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Improved Sobolev inequalities: the case p = 1 and

generalizations to classical Lorentz spaces

Diego Chamorro∗, Anca-Nicoleta Marcoci†, Liviu-Gabriel Marcoci‡.

May 5, 2015

Abstract

We give a general treatment of refined Sobolev inequalities in the case p = 1 and when p > 1 we study these inequalities

using as base space classical Lorentz spaces associated to a weight from the Ariño-Muckenhoupt class Bp. The arguments used

for the case p = 1 rely essentially on spectral theory while the ideas behind the case p > 1 are based on pointwise estimates and

on the boundedness of Hardy-Littlewood maximal function. As a by-product we will also consider Morrey-Sobolev inequalities.

This arguments can be generalized to many different frameworks, in particular the proofs are given in the setting of stratified

Lie groups.

Keywords: Improved Sobolev inequalities, Sobolev spaces, Besov spaces, Classical Lorentz spaces, Stratified

Lie groups.

1 Introduction and presentation of the results

The aim of this article is to provide a general proof for improved Sobolev inequalities in the particular case when the
parameter that defines the Sobolev space Ẇ s,p in the right-hand side of the inequality satisfies p = 1 and to give some
generalizations to Lorentz-Sobolev spaces in the case p > 1. These inequalities are of the following general form

‖f‖Ẇ s1,q ≤ C‖f‖θ
Ẇ s,p‖f‖1−θḂ−β,∞

∞
, (1)

where f : Rn −→ R is a function such that f ∈ Ẇ s,p ∩ Ḃ−β,∞
∞ . Here we write Ẇ s,p for homogeneous Sobolev spaces

and Ḃ−β,∞
∞ for homogeneous Besov spaces (see Section 4 below for precise definitions).

The parameters s, s1, p, q and β defining Sobolev and Besov spaces in the previous inequality are related by the
conditions 1 < p < q < +∞, θ = p/q, s1 = θs− (1− θ)β and −β < s1 < s, but they do not depend on the dimension
and in this sense these inequalities are more general than classical Sobolev inequalities; of course the inequalities above
are sharper than classical ones.

It is worth noting that even for classical Sobolev inequalities, there are two types of proofs following the value of
the index p of the Lp norm defining the Sobolev space Ẇ s,p in the right-hand side of (1). Indeed, if 1 < p < +∞, the
Sobolev space Ẇ 1,p can be defined by several and equivalent characterizations, but we do not have the same freedom
for the Sobolev space Ẇ 1,1. See [35] for a discussion in the case of classical Sobolev inequalities.

This issue concerning Sobolev spaces remains when considering improved Sobolev inequalities and it is also nec-
essary to distinguish the case when p > 1 from the case when p = 1. Historically, the first proof of these inequalities
is due to P. Gérard, F. Oru and Y. Meyer [21] and is based on a Littlewood-Paley decomposition and interpolation
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results applied to dyadic blocks. The inequalities obtained are of the form of (1) above, but it is very important to
stress that the value p = 1 is forbidden here as the L1 space does not admit a characterization via the Littlewood-Paley
analysis. Another proof of these inequalities using maximal function and Hedberg’s inequality is given in [11], but
as maximal function is not bounded in L1 it is not possible to apply this argument to the case of the Sobolev space Ẇ 1,1.

A second method, studied by M. Ledoux in [25], use semi-group properties related to the Laplacian and it’s
associated heat kernel and allows us to treat the case p = 1. Indeed, if ∇f ∈ Lp(Rn) and f ∈ Ḃ−β,∞

∞ (Rn), we have

‖f‖Lq ≤ C‖∇f‖θLp‖f‖1−θ
Ḃ−β,∞

∞
, (2)

with 1 ≤ p < q < +∞, θ = p/q and β = θ/(1 − θ). Here we can consider the Sobolev space Ẇ 1,1 in the right-hand
side of the previous inequality, but is not possible to consider a Sobolev space Ẇ s1,q in the left-hand side as the proof
relies in a cut-off argument which is not well suited for fractional Sobolev spaces. Another proof of this inequality
based on non-increasing rearrangements functions was given by J. Mart́ın and M. Milman [28], but the important case
p = 1 can not be treated by this method.

A different method was proposed by A. Cohen, W. Dahmen, I. Daubechies & R. De Vore in [16] where these
authors use a BV-norm weak estimation using wavelet coefficients and isoperimetric inequalities and they obtain the
following inequality for a function f such that f ∈ BV (Rn) and f ∈ Ḃ−β,∞

∞ (Rn)

‖f‖Ẇ s1,q ≤ C‖f‖1/qBV ‖f‖
1−1/q

Ḃ−β,∞
∞

, (3)

where 1 < q ≤ 2, 0 ≤ s1 < 1/q and β = (1 − s1q)/(q − 1). When s1 = 0, this last result implies (2) with p = 1,
but is limited by the fact that 1 < q ≤ 2. Indeed, in order to obtain (3), it is necessary to consider a Besov space
of type Ḃs1,q2 in the left-hand side of the inequality (3) and since we have Ḃs1,qmin{2,q} ⊂ Ẇ s1,q ⊂ Ḃs1,qmax{2,q}, by this

method it is not possible to treat the case when q > 2. Furthermore, the geometric arguments such as isoperimetric
inequalities used in [16] considerably reduce the possibility to generalize this inequality to other settings. In particular,
for the general framework of stratified Lie groups that will be used here (which are very natural generalizations of the
Euclidean space Rn), it is not possible to apply those arguments. Concerning some geometric issues of stratified Lie
groups see [20] or [37].

Finally, there is the following weak-type inequality given in [11].

‖f‖Ẇ s,q
∞

≤ C‖∇f‖θL1‖f‖1−θ
Ḃ−β,∞

∞
, (4)

where 1 < q < +∞, 0 < s < 1/q < 1, θ = 1/q and β = 1−sq
q−1 . The proof of this inequality relies in spectral theory and

it was given in the setting of stratified Lie groups, see also [12] for more general frameworks. However, even though
we can consider the Sobolev space Ẇ 1,1 in the right-hand side of (4) and we have a Sobolev space in the left-hand
side of the inequality and we do not have any restriction on the parameter q (here 1 < q < +∞), the inequality (4)
is of weak type (in the sense that the Sobolev space Ẇ s,q

∞ is based on the weak Lq space) and the proof given in [11]
does not allow us to treat strong inequalities with usual Sobolev spaces.

To the best of our knowledge, a strong version of inequality (4) and a generalization of inequality (3) to the case
q > 2 is an open point and in this article we will study these improved Sobolev inequalities in the case when p = 1.
Our first result is then a generalization of the inequalities (2), (3) and (4), and this generalization is twofold: first, it
is possible to consider global parameters (i.e. 1 < q < +∞) for (strong) Sobolev spaces Ẇ s,q in the left-hand side of
inequalities and second, the proof exposed here can be easily applied to more general frameworks than the Euclidean
one as the tools used rely only on harmonic analysis arguments.

Here is our first theorem, which is stated for simplicity in Rn, however the proof will be carried out in the setting
of stratified Lie groups.

Theorem 1 Let f : Rn −→ R be a function such that ∇f ∈ L1(Rn) and f ∈ Ḃ−β,∞
∞ (Rn). Then we have the following

inequality:
‖f‖Ẇ s,q ≤ C‖∇f‖θL1‖f‖1−θ

Ḃ−β,∞
∞

, (5)

where 1 < q < +∞, 0 ≤ s < 1/q, β = 1−sq
q−1 and θ = 1

q .
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This inequality implies (2) when s = 0 and (3) when 1 < q ≤ 2. Moreover, since we have the space inclusion
Lp ⊂ Lp,∞, we obtain immediately (4). In Section 7 we will also study a A1-weighted version of the previous result
with the Theorem 6.

