 400, if there exists C' > 0 such that

+00 .
/ <%)pw(t)dt < C/ w(t)dt, for all 0 < r < 4oo0.
" 0

It is not difficult to see that if 0 < p < ¢ < +o00, then we have the inclusion of classes B, C B,.
We define the Lorentz spaces AP(w) with 1 < p < 400 by the formula

1 fllap(w) = </0+oo(f*(t))pw(t)dt>; .

As said in the introduction, the choice of the B, class is due to the fact that this class of
weights characterizes the boundedness of the Hardy-Littlewood maximal operator M p, given for
a measurable function f by

B>x

1
Mpf(x) =sup ’m/B |f(y)|dy, where B is an open ball, (16)

on the spaces AP(w) for 1 < p < +o00: [Mpfllarw) < C|lfllar(w), where C'is depending on the

quantity ol " {rp ( /r—i-oo wtgf) dt> y ( /Orw(t)dt> }

For more properties of these weights and the associated classical Lorentz spaces see [3], [§], [33]
and [10].
Lorentz-Sobolev spaces A*?(w)(G). Once we have fixed the base space AP(w), the homoge-

neous Lorentz-Sobolev spaces are easy to define and are given for 1 < p < +o00 and for s > 0 in
the following way

1l ey = ( / - (<ﬁf>*<t>>pw<t>dt)3’ .

weak Lorentz spaces AP (w)(G). Let w a weight in RT. For 0 < p < 400, the weak Lorentz
space AP (w) is the class of all measurable functions f : G — R such that

[ fllaz-oe ) = sup FHOWP(t) < oo,

t
where W (t) = | w(s)ds. The weak Lorentz spaces were introduced in [§] and further investigated

0
in [7], [6] and [9]. The problem of characterizing when the weak type Lorentz spaces AP*°(w),
0 < p < 400 are Banach spaces was studied in [33].

weak Lorentz-Sobolev spaces A*?(w)(G). For 1 < p < +oo the homogeneous weak Lorentz-
Sobolev spaces are given by

‘ t 1/p
lenmior =200 ([ wteias)

10



e Morrey spaces MP?%(G). For 1 < p < 400 and 0 < a < N, we define Morrey spaces as the
space of locally integrable functions such that

1
1 P
[ fllmpe = sup  sup (a/ |f(:L“)|pdx> < +o0.
B(zo,r)

2o€ER" 0<r<+oo \ T

Morrey spaces are indeed a generalization of Lebesgue spaces since when a = 0 we have MP0 ~
LP. The use of Morrey and Morrey-Sobolev spaces in this article is due to the fact that the
Hardy-Littlewood maximal operator is also bounded in such spaces. See more details in
[14] in the framework of R™ and [2] in the setting of stratified Lie groups. See also [32] and the
references given there in for other interesting generalizations.

e Morrey-Sobolev spaces M*P%(G). For 0 < s and 1 < p < 400 with 0 < a < N we consider
the homogeneous Morrey-Sobolev spaces M*P% by the quantity

Hf”j\'/[s,p,a = Hjé‘fHMp,a.

4 Proof of Theorem [1I

Let us consider the function f , we have then ||V f|[;1 < 1 and ||f”B—ﬂ,oo < 1. Let

- ||Vf||Ll+‘ﬁf”Bgoﬁ,oo
us fix now % —e<q< % where € > 0 is a small technical parameter and N > 4 stands for the
homogeneous dimension of the underlying stratified Lie group G. We start by writing the L? norm of
J3 f using the distribution function:

]. s +OO s
Gl 73, = /0 T {| 7% f] > 3a}|da
1 ~
- / a® T2 f] > 3a}|da (17)
0
+00 -
+/ al H{| T3 f| > 3a}|da. (18)
1

We will now study each integral above separately.

Proposition 4.1 We have the following bound for integral

1 ~ .
/0 o {| T2 f(x)| > 3a}|da < C|[V ] 1.