Let us mention now that in the case of Lorentz spaces Lp,q(Rn), H. Bahouri and A. Cohen [4] proved the inequality

‖f‖Lp,q ≤ C‖f‖q/p
Ḃs,q

q
‖f‖1−q/p

Ḃ
s−n/q,∞
q

with
1

p
=

1

q
− s

n
. (6)

Remark that in this estimate, the index q defining the Lorentz and the Besov spaces is related to the parameters p, s
and the dimension n. This inequality was generalized by D. Chamorro & P-G. Lemarié-Rieusset [13] for other values
of the parameter q using interpolation techniques and pointwise estimates. In a recent article, V.I. Kolyada and F.J.
Pérez Lázaro [24] gave an interesting proof for inequalities of type (1), (2) and (6) based on the use of rearrangement
inequalities and the properties of the Gauss-Weierstrass kernel. However, inequalities with Sobolev spaces in the
left-hand side in the spirit of (3) or (4) seemed to be out of the range of this work.

Motivated by the use of Lorentz spaces in these previous works, in our second theorem we will provide a general-
ization of improved Sobolev inequalities of type (1) by considering weighted Lorentz-based Sobolev spaces defined as
the set of measurable functions f : Rn −→ R such that the quantity ‖(−∆)

s
2 f‖Λp(w) is bounded where for s > 0 the

fractional power of the Laplacian is defined in the Fourier level by ̂(−∆)
s
2 f(ξ) = c|ξ|sf̂(ξ), and for 1 < p < +∞ the

space Λp(w) denotes the classical Lorentz space of functions introduced in [26] and [27] defined as

Λp(w) =

{
f : ‖f‖Λp(w) =

(∫ +∞

0

f∗(t)pw(t)dt

)1/p

< +∞
}
,

where w is a weight in R+ and f∗ denotes the nonincreasing rearrangement of f (see [5] for standard notations).
Many of the properties of these spaces depend on the weight w: in particular, if w = 1 we have Λp(w) = Lp and if
w(t) = tp/q−1, with 1 ≤ q ≤ +∞, we obtain Λp(w) = Lq,p, where Lq,p are the usual Lorentz spaces. In this work we will
consider the weighted Lorentz space Λp(w) such that the weight w satisfies the Bp condition, the reason for this is given
by the fact that M. A. Ariño and B. Muckenhoupt showed in [3] that this Bp condition characterizes the boundedness
of the Hardy-Littlewood maximal operator on Λp(w) and this particular property will be intensively used in our proofs.
See Section 4 for definitions and [3], [8], [10] and [34] for more details and properties concerning these functional spaces.

In this direction of generalization, standard Sobolev inequalities have been studied by A. Cianchi [15] in the context
of Orlicz-Sobolev spaces, but we think that inequalities of the general type (7) presented in Theorem 2 below are new.
Again, for the sake of simplicity, we state our result in the euclidean setting of Rn but the proof will be given in the
framework of stratified Lie groups.

Theorem 2 Let s > 0, w ∈ Bp be a weight and let f : Rn −→ R be a function such that (−∆)
s
2 f ∈ Λp(w)(Rn) and

f ∈ Ḃ−β,∞
∞ (Rn). Then we have the following version of improved Sobolev inequalities:

‖(−∆)
s1
2 f‖Λq(w) ≤ C‖(−∆)

s
2 f‖θΛp(w)‖f‖1−θḂ−β,∞

∞
, (7)

where 1 < p < q < +∞, θ = p/q, s1 = θs− (1 − θ)β and −β < s1 < s.

The choice of the weights in the Bp class is given by two important facts. First, these weights allow us to consider
general functional spaces, in particular we can easily recover standard Lorentz spaces. Second, these weights ensure
that maximal function is bounded in the spaces Λp(w) for 1 < p < +∞, and this feature is crucial as the proof of
Theorem 2 requires this property. Note in particular that inequality (7) is different from inequality (6) since Lorentz-
Sobolev spaces are not included in the scale of Besov spaces.

Finally, since our proof of Theorem 2 relies essentially on a pointwise inequality and on the boundedness of the
Hardy-Littlewood maximal operator, it is possible to give a related result replacing classical Lorentz spaces by Morrey
spacesMp,a(Rn) which are a useful generalization of Lebesgue spaces. Classical Hardy-Littlewood-Sobolev inequalities
were studied in this functional framework by D. Adams [1] and by F. Chiarenza & M. Frasca [14] and our next theorem
is an improvement of these inequalities.
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Theorem 3 Let s > 0, 1 < p < +∞ and 0 ≤ a < n and let f be a function such that (−∆)
s
2 f ∈ Mp,a(Rn) and

f ∈ Ḃ−β,∞
∞ (Rn). Then we have

‖(−∆)
s1
2 f‖Mq,a ≤ C‖(−∆)

s
2 f‖θMp,a‖f‖1−θ

Ḃ−β,∞
∞

, (8)

where 1 < p < q < +∞, θ = p/q, s1 = θs− (1 − θ)β and −β < s1 < s.

The plan of this article is the following. In Section 2 we present our general framework which is given by stratified
Lie groups. These groups are quite natural generalization of Rn but they present some particularities that should
be taken into account in the computations. Section 3 is devoted to one of our most important tool: the spectral
decomposition of the Laplacian that will allow us to build new operators in a very simple way and whose associated
kernels will enjoy of useful properties. In Section 4 we give the precise definition of all the functional spaces used in
the previous inequalities and in Section 5 - 6 we present the proofs of Theorems 1 and Theorem 2 respectively. Finally,
in Section 7 we give the proof of Theorem 3 and some variations of the previous results.

2 Stratified Lie groups: notation and basic properties

As said in the introduction, stratified Lie groups are natural generalizations of Rn when considering general dilation
structures. Although stratified Lie groups share common features with Rn, there are some special points that must
be taken into account: for example these groups are no longer abelian and this fact requires to be carefull in some
computations, furthermore from the geometric point of view, the inner geometric structure of these groups can be
very different from the euclidean setting. It is then necessary to recall some basic facts about stratified Lie groups,
for further information see [17], [18], [39], [36] and the references given there in.

We start with the notion of homogeneous group G which is the data of Rn equipped with a structure of Lie group
and we will always suppose that the origin is the identity. We define a dilation structure by fixing integers (ai)1≤i≤n
such that 1 = a1 ≤ ... ≤ an and by writing:

δα : Rn −→ R
n (9)

x 7−→ δα[x] = (αa1x1, ..., α
anxn).

We will often note αx instead of δα[x] and α will always indicate a strictly positive real number.

Of course, the Euclidean space Rn with its group structure and provided with its usual dilations (i.e. ai = 1, for
i = 1, ..., n) is a homogeneous group. Here is another example: if x = (x1, x2, x3) is an element of R3, we can fix a
dilation by writing δα[x] = (αx1, αx2, α

2x3) for α > 0. Then, the well suited group law with respect to this dilation
is given by x · y = (x1, x2, x3) · (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 +

1
2 (x1y2 − y1x2)). Remark in particular that

this group law is no longer abelian. The triplet (R3, ·, δ) corresponds to the Heisenberg group H1 which is the first
non-trivial example of a homogeneous group.

The homogeneous dimension with respect to dilation structure (9) is given by N =
∑

1≤i≤n

ai. We observe that it is

always larger than the topological dimension n since each integer ai verifies ai ≥ 1 for all i = 1, ..., n. For instance, in
the Heisenberg group H1 we have N = 4 and n = 3 while in the Euclidean case these two concepts coincide. Now we
will say that a function on G \ {0} is homogeneous of degree λ ∈ R if f(δα[x]) = αλf(x) for all α > 0. In the same
way, we will say that a differential operator D is homogeneous of degree λ if

D(f(δα[x])) = αλ(Df)(δα[x]),

for all f in operator’s domain. In particular, if f is homogeneous of degree λ and if D is a differential operator of
degree µ, then Df is homogeneous of degree λ− µ.

The presence of a dilation structure is one of most important features of stratified Lie groups and the homogeneity
with respect to these dilations will play a useful role in our computations.
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From the point of view of measure theory, homogeneous groups behave in a traditional way since Lebesgue measure
dx is bi-invariant and coincides with the Haar measure, thus for any subset E of G we will note its measure as |E|.
This fact also allows us to define Lebesgue spaces in a classical way (see also Section 4 below).