~ 200(g—1)
Proof. We introduce the term H,_ (f) = h., * f, where the parameter 7, is such that 7, = o~ ==

with 0 < 09 < 1, and then we write

1 _ 1 s ~ s ~
/oaq—1|{rﬁf|>3a}|da < /0 | TEf = Heo (T3 )] > a}lda (19)

1 S
*/ " {|Hr (T2 f)| > 20} |dar. (20)
0

11



The integral of the right-hand side in is treated as follows: using the Tchebychev inequality we
have

1 _ s ~ 1 s ~ o ~
| @ W F - H (T3Pl > a)lda < C [ @t T - Ho (73D |ade,
0 0
and applying the inequality in the previous integral we can write

! s = S X 1 1—s ~
/ TN T3~ Ho (T3 )] > allda < C / T2 |V fl adey
0 0

1—s
but since 7,2 = a2~ we obtain

1

1 _ L _ _
/ TN THF — Ho (T3 )] > adlda < [V / Wt 20N g < C|VFl. (1)
0 0

For the second integral 1} as it was done previously, we introduce the term H;, (f) = hy, * fwhere
2
we define t, = o F+s and we write
1

1
/O‘q IHA (T2 )| > 2a}|da < /O‘q_ll{le(ﬁf) Hy,(Hr (T%[))| > a}lda
0 0

1 ~
+/ a® {|Hy, (Hr, (T2 f))| > a}|da. (22)
0
At this point we will use the following lemma.

Lemma 4.1 Let s, two posztwe parameters that satisfy the hypotheses stated in Theorem [1] and let
f be a function such that || J 2 fHB s-s,00 < 1. For a > 0 define t, = o ~5+ and consider H;, the heat
semi-group (see Theoreml) Then we have |[Hy (T2 f)| 1z~ < a.

The proof of this lemma is straightforward: we only need to use the thermic definition of Besov spaces
given in Section [3]

Since we have ||Hy, (Hr, (72 f))||zoe = |[Hry (Hya (T2 f))l[100 < [ Hyo (T2 f)HLoo applying the pre-
vious lemma we obtain that the second 1ntegral of the right-hand side of (22)) is null. Thus to treat
the expression we only need to study the integral

1 ~ s
/0 T | Hr (T2 F) = Hiy (He, (T2 )] > ey

which we rewrite as follows
1

1 ~ . - -
/0 o' {|Hr (T2 f) = Hyo (Hr (T2 1)) >a}da—/0 (T2 by # [f = Dy % f])] > a}|der.

Now, applying the Tchebychev inequality for % — e < m < q we have
1 _ _ 1 . _ um
| T b (= by )l > allda < € [ arlamm | F3he, « (F~ o, + 7 do
0 O m
1 -~ -~ S
= C/ QT 1| f = hyy # T NT 2 o [ Fon der,
0

12



using again inequality with s = 0 and the properties of the heat kernel we obtain

1 . N . 1 1 m _s+N(1f%)m
[ a1 6 1F = e A > dida < € [0 (19fln ) w T
0 0
. . . _ 209(¢=1) __2
which replacing the expression of 7, = a  1-s and t, = a #+s yields

1 R . - ~ 1 _ . _(g=1)m | og(g—1) N(lfi)) 1
| M1 b F = i, 71> adlda < CIFgs [ arm SR 0 mg g,
0 0

This last integral is convergent if q—m—%#—%}l)(s—i—]\“l—%))m > 0, and since 7 — < m < ¢
this condition is assured if o(s + N(1 — 1)) > 1, which gives the condition N > - 12908 4nd this

m m—1 op
last condition holds true since N >4, 0 < s < + and 0 < gy < 1 can be chosen close to 1. Thus we
obtain the following bound for the integral ([20):

1 - ~
|t I (T3 > 20}da < IO FI. (23)

Thus, using inequalities and , we come back to the integrals and and we can write

L B _ -
/0 Q| T2 f(z)| > 3a}|da < C|V £ + CIIVFIT,

~ 1 s ~ ~
but since ||V f]|z1 <1 and 1 < m, we finally obtain / QA | T2 f] > 3a}|da < C||V | L |
0
Proposition 4.2 For integral (@ we have the following inequality

+o0 . -
/ (|72 fl > 3a}|da < C|V f] -
1

_20.1 (g=1)

Proof. We consider now the semi-group H,, with p, = « 1=s  where 1 < 07 is a technical

parameter. Then, we write

+oo

-‘rOO —_~ s ~ s
/1 o M{|T2 f| > 3a}|da < /1 | T2f = Hpo (T2 ) ()] > a}lda (24)
+o0 s ~
[ a1, (T3] > 20) da (25)
1

For integral , by the Tchebychev inequality, applying the estimate and using the definition
given above of the parameter p, we have

+00 ~ s ~ +oo s =~ s =
/ T WITSF — Hy (T3] > a}lda < C / Yo T — H, (T3 )l ada
1 1

IN

+o00 1-s ~ ~ +oo
¢ [ arta pT [V fluda £ OVl [ a0V D g
1 1

IN

ClIV fll - (26)

13



For the second integral , we introduce as previously Hta(f) where t, was given above, and then
we write

+o0

+oo - s ~ s ~
/1 T {|H, (T3 )] > 20} |da < /1 " I Hyo (T2 1) = Huo (Hpo (T21))| > alde
+oo s ~
+ / 0t Y {| Hy, (H, (T2 )| > a}|da.
1

As explained in Lemma [£.1] and by the same reasons, the second integral in the right-hand side above

is null, so we only need to evaluate the first integral in the right-hand side. For this, we set r = %

and using the Tchebychev inequality and the definition of weak LY spaces we have

“+o00 — 8 ~
/1 0t Y{|H, (T3 [) — Hy, (H, (T3 )| > a}|da

—+00 o~ s =
g/l o (a7 Hy o (TEF) = Hoy(Hyo (T2 ) ¥

(o

Since we have [ Hy, (75 )| aee = [, # (T3 Dllzsce < g, 111175 Fllzace, we obtain

%
da
L’r‘

1, (T3F) - Hi(H, (T3 D)) do.

IN

‘) T (@ ) (o [ 75 = i (75

CITHTIED [ a0 1, (75 )~ i (0, (T3P do

since || Hy, (72 f) = Heo (Hpo (T2 )l < T2 (o) % F b+ 1o %73 (hoo )+ fllr < CILT 2 (hip ) fll e,

we write
q(1— e q—1—q(1-%)—q i
< aAFEfR? [ e 17 (hy) = T4, da

1 +0o0 ~
< o) T / a1 1=10= 04 75 ()|, || 71, da,

using the classical Sobolev inequality || f||z- = HfHLNJ\_r < C|Vf|lz: and the weak Sobolev estimate

1

given in inequality , namely Hj%ﬂ\qmm < CHV}VHE, we obtain

+oo B 5~ 1—q - +o0 I sq
[ a0, (T3 > 2adida < CRAILTIIRL [ ar D ) ¥ da,
1 1
and with the definition of p, we can write

e ; 1=ftg [T g1 ragen 401
o {[Hy, (T2 f) ()] > 20} |dor < C|IV f]| 14 a = o,
1 1

14



this last integral converges since —q(1 — 4) 4 sqo

(g

1:? <0Oand 0 < s < %, thus we have

+00 -7
/1 T H,, (T3 £)(@)] > 20}/da < C[VF], .

Now recalling that 7 = ¥

~—7 Wwe finally obtain

/1 T V(| H,, (75 )] > 20}|da < |V

Ll

Now with this previous estimate and together with , we have the inequality

+o0o 3 .~ _ S
/ ot {75 F] > 3a}|da < C|V il + CIVFLTY,
1

~ S s ~

but since ||V f||;1 < 1 we finally have / 2 H{|T2f| > 3a}|da < C||V |11, which ends the proof
1

of the proposition.

|
Now, gathering the results of Propositions [£.1] and [£.2] we have the following estimate

1 s~ ~
T8, < CIV i,
at this point we use the fact that ]?

_ f )
— VT oo to obtain

1 s q q—1
175718 < IVl (IVF s + 151 oo )

)

which is the end of the proof of Theorem 1| when % —e<qg< % For the cases 1 < ¢ < % —€

and % < ¢ < +oo we proceed by interpolation (see [5], [22] for details about interpolation theory)
since we have the weak inequality:

s 1 1-1 1 1-1
173 lace < VAL b < CIVANG (191 + 1 sz ) 7
where 1 < § < 400.

5 Proof of Theorem [2|
We will prove here, in the framework of stratified Lie groups, the inequality
1 seveay < Oy 17155

where f : G — R is a function such that f € A®P(w)(G) N Bo_oﬁ’oo(G) with 1 < p < ¢ < +oo,

0=p/q,s1=0s—(1—-0)5 and —f < s1 < s. We will always assume here that w is a weight in the
Arino-Muckenhoupt class B,,. The reason for this particular choice of weights relies on the fact that

15



we will need the boundedness of the Hardy-Littlewood maximal operator on Lorentz AP(w) spaces
and this is ensured by the condition w € B,,. See [3] and [10] for details.