The convolution will be a very useful tool in our computations, and for two functions f and g on G it is defined by

f ∗ g(x) =
∫

G

f(y)g(y−1 · x)dy =

∫

G

f(x · y−1)g(y)dy, x ∈ G.

However, since the group law of a stratified Lie group is not necessarly commutative, we do not have in general the
identity f ∗ g = g ∗ f and we need to take care of this fact. Nevertheless, we have at our disposal Young’s inequalities:

Lemma 2.1 If 1 ≤ p, q, r ≤ +∞ such that 1 + 1
q = 1

p +
1
r . If f ∈ Lp(G) and g ∈ Lr(G), then f ∗ g ∈ Lq(G) and

‖f ∗ g‖Lq ≤ ‖f‖Lp‖g‖Lr .

A proof is given in [18]. A weak version of Young’s inequalities will be stated in Section 4.

For a homogeneous group G = (Rn, ·, δ) we consider now its Lie algebra g whose elements can be conceived in
two different ways: as left -invariant vector fields or as right -invariant vector fields. The left-invariant vectors fields
(Xj)1≤j≤n are determined by the formula

(Xjf)(x) =
∂f(x · y)
∂yj

∣∣∣∣
y=0

=
∂f

∂xj
+
∑

j<k

qkj (x)
∂f

∂xk
,

where qkj (x) is a homogeneous polynomial of degree ak − aj and f is a smooth function on G. By this formula one
deduces easily that these vectors fields are homogeneous of degree aj and we have Xj (f(αx)) = αaj (Xjf)(αx). We
will note (Yj)1≤j≤n the right invariant vector fields defined in a totally similar way:

(Yjf)(x) =
∂f(y · x)
∂yj

∣∣∣∣
y=0

.

A homogeneous group G is stratified if its Lie algebra g breaks up into a sum of linear subspaces g =
⊕

1≤j≤k Ej
such that E1 generates the algebra g and [E1, Ej ] = Ej+1 for 1 ≤ j < k and [E1, Ek] = {0} and Ek 6= {0}, but
Ej = {0} if j > k. Here [E1, Ej ] indicates the subspace of g generated by the elements [U, V ] = UV −V U with U ∈ E1

and V ∈ Ej . The integer k is called the degree of stratification of g. For example, on Heisenberg group H1, we have
k = 2 while in the Euclidean case k = 1.

We will suppose from now on that G is stratified. Within this framework, we will fix once and for all the family
of vectors fields

X = {X1, ..., Xm},
such that a1 = a2 = . . . = am = 1 (m < n), then the family X is a base of E1 and generates the Lie algebra of g,
which is precisely the Hörmander’s condition (see [18] and [39]) and this particular choice ensures several important
properties, in particular to the family X is associated the Carnot-Carathéodory distance d which is left-invariant and
compatible with the topology on G (see [39] for more details) and for any x ∈ G we will denote by |x| = d(x, e) and
for r > 0 we form open balls by writing B(x, r) = {y ∈ G : d(x, y) < r}. By simple homogeneity arguments we obtain
that stratified Lie groups have polynomial volume growth since we have |B(·, r)| = rN |B(·, 1)|.

The main tools of this paper depend on the properties of the gradient, the Laplacian and the associated heat
kernel, but before introducing them, we make here some remarks on general vectors fields Xj and Yj .

Let us fix some notation: for any multi-index I = (i1, ..., in) ∈ Nn, one defines XI by XI = X i1
1 . . . X in

n and Y I by
Y I = Y i11 . . . Y inn , furthermore we denote by |I| = i1 + . . .+ in the order of the derivation of the operators XI or Y I

and d(I) = a1i1 + . . .+ anin the homogeneous degree of these ones. Now, for ϕ, ψ ∈ C∞
0 (G) we have the equality

∫

G

ϕ(x)(XIψ)(x)dx = (−1)|I|
∫

G

(XIϕ)(x)ψ(x)dx.
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The interaction of operators XI and Y I with convolutions is clarified by the following identities:

XI(f ∗ g) = f ∗ (XIg), Y I(f ∗ g) = (Y If) ∗ g, (XIf) ∗ g = f ∗ (Y Ig). (10)

Finally, one will say that a function f ∈ C∞(G) belongs to the Schwartz class S(G) if the following semi-norms are
bounded for all k ∈ N and any multi-index I: Nk,I(f) = sup

x∈G

(1 + |x|)k|XIf(x)|.

Remark 2.1 To characterize the Schwartz class S(G) we can replace vector fields XI in the semi-norms Nk,I above
by right-invariant vector fields Y I .

For a proof of these facts and for further details see [18] and [19].

We define now the gradient on G from vectors fields of homogeneity degree equal to one (i.e. those composing the
family X) by fixing

∇ = (X1, ..., Xm).

This operator is of course left invariant and homogeneous of degree 1. The length of the gradient is given by the

formula |∇f | =
(
(X1f)

2 + ...+ (Xmf)
2
)1/2

. We also define the right invariant gradient ∇̃ = (Y1, ..., Ym), and using
(10) we have the identity

(∇f) ∗ g = f ∗ (∇̃g).
We define now the Laplacian we are going to work with. Let us notice that in this setting there is not a single way to
build a Laplacian, see for example [19]. In this article we will use the Laplacian, denoted by J , which is given from
the family X in the following way

J = ∇∗∇ = −
m∑

j=1

X2
j . (11)

This is a positive self-adjoint, hypo-elliptic operator (since the family X satisfies the Hörmander’s condition), having
as domain of definition L2(G). Its associated heat operator on G×]0,+∞[ is given by ∂t + J .

We recall now some well-known properties of the heat operator and its associated kernel.

Theorem 4 There exists a unique family of continuous linear operators (Ht)t>0 defined on L1 + L∞(G) with the
semi-group property Ht+s = HtHs for all t, s > 0 and H0 = Id, such that:

1) the Laplacian J is the infinitesimal generator of the semi-group Ht = e−tJ ;

2) Ht is a contraction operator on Lp(G) for 1 ≤ p ≤ +∞ and for t > 0;

3) the semi-group Ht admits a convolution kernel Htf = f ∗ ht where ht(x) = h(x, t) ∈ C∞(G×]0,+∞[) is the heat
kernel which satisfies the following points:

(a) (∂t + J )ht = 0 on G×]0,+∞[, and h(x, t) = h(x−1, t), h(x, t) ≥ 0 and

∫

G

h(x, t)dx = 1,

(b) ht has the semi-group property: ht ∗ hs = ht+s for t, s > 0 and we have h(δα[x], α
2t) = α−Nh(x, t),

(c) For every t > 0, x 7→ h(x, t) belong to the Schwartz class in G.

4) ‖Htf − f‖Lp → 0 if t→ 0 for f ∈ Lp(G) and 1 ≤ p < +∞;

5) For ϕ ∈ C∞(G) and for t > 0 we have JHt(f) = HtJ (f).

For a detailed proof of these and other important facts concerning the heat semi-group see [18] and [32].

To close this section we recall the definition of the Laplacian’s fractional powers. If s > 0 we write

J sf(x) =
1

Γ(k − s)

∫ +∞

0

tk−s−1J kHtf(x)dt, (12)

for all f ∈ C∞(G) with k an integer greater than s. This formula will be used in the sequel, but as we will see in the
next section, there is another way to define the fractional powers of the Laplacian.
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3 Spectral tools

Since the Laplacian given by (11) is a positive self-adjoint operator, it admits a spectral decomposition of the following
form

J =

∫ +∞

0

λdEλ.

This spectral decomposition allows us to define the fractional powers of the Laplacian by the expression

J s =

∫ +∞

0

λsdEλ, with s > 0.

This formula is very useful to deduce some properties for the fractional Laplacian like J s1 [J s2f ] = J s1+s2f for
s1, s2 > 0 whenever these quantities are well defined. But it will also help us to build a family of operators m(J )
associated to a Borel function m. A classical example of this situation is given by the heat semi-group

Ht = e−tJ =

∫ +∞

0

e−tλdEλ with m(λ) = e−λ,

and from these formulas we can see that we have the identity J sHt = HtJ s. It is however possible to go one step
further, indeed, following [23] and [19] we have the next result which is the key of many of our computations.