By the definition of Lorentz-Sobolev spaces given in Section |3| this inequality can be rewritten in
the following way

177 Fllaaquy < CUT 2 Mo 115 e

For the proof of this inequality, we will use a variant of Hedberg’s inequality. Indeed, since 0 < s1 < s,
we use the characterization of the positive powers of the Laplacian given in and we have for
k>s/2>s1/2

J?f) = F(k—lslm)/om =L TR, f (2)dt
1 T E—S1_1 & oo k=21 7k
_ M(/g N Htf(:c)dtJr/T pht-1g Htf(x)dt>,
where T will be defined below. In particular we have
T3 (@) € ( / ' 53 Y TR H, f (2)|dt + / - t’“‘?‘lrﬁHtﬂxndt) L@
I'(k —s1/2) \Jo T

For the first integral of the right-hand side of the previous formula we will use the following fact.

Lemma 5.1 Let f € §'(G) and ¢ € S(G). We denote by My(f) the mazimal function of f (with
respect to @) which is given by the expression

Mof(@)= swp {fx@u(@)l},  with oi(e) = N 2112

If the function ¢ is such that |p(z)| < C(1 + |z|)™N=¢ for some e > 0, then we have the following
pointwise inequality

M f(z) < CMpf(2),
where Mpf(x) is the Hardy-Littlewood maximal function defined by (@)

For a proof of this lemma see [22] or [I§]. With this lemma in mind, and since k > s/2, we remark that
we have the identity J*H, f(z) = J* 2hy * 72 f(x). Now, by homogeneity we obtain J*~2 (h;)(z) =
tht3 (jkfght) () and if we denote ¢; by ¢y (x) = (J’“%ht) () we have that ¢, (x) = t =N/ 2p(t=1/2z),
moreover, since the heat kernel h; is a smooth function, with the previous notation we obtain |¢(x)| <
C(1 + |z[)~™~¢. Then we can write

TEH f(x) =t 30+ T3 f (2),
and applying the Lemma we have the following pointwise inequality for the first term of :
TEHf ()] = 755 M (T3 ) (@),

16



Now, for the second integral of the right-hand side of we simply use the fact that || 7% f|| pB—2ko0
| f]l 5=5.0c and the thermic definition of Besov spaces to obtain

—B—2k

T H f (2)| = |HeT*f(2)] < Ot 2 |7 Il gp-2noe

With these two inequalities at hand, we apply them in and one has

@) < ey ([ A (73) @ars [T
- T(k—s1/2) \Uo B . .
¢ Za s —B—s1
= W(T > Ms (jzf) (z) +T ||J’ffHB;ﬁ_%,m).

We fix now the parameter T' by the condition

_2
”jkaB(;ﬁ*kaoo o

Mp <j%f> ()

and we obtain the following inequality

571 C 2 l_sﬂ_fsl k %
T < fgMe (T3) 7T @IS

Since %7%1 =1 — 6 and using again the fact |T* fll g=s-2r00 = | f]| 5=5.00 We have

51 C s 0
7% @) < Mg (T5F) @)1 (28)

(k= s1/2)

Once we have obtained this pointwise inequality, we will use the following properties of the non-
increasing rearrangement function.

Lemma 5.2 If f,g: G — R are two measurable functions, we have

1) if lg| < |f] ae. then g* < f*,
2) if0.< 9, then (1) = (f*)".

For a proof see Proposition 1.4.5 of [22]. Recalling that § = p/q and applying these facts to the
inequality we obtain

(T2 ) <o (e (75)7®) 17152 (29)

Multiplying the previous inequality by a weight w from the Arino-Muckenhoupt class B, and inte-
grating with respect to the variable ¢ we obtain

[ (@) v e [ (e (750)0) w1155
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and then, by the definition of classical Lorentz spaces given in Section [3| we have
51 s
17 Fllascuy < CIMB(TE D o) 115

Now, since the weight w belongs to the class B, with 1 < p < 400, we have that the Hardy-Littlewood
maximal operator is bounded on the space AP(w) and we obtain

IMB(T2 )l arw) < 1T 2 Fllar(w),
and finally we have the desired inequality for classical Lorentz spaces:
S1
1T fllasqw) < CIT2 Fll )IIfIIB 8,00
|

Now we will state in the following corollaries some interesting consequences of this previous theo-
rem.