Proposition 3.1 ([19], Proposition 6) Let k ∈ N and m be a function of class Ck(R+), we write

‖m‖(k) = sup
0≤r≤k

λ>0

(1 + λ)k|m(r)(λ)|.

We define the operator m(tJ ) for t > 0 by the expression m(tJ ) =

∫ +∞

0

m(tλ)dEλ. Then this operator admits a

convolution kernel Mt(x) = t−N/2M(t−1/2x) and moreover, for α ∈ R and I a multi-index, there exists C > 0 and
k ∈ N such that:

∥∥(1 + ‖ · ‖)αXIMt(·)
∥∥
Lp ≤ C t

− N
2p′

− |I|
2 (1 +

√
t)α‖m‖(k) with

1

p
+

1

p′
= 1.

By homogeneity, the conclusion of this proposition remains true if instead of left-invariant vector fields XI we consider
right-invariant vector fields Y I .

Corollary 3.1 Let m be the restriction on R+ of a function in S(R). Then the kernel M of the operator m(J ) is in
S(G).

4 Functional spaces

We give in this section the precise definition of all the functional spaces involved in Theorems 1 and 2. In a general
way, given a norm ‖ · ‖X , we will define the corresponding functional space X(G) by {f ∈ S ′(G) : ‖f‖X < +∞}. The
constant that appear in this paper such as C may change from one occurrence to the next.

• Lebesgue spaces Lp(G). For a measurable function f : G −→ R and for 1 ≤ p < +∞ we define Lebesgue space

by the norm ‖f‖Lp =

(∫

G

|f(x)|pdx
)1/p

, while for p = +∞ we have ‖f‖L∞ = sup ess
x∈G

|f(x)|. Let us notice that

we also have the following characterization using the distribution function:

‖f‖pLp = p

∫ +∞

0

αp−1|{x ∈ G : |f(x)| > α}|dα.
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• weak-Lebesgue spaces Lp,∞(G). We define them as the set of all measurable functions f : G −→ R such that

‖f‖Lp,∞ = sup
α>0

{α : |{x ∈ G : |f(x)| > α}|1/p}

is finite.

We will need the following version of Young’s inequality where weak Lp spaces are involved:

Lemma 4.1 Let p, q, r > 1. If f ∈ Lp,∞(G) and if g ∈ Lr(G), then f ∗ g ∈ Lq(G) with 1 + 1
q = 1

p + 1
r and we

have the inequality
‖f ∗ g‖Lq ≤ ‖f‖Lp,∞‖g‖Lr .

See a proof of this Lemma in [22], Theorem 1.4.24.

• Sobolev spaces Ẇ s,p(G). If 1 < p < +∞ and for s > 0 we have

‖f‖Ẇ s,p = ‖J s
2 f‖Lp,

while if p = s = 1 we will note
‖f‖Ẇ 1,1 = ‖∇f‖L1.

• weak Sobolev spaces Ẇ s,p
∞ (G). These spaces are defined just as classical Sobolev spaces, but we replace the

Lp norm by the weak Lp one in the following manner:

‖f‖Ẇ s,p
∞

= ‖J s/2f‖Lp,∞ with 1 < p < +∞ and s > 0.

• Besov spaces Ḃs,qp (G). There are many different (and equivalent) ways to define these spaces in the setting of
stratified Lie groups. In this article we will mainly use the thermic definition given by

‖f‖Ḃs,q
p

=

(∫ +∞

0

t(m−s/2)q

∥∥∥∥
∂mHtf

∂tm
(·)
∥∥∥∥
q

Lp

dt

t

)1/q

,

for 1 ≤ p, q ≤ +∞, s > 0 and m an integer such that m > s/2. For Besov spaces of indices (−β,∞,∞) which
appear in all the improved Sobolev inequalities we have:

‖f‖Ḃ−β,∞
∞

= sup
t>0

tβ/2‖Htf‖L∞ .

• Lorentz spaces Λp(w)(G). Let f : G −→ R be a measurable function. We define f∗, the nonincreasing
rearrangement of the function f , by the expression f∗(t) = inf{α ≥ 0 : |{x ∈ G : |f(x)| > α}| ≤ t}. We will say
that a nonnegative locally integrable function w : R+ −→ R+ belongs to the Ariño-Muckenhoupt class Bp for
1 ≤ p < +∞, if there exists C > 0 such that

∫ +∞

r

(r
t

)p
w(t)dt ≤ C

∫ r

0

w(t)dt, for all 0 < r < +∞.

It is not difficult to see that if 0 < p < q < +∞, then we have the inclusion of classes Bp ⊂ Bq. We define the
Lorentz spaces Λp(w) with 1 ≤ p < +∞ by the formula

‖f‖Λp(w) =

(∫ +∞

0

(f∗(t))pw(t)dt

) 1
p

.

As said in the introduction, the choice of the Bp class is due to the fact that the Hardy-Littlewood maximal
operator MB, given for a measurable function f by

MBf(x) = sup
B∋x

1

|B|

∫

B

|f(y)|dy, where B is an open ball, (13)

is bounded on the spaces Λp(w) for 1 < p < +∞: ‖MBf‖Λp(w) ≤ C‖f‖Λp(w), where C is depending on the
quantity

[w]Bp = sup
r>0

{
rp
(∫ +∞

r

w(t)

tp
dt

)/(∫ r

0

w(t)dt

)}
.

For more properties of these weights and the associated classical Lorentz spaces see [3], [8], [34] and [10].
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• Lorentz-Sobolev spaces Λ̇s,p(w)(G). Once we have fixed the base space Λp(w), the homogeneous Lorentz-
Sobolev spaces are easy to define and are given for 1 < p < +∞ and for s > 0 in the following way

‖f‖Λ̇s,p(w) =

(∫ +∞

0

(
(J s

2 f)∗(t)
)p
w(t)dt

) 1
p

.

• weak Lorentz spaces Λp,∞(w)(G). Let w a weight in R+. For 0 < p < +∞, the weak Lorentz space Λp,∞(w)
is the class of all measurable functions f : G −→ R such that

‖f‖Λp,∞(w) = sup
t>0

f∗(t)W 1/p(t) < +∞,

where W (t) =

∫ t

0

w(s)ds. The weak Lorentz spaces were introduced in [8] and further investigated in [7], [6] and

[9]. The problem of characterizing when the weak type Lorentz spaces Λp,∞(w), 0 < p < +∞ are Banach spaces
was studied in [34].

• weak Lorentz-Sobolev spaces Λ̇s,p,∞(w)(G). For 1 < p < +∞ the homogeneous weak Lorentz-Sobolev spaces
are given by

‖f‖Λ̇s,p,∞(w) = sup
t>0

(J s
2 f)∗(t)

(∫ t

0

w(s)ds

)1/p

.

• Morrey spaces Mp,a(G). For 1 < p < +∞ and 0 ≤ a < N , we define Morrey spaces as the space of locally
integrable functions such that

‖f‖Mp,a = sup
x0∈Rn

sup
0<r<+∞

(
1

ra

∫

B(x0,r)

|f(x)|pdx
) 1

p

< +∞.

Morrey spaces are indeed a generalization of Lebesgue spaces since when a = 0 we have Mp,0 ≃ Lp. The use of
Morrey and Morrey-Sobolev spaces in this article is due to the fact that the Hardy-Littlewood maximal operator
(13) is also bounded in such spaces. See more details in [14] in the framework of Rn and [2] in the setting of
stratified Lie groups. See also [33] and the references given there in for other interesting generalizations.

• Morrey-Sobolev spaces Ṁs,p,a(G). For 0 < s and 1 < p < +∞ with 0 ≤ a < N we consider the homogeneous
Morrey-Sobolev spaces Ṁs,p,a by the quantity

‖f‖Ṁs,p,a = ‖J s
2 f‖Mp,a.

5 Proof of Theorem 1

Theorem 1 will be a consequence of the following result which is stated in the general setting of stratified Lie groups.

Theorem 5 Let f : G −→ R be a function such that ∇f ∈ L1(G) and f ∈ Ḃ−β,∞
∞ (G). Then we have the following

inequality:

‖f‖Ẇ s,q ≤ C‖∇f‖θL1‖f‖1−θ
Ḃ−β,∞

∞
, (14)

where 1 < q < +∞, 0 ≤ s < 1/q, β = 1−sq
q−1 and θ = 1

q .

We assume for the time being that the quantity ‖J s
2 f‖Lq is finite, we will see how to discard this extra hypothesis

with the Proposition 5.3.

We start our proof by remarking that the operator J s
2 carries out an isomorphism between the Besov spaces

Ḃ−β,∞
∞ (G) and Ḃ−β−s,∞

∞ (G) (see [32]) and thus we can rewrite inequality (14) in the following manner

‖f‖Ẇ s,q ≤ C‖∇f‖θL1‖J
s
2 f‖1−θ

Ḃ−β−s,∞
∞

.
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By homogeneity of this inequality we can assume with no loss of generality that

‖J s
2 f‖Ḃ−β−s,∞

∞
≤ 1, (15)

and with such an assumption we only have to prove the inequality

‖f‖Ẇ s,q ≤ C‖∇f‖θL1,

where C = C(q) is a positive constant independent from the function f .

Now, if we define t > 0 by

tα = α− 2
β+s with α > 0, (16)

using the thermic definition of the Besov space Ḃ−β−s,∞
∞ we have

‖J s
2 f‖1−θ

Ḃ−β−s,∞
∞

≤ 1 ⇐⇒ sup
tα>0

t
β+s
2

α ‖HtαJ
s
2 f‖L∞ ≤ 1 ⇐⇒ ‖HtαJ

s
2 f‖L∞ ≤ t

− β+s
2

α ⇐⇒ ‖HtαJ
s
2 f‖L∞ ≤ α. (17)

To continue, we consider a smooth non-negative function θ0 : R+ −→ R+ such that

θ0(λ) =




1 if λ ∈ [0, 1/2[,

0 if λ ∈ [1,+∞[,
and we define θ1(λ) = 1− θ0(λ). (18)

Using the spectral resolution of the Laplacian, we can associate to these functions θ0 and θ1 two convolution operators
θ0(J ) and θ1(J ) with kernels Θ0 and Θ1 in the following manner:

θ0(J )(φ) =

(∫ +∞

0

θ0(λ)dEλ

)
(φ) = φ ∗Θ0 and θ1(J )(φ) =

(∫ +∞

0

θ1(λ)dEλ

)
(φ) = φ ∗Θ1,

where φ : G −→ R is any function such that these quantities make sense (φ ∈ Lp(G) with 1 ≤ p < +∞ for example).
Observe that by construction we have the identity

φ = φ ∗Θ0 + φ ∗Θ1, (19)

and in particular, applying Proposition 3.1 to the operator’s kernel Θ0 and Θ1 we can obtain the inequalities

‖Θ0‖L1 ≤ 1 and ‖Θ1‖L1 ≤ 1. (20)

Remark 5.1 We observe that since the function θ0 is the restriction to R+ of a smooth function, the kernel Θ0

associated to the operator θ0(J ) is also smooth and we have ‖J s
2Θ0‖L1 < +∞ for all 0 < s < 1. However, this is

not the case for the kernel Θ1 which is only integrable : this particular fact will force us to divide our proof in several
steps in order to overcome this issue.

At this stage, we apply the identity (19) to the function J s
2 f in order to obtain

J s
2 f = J s

2 f ∗Θ0 + J s
2 f ∗Θ1. (21)

Recalling the fact J s
2 f ∈ Ḃ−β−s,∞

∞ , using the thermic definition of Besov spaces and the estimate (17), we obtain the
following inequalities, where the integrability properties of the kernels Θ0 and Θ1 are used

‖HtαJ
s
2 f ∗Θ0‖L∞ ≤ ‖Θ0‖L1‖HtαJ

s
2 f‖L∞ ≤ ‖HtαJ

s
2 f‖L∞ ≤ α, (22)

and ‖HtαJ
s
2 f ∗Θ1‖L∞ ≤ ‖Θ1‖L1‖HtαJ

s
2 f‖L∞ ≤ ‖HtαJ

s
2 f‖L∞ ≤ α.
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Now, with all these preliminaries, we use the decomposition formula (21) to compute the Lq norm of J s
2 f in the

following way

1

7q
‖J s

2 f‖qLq = q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f(x)| > 7α
}∣∣ dα (23)

= q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ0(x) + J s
2 f ∗Θ1(x)| > 7α

}∣∣ dα

≤ q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ0(x)| > 5α
}∣∣ dα+ q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

We divide our study of these two quantities with the following propositions. The first of these integrals, treated in
Proposition 5.1, is easier to study since, as it was pointed out in the Remark 5.1, the kernel Θ0 is a smooth function
and allows us to perform some computations that are not available anymore for the kernel Θ1. The second integral in
the right-hand side of (23) is more technical and it will be treated with Proposition 5.2.

Proposition 5.1 Under the hypotheses of Theorem 5 and assuming that ‖J s
2 f‖Lq < +∞, we have for the first

integral of the right-hand side of the expression (23) the inequality

q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ0(x)| > 5α
}∣∣ dα ≤ Cq log(M)‖∇f‖L1 +

q

q − 1

1

M q−1
‖J s

2 f‖qLq ,

where the constant M ≫ 1 will be fixed later on.

Proof. For the proof of this inequality it is possible to follow with slight modifications the arguments given in [25].
This fact is a consequence of the smoothness properties of the kernel Θ0. We write then F = J s

2 f ∗ Θ0 and we
introduce the following thresholding function:

Ψα(t) =





Ψα(−t) = −Ψα(t),

0 if 0 ≤ t ≤ α,

t− α if α ≤ t ≤Mα,

(M − 1)α if t > Mα,

here, M is a parameter which depends on q.

This cut-off function enables us to define a new function Fα = Ψα(F ) and we write in the next lemma some significant
properties of this function Fα:

Lemma 5.1

1) The set defined by {x ∈ G : |F (x)| > 5α} is included in the set {x ∈ G : |Fα(x)| > 4α}.
2) On the set {x ∈ G : |F (x)| ≤Mα} one has the estimate |F − Fα| ≤ α.

3) If F ∈ C1(G), one has the equality ∇Fα = (∇F )1{α≤|F |≤Mα} almost everywhere.

For a proof see [25]. Thus, by the first point of the lemma above we have

q

∫ +∞

0

αq−1 |{x ∈ G : |F (x)| > 5α}| dα ≤ q

∫ +∞

0

αq−1 |{x ∈ G : |Fα(x)| > 4α}| dα. (24)

Now, by linearity of the heat semi-group Htα we can write Fα = Fα−Htα(Fα)+Htα(Fα−F )+Htα(F ), and we have

|{x ∈ G : |Fα(x)| > 5α}| ≤ |{x ∈ G : |Fα(x)−Htα(Fα)(x)| > α}|+ |{x ∈ G : |Htα(Fα − F )(x)| > 2α}|
+ |{x ∈ G : |Htα(F )(x)| > α}| ,

but |{x ∈ G : |Htα(F )(x)| > α}| = 0 since, by the thermic definition of the Besov space Ḃ−β,∞
∞ we have by (22) the

estimate ‖Htα(F )‖L∞ ≤ α. Thus returning to (24), we obtain the following inequality

q

∫ +∞

0

αq−1 |{x ∈ G : |Fα(x)| > 4α}| dα ≤ q

∫ +∞

0

αq−1 |{x ∈ G : |Fα(x) −Htα(Fα)(x)| > α}| dα

+q

∫ +∞

0

αq−1 |{x ∈ G : |Htα(Fα − F )(x)| > 2α}| dα. (25)

We will study and estimate these two integrals by the two following lemmas:
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Lemma 5.2 For the first integral of (25) we have the inequality

q

∫ +∞

0

αq−1 |{x ∈ G : |Fα(x) −Htα(Fα)(x)| > α}| dα ≤ C q log(M)‖∇f‖L1.