Corollary 5.1 Letw € B, be a weight and let f : G — R be a function such that f € AP (w)(G)N
BJO’B’OO(G). Then we have the following version of improved Sobolev inequalities of weak type:

1 s 000y < CUF U o0 gy 111 P .
where 1 < p < q < 400, 0 =p/q, s1=0s— (1 —0)5 and —f < 51 < s.
Proof. We start again with the pointwise inequality :
S1 * q S * p _
(TEpr®) <o (s (750)r®) 11525 ..
Now, we multiply both parts of this inequality by W (t) and we take the supremum in the variable ¢:

174 My =50 W) (T2 1) < Coup {(Ma(T20)"(0)) W} 112

< CIMB(T =R i | 1 e

since it is known (see e.g. [33]) that for w € B, the Hardy-Littlewood maximal operator Mp is
bounded on AP**°(w), therefore we obtain that

Hj?lfHAq,oo <C’HJ f||Apoow)||f|B 800"
[ |

Now we will study other variations of the previous results by considering a different type of weights.
To be more precise, we will study two-weighted inequalities and in what follows, for v and w two weigths

t t
and for ¢t > 0, we will denote by V' (t) and W (t) the quantities V(t) = / v(s)ds and W (t) = / w(s)ds.
0 0
Our first two-weighted improved Lorentz-Sobolev inequality is given in the following corollary.

18



Corollary 5.2 Let 1 < p < q < 400 and let (v,w) be a pair of positive weights satisfying the following
properties

’ 1/27/
W(t)l/p </+oo ’LU(S) )1/1) /t U(S)Sp
su <400 and su ds ~ds < +o00.
t>g V(t)t/r t>g ¢ sP o V(s)P

If f: G — R is a function such that f € Asvp(v) N BQO’B’OO with s > 0, then we have a two-weighted
version of improved Sobolev inequalities

1l ieraquy < CIFI o111 00

where 1 < p < q< 400, 0 =p/q, s1=0s— (1 —0)5 and —f < 51 < s.

This inequality is interesting since it is possible, under some hypotheses, to consider different weights
in the left-hand side and in the right-hand side of the inequality.

Proof. Using the pointwise inequality and the fact that the Hardy-Littlewood maximal operator
Mp : AP(v) — AP(w)
is bounded for such weights (see [37] for details) we obtain the desired inequality. [

If we are allowed to change the weights that define the Lorentz spaces in the previous inequalities,
it is then also possible to change, with specific conditions on the weights, the parameters of these
spaces. In the following corollary we gather some results where we consider different Lorentz spaces in
the right-hand side of the inequality. Indeed, the first point is a generalization of the previous corollary
and we will consider in the right-hand side Lorentz-Sobolev spaces of type A®%(v) instead of A%?(v)
where 1 < gg < p < +o0. The second point allows us to study the case when 1 < p < gg < +o0 and
finally, the third point treats the case when 0 < gg < 1.

Corollary 5.3 Let 0 < qo < +00, s >0, let f : G — R be a measurable function and let (v,w) be a
pair of weights.

1) If 1 < qo < p < 400 and if (v,w) are satisfying the following conditions

W(t)'/?
0 V(1)

()" ([556) <o o

then, if f € A>(v)(G) N BQOB’OO(G), we have the following inequality

< 400 (30)

and

1 N ass oy < CIF NG om0 oy 115 P o

where 1 < p < q< 400, 0 =p/q, s1=0s— (1 —0)5 and —f < 51 < s.
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2) If 1 <p<qp<+o0 and (v,w) are satisfying

</o+<>o (VXK((;))>% w(s)ds> " < 40
+o0 oo ) NP [ [t o(t)e’ 1/p " o(s)s 1r
/0 </s tpdt> (/0 V()@ dt) st e

and q% + L, =1. Then, if f € A>P(v)(G) N B> (G), we have

1 jsr oy < ClUF N0 HfIB 500

where 1 < p < q< +400, 0 =p/q, s1=0s—(1—0)5 and —f < 51 < s.
3) If0<qp<1andl<p<+oo and if (v,w) are satisfying and

“ t </+°° w(s)ds>1/p < 400
iob V(O \ J, o ’

then, assuming that f € A%9(v)(G) N B> (G), we obtain
1l isvauwy < CIF IR0l F 1550

where 1 < p < q< 400, 0 =p/q, s1=0s— (1 —0)8 and —f < 51 < s.