Proof. Tchebytchev’s inequality implies

q

∫ +∞

0

αq−1 |{x ∈ G : |Fα(x) −Htα(Fα)(x)| > α}| dα ≤ q

∫ +∞

0

αq−2

(∫

G

|Fα(x)−Htα(Fα)(x)|dx
)
dα.

We use now the spectral theory to write

Fα(x)−Htα(Fα)(x) =

(∫ +∞

0

(1− e−tαλ)dEλ

)
Fα(x) =

(∫ +∞

0

tα(tαλ)
−1(1− e−tαλ)λdEλ

)
Fα(x)

=

(∫ +∞

0

tαm(tαλ)λdEλ

)
Fα(x) = tαJ (Fα ∗Mtα) (x),

where m(λ) = λ−1(1−e−λ) defines the operator m(tαJ ) which is given by convolution with a kernelMtα and we have

q

∫ +∞

0

αq−2

(∫

G

|Fα(x)−Htα(Fα)(x)|dx
)
dα = q

∫ +∞

0

αq−2

(∫

G

|tαJ (Fα ∗Mtα) (x)|dx
)
dα

= q

∫ +∞

0

αq−2tα

(∫

G

|(∇Fα ∗ ∇̃Mtα)(x)|dx
)
dα

≤ q

∫ +∞

0

αq−2tα

(∫

G

|∇Fα(x)|dx
)
‖∇̃Mtα‖L1dα.

Now, by the properties of the function m(λ) and applying Proposition 3.1 we have ‖∇̃Mtα‖L1 ≤ Ct
−1/2
α and we obtain

q

∫ +∞

0

αq−2

(∫

G

|Fα(x)−Htα(Fα)(x)|dx
)
dα ≤ Cq

∫ +∞

0

αq−2t1/2α

(∫

G

|∇Fα(x)|dx
)
dα.

Remark that the choice of tα fixed before in (16) gives t
1/2
α = α1−q, then using Lemma 5.1 we have

q

∫ +∞

0

αq−2

(∫

G

|Fα(x)−Htα(Fα)(x)|dx
)
dα ≤ Cq

∫ +∞

0

α−1

(∫

{α≤|F |≤Mα}

|∇F (x)|dx
)
dα

≤ Cq

∫

G

|∇F (x)|
(∫ |F |

|F |
M

dα

α

)
dx = Cq log(M)‖∇F‖L1 .

It follows then from the definition of F and from the smoothness properties of Θ0:

q

∫ +∞

0

αp−2

(∫

G

|Fα(x) −Htα(Fα)(x)|dx
)
dα ≤ C q log(M)‖∇f ∗ J s

2Θ0‖L1

≤ C q log(M)‖∇f‖L1‖J s
2Θ0‖L1 ≤ C q log(M)‖∇f‖L1,

and one obtains the estimation needed for the first integral. �

Lemma 5.3 For the second integral of (25) we have the following inequality:

q

∫ +∞

0

αq−1 |{x ∈ G : |Htα(Fα − F )(x)| > 2α}| dα ≤ q

q − 1

1

M q−1
‖J s

2 f‖qLq .

Proof. For the proof of this lemma, we write

|F − Fα| = |F − Fα|1{|F |≤Mα} + |F − Fα|1{|F |>Mα},
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but, by Lemma 5.1, the distance between F and Fα is lower than α on the set {x ∈ G : |F (x)| ≤Mα} and we obtain

|F − Fα| ≤ α+ |F |1{|F |>Mα}.

Now, applying the heat semi-group to both sides of this inequality we have

Htα(|F − Fα|) ≤ α+Htα(|F |1{|F |>Mα}),

and then we can write

q

∫ +∞

0

αq−1 |{x ∈ G : |Htα(Fα − F )(x)| > 2α}| dα ≤ q

∫ +∞

0

αq−1
∣∣{x ∈ G : Htα(|F |1{|F |>Mα})(x) > α}

∣∣ dα.

Applying Tchebytchev’s inequality, ones has the estimate

q

∫ +∞

0

αq−1 |{x ∈ G : |Htα(Fα − F )(x)| > 2α}| dα ≤ q

∫ +∞

0

αq−2

(∫

G

Htα

(
|F |1{|F |>Mα}

)
(x)dx

)
dα,

then by Fubini’s theorem we have

q

∫ +∞

0

αq−1 |{x ∈ G : |Htα(Fα − F )(x)| > 2α}| dα ≤ q

∫

G

|F (x)|
(∫ +∞

0

1{|F |>Mα}α
q−2dα

)
dx

≤ q

q − 1

∫

G

|F (x)| |F (x)|
q−1

M q−1
dx

≤ q

q − 1

1

M q−1
‖F‖qLq .

To finish, we recall that F = J s
2 f ∗Θ0 and we have

q

∫ +∞

0

αq−1 |{x ∈ G : |Htα(Fα − F )(x)| > 2α}| dα ≤ q

q − 1

1

M q−1
‖J s

2 f ∗Θ0‖qLq

≤ q

q − 1

1

M q−1
‖J s

2 f‖qLq‖Θ0‖qL1

≤ q

q − 1

1

M q−1
‖J s

2 f‖qLq ,

and this concludes the proof of this lemma. �

We finish the proof of Proposition 5.1 by connecting together these two lemmas i.e.:

q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ0(x)| > 5α
}∣∣ dα ≤ Cq log(M)‖∇f‖L1 +

q

q − 1

1

M q−1
‖J s

2 f‖qLq .

�

We continue the proof of Theorem 5 with the following proposition that study the second integral of the right-hand
side of (23). This is the most technical part of the proof since we need to deal with the kernel Θ1, associated to the
function θ1 which does not have the same smoothness properties as the kernel Θ0.

Proposition 5.2 Under the hypotheses of Theorem 5, for the second integral of the right-hand side of the expression
(23) we have

q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ Cq‖∇f‖L1.
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Proof. By hypothesis we have ∇f ∈ L1(G) and we will assume that ‖∇f‖L1 > 1. With this extra assumption we

can divide our study in three parts. Indeed, for σ > q a fixed parameter and denoting by T = ‖∇f‖
σ−1
σ−q

L1 > 1, we have

q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα = q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

+q

∫ T

1

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

+q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα. (26)

The case when ‖∇f‖L1 ≤ 1 is simpler to deal with as we only need to consider the first and the last integral of the
right-hand side of the previous expression since, in this particular case, we would have 0 < T < 1 and then we can
write

q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

+q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα,

thus, if we can control the first and the last term of (26) we can also control the previous inequality. As we will see,
these two previous integrals will be estimate without the extra hypothesis ‖∇f‖L1 > 1 which is actually only used to
study the second term of (26).

Lemma 5.4 Under the hypotheses of Theorem 5, we have

q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ Cq‖∇f‖L1.

Proof. Since, by (22) we have ‖HtαJ
s
2 f ∗Θ1‖L∞ ≤ α we can write

q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x) −HtαJ
s
2 f ∗Θ1(x)| > α

}∣∣ dα,

and by Tchebychev’s inequality we obtain

q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ 1

0

αq−2
∥∥J s

2 f ∗Θ1 −HtαJ
s
2 f ∗Θ1

∥∥
L1 dα.

We use again the spectral decomposition of the Laplacian to write

J s
2 f ∗Θ1 −HtαJ

s
2 f ∗Θ1 =

(∫ +∞

0

(1− e−tαλ)λ
s
2 θ1(λ)dEλ

)
(f). (27)

The function θ1 does not vanish at infinity, so in order to perform our computations we need to construct the following
decomposition

θ1(λ) =

+∞∑

j=0

ψ(2−jλ), (28)

where ψ is a C∞
0 (R+) function defined by ψ(λ) = θ0(λ/2)− θ0(λ). Thus, applying this decomposition to (27) we have

J s
2 f ∗Θ1 −HtαJ

s
2 f ∗Θ1 =

+∞∑

j=0

(∫ +∞

0

(1− e−tαλ)ψ(2−jλ)λ
s
2 dEλ

)
(f)

=
+∞∑

j=0

(∫ +∞

0

(2−jλ)(1− e−tαλ)ψ(2−jλ)(2−jλ)−(1− s
2 )2j

s
2 dEλ

)
(f)

=

+∞∑

j=0

(∫ +∞

0

(2−jλ)(1− e−tαλ)ψ̃(2−jλ)2j
s
2 dEλ

)
(f),

14



where ψ̃(λ) = ψ(λ)
λ1−s/2 is a function that belongs to C∞

0 (R+) and the associated kernel K̃ belongs to S(G). We have

then that the operator ψ̃(2−jJ ) admits a kernel K̃j(x) = 2j
N
2 K̃(2

j
2x) and denoting by Mtα the kernel associated to

the operator m(tαJ ), where m(λ) = (1 − e−λ), we can write

J s
2 f ∗Θ1 −HtαJ

s
2 f ∗Θ1 =

+∞∑

j=0

2−j(1−s/2)J
(
f ∗ K̃j ∗Mtα

)
=

+∞∑

j=0

2−j(1−s/2)
(
∇f ∗ ∇̃K̃j ∗Mtα

)
.

With this last identity at hand we can write

q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ 1

0

αq−2

∥∥∥∥∥∥

+∞∑

j=0

2−j(1−s/2)
(
∇f ∗ ∇̃K̃j ∗Mtα

)
∥∥∥∥∥∥
L1

dα

≤ Cq

∫ 1

0

αq−2
+∞∑

j=0

2−j(1−s/2)‖∇f‖L1‖∇̃K̃j‖L1‖Mtα‖L1dα.

Here, we apply the Proposition 3.1 to obtain ‖∇̃K̃j‖L1 ≤ C2j/2 and ‖Mtα‖L1 ≤ C, and thus since 0 < s < 1 we have

q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ Cq‖∇f‖L1

∫ 1

0

αq−2
+∞∑

j=0

2−j(1−s/2)2j/2dα

= Cq‖∇f‖L1

∫ 1

0

αq−2
+∞∑

j=0

2−j(
1−s
2 )dα

≤ Cq‖∇f‖L1

∫ 1

0

αq−2dα ≤ Cq‖∇f‖L1,

and the Lemma 5.4 is proven. �

It is worth noting that in the proof of this lemma, we do not need the extra assumption ‖∇f‖L1 > 1, this hypothesis
will be useful in the following lemma which is the most technical part of the proof of Theorem 5.

Lemma 5.5 Under the hypotheses of Theorem 5 and assuming that ‖∇f‖L1 > 1, we have for the second integral of
the right-hand side of (26) the following inequality

q

∫ T

1

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ Cq‖∇f‖L1 .

Proof. Since, by (22) we have ‖HtαJ
s
2 f ∗Θ1‖L∞ ≤ α we can write

q

∫ T

1

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ T

1

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x) −HtαJ
s
2 f ∗Θ1(x)| > α

}∣∣ dα,

and by Tchebychev’s inequality we obtain

q

∫ T

1

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ T

1

αq−2
∥∥J s

2 f ∗Θ1 −HtαJ
s
2 f ∗Θ1

∥∥
L1 dα. (29)

We use again the spectral decomposition of the Laplacian to write

J s
2 f ∗Θ1 −HtαJ

s
2 f ∗Θ1 =

(∫ +∞

0

(1− e−tαλ)λ
s
2 θ1(λ)dEλ

)
(f). (30)

Here we will need another decomposition and we can not simply repeat the decomposition used previously in (28).
We start by writing ε = ε(α) = α−2δ with δ > p−1

1−s . Remark that the integration over α in (29) runs between 1 and

T so we have that ε ∈]T−2δ, 1]. Then we define a new auxiliary function φε by the expression

φε(λ) = θ0(2
−2ελ)− θ0(λ), (31)
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and this is a C∞
0 (R+) function. Now, for j ≥ 0 we define

η(2−jελ) = θ0(2
−(j+1)2−2ελ)− θ0(2

−j2−2ελ),

and we obtain the following decomposition

θ1(λ) = φε(λ) +
+∞∑

j=0

η(2−jελ).

It is important to remark that this decomposition of the function θ1 contains two terms of different nature. Indeed,
the function η is in some sense homogeneous since by construction it has the same decay for lower or higher values of
λ and the corresponding kernel will satisfy homogeneous properties as in Proposition 3.1, but this is not the case for
the term φε as for lowers values of λ it has a different decay than for higher values of λ (this is clear from the formula
(31)) and we can not apply directly the ideas behind the Proposition 3.1 to the kernel associated to the function φε.
This particular feature will force us to treat in a separate way each of these terms.

Having in mind this remark, we apply this decomposition to (30) and we have

J s
2 f ∗Θ1 −HtαJ

s
2 f ∗Θ1 =

(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f) +

+∞∑

j=0

(∫ +∞

0

(1− e−tαλ)η(2−jελ)λ
s
2 dEλ

)
(f),

then we obtain the following estimate for the right-hand side of (29):

q

∫ T

1

αq−2
∥∥J s

2 f ∗Θ1 −HtαJ
s
2 f ∗Θ1

∥∥
L1 dα ≤ q

∫ T

1

αq−2

∥∥∥∥
(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f)

∥∥∥∥
L1

dα (32)

+ q

∫ T

1

αq−2

∥∥∥∥∥∥

+∞∑

j=0

(∫ +∞

0

(1− e−tαλ)η(2−jελ)λ
s
2 dEλ

)
(f)

∥∥∥∥∥∥
L1

dα

As said in the lines above, we need to study separately each one of the terms in the right-hand side of the previous
inequality (32). For the first part of this formula we will prove the following inequality:

q

∫ T

1

αq−2

∥∥∥∥
(∫ +∞

0

(1 − e−tαλ)φε(λ)λ
s
2 dEλ

)
(f)

∥∥∥∥
L1

dα ≤ Cq‖∇f‖L1 . (33)

Indeed, since we have 1 < T = ‖∇f‖
σ−1
σ−q

L1 < +∞, there exists an integer NT such that T 2δ < 2NT . We define thus a
new auxiliary function given by the expression

Φ(λ) = θ0(2
−NT−2λ) − θ0(2λ),

since by construction Φ = 1 in the support of φε for all ε ∈]T−2δ, 1], we obtain the identity

φε(λ) = Φ(λ)φε(λ),

and then, we have

(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f) =

(∫ +∞

0

(1− e−tαλ)Φ(λ)φε(λ)λ
s
2 dEλ

)
(f).

Here we will perform some computations at the spectral level

(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f) =

(∫ +∞

0

tα(tαλ)
−1(1− e−tαλ)λ

s
2Φ(λ)φε(λ)λdEλ

)
(f)

=

(∫ +∞

0

tαΓ(tαλ)Φ̃(λ)φε(λ)λdEλ

)
(f),

16



where we noted Γ(tαλ) = (tαλ)
−1(1 − e−tαλ) and Φ̃(λ) = λ

s
2Φ(λ). If we consider now the associated operators to

these functions we have that Γ(tαJ ), Φ̃(J ) and φε(J ) admit a convolution kernel denoted respectively by Πtα , K and
Σε. Thus, we obtain the following expression

(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f) = tα J (f ∗Πtα ∗K ∗ Σε) = tα

(
∇f ∗ ∇̃Πtα ∗K ∗ Σε

)
.

At this point, in order to obtain formula (33) we first take the L1 norm of the previous expression to obtain

∥∥∥∥
(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f)

∥∥∥∥
L1

≤ tα‖∇f‖L1‖∇̃Πtα‖L1‖K‖L1‖Σε‖L1.

Now, by the properties of the auxiliary functions and applying Proposition 3.1 to these kernels we obtain the following

inequalities ‖∇̃Πtα‖L1 ≤ Ct
−1/2
α , ‖K‖L1 ≤ C and ‖Σε‖L1 ≤ C. Thus we can write

∥∥∥∥
(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f)

∥∥∥∥
L1

≤ Ct1/2α ‖∇f‖L1.

It is important to remark here that due to the Proposition 3.1, since the functions Γ, Φ̃ and φε are bounded, the
constant C depends only on the dimension and eventually on other parameters associated to the underlying group
structure but it is independent from the parameters ε and T .