and

where r s given by % =

B =
Q=
>Q

Proof. From the pointwise inequality we obtain that

177 llaacy < CIME(T 2D 1175 5 -

Now, under all these hypotheses on the weights v and w, we have that the Hardy-Littlewood maximal
operator Mp : A% (v) — AP(w) is bounded (see [37] and [7]) and then we obtain

1 jsr o) < ClUF N0 IIfHB 8,00

|
We have also the following two-weighted version of improved Sobolev inequalities of weak type:
Corollary 5.4 Let 1 < p < 400, 0 < gy < +00. Let (v,w) be a pair of weights such that
sup M /t VY0(s)ds < +oo, (32)
t>0 0

and let f : G — R be a function such that f € As’qo’oo(v)(G)ﬂBgoﬁ’oo(G). Then we have the following
inequality
1 son.00 a0y < CNF MR era0.00 o 1 g

where 0 < qop < 400, 1 <p<q<+00,0=p/q, s1=0s—(1—-0)8 and -3 < 51 < s.
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Proof. 1t is enough to follow the same lines of the Corollary [5.1] to obtain
17  Flae () < CIMB(TZ IR0 () o0

since the pair of weights (v, w) satisfies the condition it implies that the operator Mp : A% (v) —
AP (w) is bounded (see [33]) and we obtain

S1 El
172 7%y < OUTE T By LI

which is the desired inequality. |

6 Generalizations

In this section we give some generalizations of Theorems [I] and [2] and we prove Theorem These
generalizations are made possible since the techniques developed in our proofs are based on general
harmonic analysis arguments and since many of the tools used in this article are available in other
frameworks. Indeed, the spectral theory associated to the Laplace operator, the boundedness of the
Hardy-Littlewood maximal operator and the use of appropiate weights in order to define well suited
functional spaces are intensively studied and many interesting properties were generalized to different
settings.

6.1 A, Weighted Inequalities

In this section we consider weights belonging to the A, class with 1 < p < 400 and we will study
a weighted version of Theorem (1| In [28] B. Muckenhoupt introduced the A, class of weights which
are also known as Muckenhoupt weights. For the sake of simplicity, we present the tools and the
framework in the general setting of stratified Lie groups.

Let us recall first that a weight w (a locally integrable function on G with values in ]0, +00[) belongs
to the A class if
Mp w(z) < Cw(zx) aex€G,

where Mp is the Hardy-Littlewood maximal function given in . For 1 < p < 400 we say that
w € A, if it satisfies the condition

1 1 o\
sup / w(z)dz / w(x) 1 de < 400, where B is an open ball.
|B] 1Bl /5

It is known that if 1 < p < ¢ < 400 we have the inclusion A, C A,. For general properties of A,
weights and more details see [I8] and [22]. We define, for 1 < p < +o00, the weighted Lebesgue spaces

by the norm
1/p
1l = ( / !f(w)!pw<w)dw> . (33)

Let us notice that we also have a characterization in terms of the distribution function that is

+oo
s =2 [ @ lolla €@ 1@ > a}da
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We just point out here that one of the main features of A, weights is that for 1 < p < +oo it
characterizes the boundedness of Hardy-Littlewood maximal function:

| Muf@po@is <C [ [f@Putds, £ e @O
G G
Weighted weak-L? spaces are given for 1 < p < +00 by

£y = suplo w({e € G2 £(@)] > o)),

Once we have defined the weighted LP(w) spaces with the expression , we can construct weighted
(classical) Sobolev spaces in the following manner, for w € A, with 1 < p < 400, we write:

HfHWs-,p(w) = Hj%f”LP(w)7

and when p = s = 1 we have
1l = 1971

With all these definitions and preliminaries, and using the arguments developed in [I1] it is possible
to adapt the proof of Theorem [I] in the following way.

Theorem 5 Let w be a weight in the Muckenhoupt class Ay, if [ is a function such that Vf €
LY (w)(G) and f € Bx*(G), then we have the inequality

1 llireaey < CIV A1y (19 gy + gz )

wherel<q<+oo,0§s<1/q,ﬁ:1(]__51‘1 (mdezé,

6.2 Morrey spaces
We prove now Theorem [3|in the setting of stratified Lie groups. Morrey spaces were studied in this

framework by many authors, see for example the articles [2], [30] and the references there in.

As said in the introduction, once we have at our disposal the fact that the Hardy-Littlewood
maximal operator is bounded in the convenient functional framework, it is possible to improve Sobolev
inequalities in the following way. The starting point of our proof is the pointwise inequality :

51 C
’jzf(xﬂﬁm

Since 6 = p/q we have for r > 0 and for 0 < a < N the inequalities

Mo (755) @IS .

1 51 1 s -
1 TH f@)lidr < c(a /B LM (sz)pmdx) (Fj et

re B(zo,r) r

1 1/q 1 » 1/q
- THsear) < o5 [ Me(g3) @ae) 1510
<T /B(xo,r) r B(zo,r) ( > BDOB
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from which we derive the estimate
S1 El _
17% fllagea < ClIM (T5F) (bl F13

In order to conclude, we use the fact that the Hardy-Littlewood maximal operator is bounded in
Morrey spaces and we obtain

£ s _
172 Flmoe < CIT 2 fl0gpall £l 5 e
which is the desired inequality stated in Theorem

Remark 6.1 The boundedness of the Hardy-Littlewood maximal operator was studied for generalized
Morrey spaces in [2], [29] and [32]. As long as this boundedness property is satisfied it should be
possible to generalize Theorem @ Indeed, from the pointwise inequality (@ it should be easy (taking
into account the necessary precautions) to reconstruct the corresponding norms in order to obtain an
improved Sobolev-like inequality.

6.3 Nilpotent Lie groups

We consider now a more general framework than the one given by stratified Lie groups. Indeed, going
one step further in the process of generalization, it is possible to consider nilpotent Lie groups since
all the tools used in the proof of Theorems [I| and [2] are available in these settings.

We recall for the sake of completness this framework. Let G be a connected unimodular Lie group
endowed with its Haar measure dz. Denote by g the Lie algebra of G and consider a family (that will
be fixed from now on) of left-invariant vector fields on G

X = {X1,..., Xz},

satisfying the Hormander conditionﬂ We endow the group G with a metric structure by considering
the Carnot-Carathéodory metric associated with X. See [38] for details. We will denote ||z| the
distance between the origin e and x and ||y ~! - z|| the distance between x and y. For r > 0 and z € G,
denote by B(z,r) the open ball with respect to the Carnot-Carathéodory metric centered in z and of
radius r, and by V(r) = dx the Haar measure of any ball of radius 7. When 0 < r < 1, there

B(z,r)
exists d € N*, ¢; and C; > 0 such that, for all 0 < r < 1 we have

clrd <V(r)< Clrd.

The integer d is the local dimension of (G, X). When r > 1, two situations may occur, independently
of the choice of the family X: either G has polynomial volume growth and there exist D € N*, ¢
and Cy > 0 such that, for all > 1 we have

coor? < Vir) < COOT’D,

2which means that the Lie algebra generated by the family X is g.
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or G has exponential volume growth, which means that there exist c., Ce, a, 8 > 0 such that, for all
r > 1 we have

cee™ <V(r) < C.elr.

When G has polynomial volume growth, the integer D is called the dimension at infinity of G. Re-
call that nilpotent groups have polynomial volume growth and that a strict subclass of the nilpotent
groups consists of stratified Lie groups where d = D.

Once we have fixed the family X, we define the gradient on G by V = (X7, ..., X}) and we consider
a Laplacian J on G defined in the same way as in

k
j=1

which is a positive self-adjoint, hypo-elliptic operator since X satisfies the Hérmander’s condition, see
[38]. Its associated heat operator on ]0, +00o[xG is given by 0y + J and we will denote by (H;);~o the
semi-group obtained from the Laplacian J. It is worth noting that many of the properties given in
Theorem [f] remain true for the heat semi-group H; in this general setting. For more details concerning
nilpotent Lie groups see the books [38], [18], [35] and the articles [19], [31], [I2] and the references there
in. Fractional powers of the Laplacian can be defined in a completely similar way using the expression
. It is then possible to define all the functional spaces given in Section |3| in the framework of
nilpotent Lie groups.

With all these preliminaries, we see that we have at our disposal all the ingredients needed in order
to perform the computations done in Sections [4] and [5} and thus Theorem [I] and Theorem [2] can be
generalized to the setting of nilpotent Lie groups.
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