Once we have this inequality, we integrate it with respect to α in order to obtain

q

∫ T

1

αq−2

∥∥∥∥
(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f)

∥∥∥∥
L1

dα ≤ Cq‖∇f‖L1

∫ T

1

αq−2t1/2α dα.

Since tα = α− 2
β+s = α− 2(q−1)

1−s , we have

q

∫ T

1

αq−2

∥∥∥∥
(∫ +∞

0

(1− e−tαλ)φε(λ)λ
s
2 dEλ

)
(f)

∥∥∥∥
L1

dα ≤ Cq‖∇f‖L1

∫ T

1

αq−2α− q−1
1−s dα

≤ Cq‖∇f‖L1

∫ T

1

α−(q−1)( s
1−s )−1dα

≤ Cq‖∇f‖L1

(
1− T−(q−1)( s

1−s )
)
,

and since T > 1, we finally have

q

∫ T

1

αq−2

∥∥∥∥
(∫ +∞

0

(1 − e−tαλ)φε(λ)λ
s
2 dEλ

)
(f)

∥∥∥∥
L1

dα ≤ Cq‖∇f‖L1 . (34)

Now, we will study the second part of the right-hand side of the expression (32) and we will prove the following
inequality

q

∫ T

1

αq−2

∥∥∥∥∥∥

+∞∑

j=0

(∫ +∞

0

(1− e−tαλ)η(2−jελ)λ
s
2 dEλ

)
(f)

∥∥∥∥∥∥
L1

dα ≤ Cq‖∇f‖L1 .

This inequality will be easier to obtain than the previous one given by (34) since the function η satisfies suitable
homogeneous properties which was not the case for the function φε. Indeed, we observe that

+∞∑

j=0

(∫ +∞

0

(2−jελ)(1− e−tαλ)η(2−jελ)(2−jελ)−1λ
s
2 dEλ

)
(f) =

+∞∑

j=0

(∫ +∞

0

(2−jε)1−s/2(1 − e−tαλ)η̃(2−jελ)λdEλ

)
(f),

where η̃(λ) = η(λ)
λ1−s/2 is a function that belongs to C∞

0 (R+) and the kernel Ẽ associated to the operator η̃(J ) belongs to

S(G) and we have then that the operator η̃(2−jεJ ) admits a kernel Ẽj,ε(x) = (2−jε)−
N
2 Ẽ((2−jε)−

1
2 x). Furthermore,

17



if we denote by Mtα the kernel associated to the operator m(tαJ ) where m(λ) = (1 − e−λ), we can write

+∞∑

j=0

(∫ +∞

0

(1− e−tαλ)η(2−jελ)λ
s
2 dEλ

)
(f) =

+∞∑

j=0

(2−jε)1−s/2 J
(
f ∗ Ẽj,ε ∗Mtα

)

=

+∞∑

j=0

(2−jε)1−s/2
(
∇f ∗ ∇̃Ẽj,ε ∗Mtα

)
.

With this last identity at hand we obtain

q

∫ T

1

αq−2

∥∥∥∥∥∥

+∞∑

j=0

(∫ +∞

0

(1− e−tαλ)η(2−jελ)λ
s
2 dEλ

)
(f)

∥∥∥∥∥∥
L1

dα ≤ q

∫ T

1

αq−2

∥∥∥∥∥∥

+∞∑

j=0

(2−jε)1−s/2
(
∇f ∗ ∇̃Ẽj,ε ∗Mtα

)
∥∥∥∥∥∥
L1

dα

≤ Cq

∫ T

1

αq−2
+∞∑

j=0

(2−jε)1−s/2‖∇f‖L1‖∇̃Ẽj,ε‖L1‖Mtα‖L1dα.

Now, we apply Proposition 3.1 to obtain that ‖∇̃Ẽj,ε‖L1 ≤ C(2−jε)−1/2 and ‖Mtα‖L1 ≤ C. Thus, as 0 < s < 1, we
have the following inequality

q

∫ T

1

αq−2

∥∥∥∥∥∥

+∞∑

j=0

(∫ +∞

0

(1− e−tαλ)η(2−jελ)λ
s
2 dEλ

)
(f)

∥∥∥∥∥∥
L1

dα ≤ Cq‖∇f‖L1

∫ T

1

αq−2
+∞∑

j=0

(2−jε)1−s/2(2−jε)−1/2dα

≤ Cq‖∇f‖L1

∫ T

1

αq−2
+∞∑

j=0

2−j(
1−s
2 )ε

1−s
2 dα ≤ Cq‖∇f‖L1

∫ T

1

αp−2ε
1−s
2 dα,

but, since ε = ε(α) = α−2δ with δ > q−1
1−s and since we assumed that T > 1, we have

q

∫ T

1

αq−2

∥∥∥∥∥∥

+∞∑

j=0

(∫ +∞

0

(1 − e−tαλ)η(2−jελ)λ
s
2 dEλ

)
(f)

∥∥∥∥∥∥
L1

dα ≤ Cq‖∇f‖L1

∫ T

1

αq−2α−δ(1−s)dα

≤ Cq‖∇f‖L1

(
1− T−(δ(1−s)−(q−1))

)
≤ Cq‖∇f‖L1.

Remark that the quantity in brackets above is always bounded by 1, thus the constant C is an universal constant
which is independent from the parameter T .

Finally, with this inequality for the second part of the right-hand side of (32) and with the previous inequality (34)
for the first part, we have that

q

∫ T

1

αq−2
∥∥J s

2 f ∗Θ1 −HtαJ
s
2 f ∗Θ1

∥∥
L1 dα ≤ Cq‖∇f‖L1,

and this concludes the proof of the Lemma 5.5. �

Lemma 5.6 Under the hypotheses of Theorem 5, we have for the last integral of the right-hand side of (26) the
following inequality

q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ C‖∇f‖L1.

Proof. If σ > q, applying Tchebychev’s inequality we have

q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ +∞

T

αq−1−σ‖J s
2 f ∗Θ1‖σLσdα.
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Now, by Young’s inequality in weak Lσ spaces given in Lemma 4.1 we have

q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ q

∫ +∞

T

αq−1−σ‖J s
2 f‖σLq,∞‖Θ1‖σLrdα,

where 1+ 1
σ = 1

q +
1
r . Since by Proposition 3.1 we have ‖Θ1‖Lr ≤ C, using the weak Sobolev inequalities (4) we obtain

the following inequality

q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ Cq‖J s

2 f‖σLp,∞

∫ +∞

T

αq−1−σdα ≤ Cq‖∇f‖σ/qL1 ‖f‖σ(1−1/q)

Ḃ−β,∞
∞

T−(σ−q).

But since we assumed that ‖f‖Ḃ−β,∞
∞

≤ 1 (up to a normalization constant since ‖f‖Ḃ−β,∞
∞

≃ ‖J s
2 f‖Ḃ−β−s,∞

∞
≤ 1), by

the definition of T = ‖∇f‖
σ−1
σ−q

L1 we finally obtain

q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα ≤ Cq‖∇f‖L1,

and the proof of the Lemma 5.6 is finished. �

Now, with Lemmas 5.4, 5.5 and 5.6, we can come back to (26) and we obtain the following inequality:

q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα = q

∫ 1

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

+q

∫ T

1

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

+q

∫ +∞

T

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

≤ Cq‖∇f‖L1,

which is the conclusion of Proposition 5.2. �

We have proven Proposition 5.1 and Proposition 5.2 and we continue now the proof of Theorem 5. With these
inequalities at hand, we can return to the inequality (23) and we obtain

1

7q
‖J s

2 f‖qLq ≤ q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ0(x)| > 5α
}∣∣ dα+ q

∫ +∞

0

αq−1
∣∣{x ∈ G : |J s

2 f ∗Θ1(x)| > 2α
}∣∣ dα

≤ Cq log(M)‖∇f‖L1 +
q

q − 1

1

M q−1
‖J s

2 f‖qLq + Cq‖∇f‖L1.

Now, if M is constant big enough, as we assumed ‖J s
2 f‖Lq < +∞ we can write

(
1

7q
− q

q − 1

1

M q−1

)
‖J s

2 f‖qLq ≤ Cq log(M)‖∇f‖L1.

However, the proof of the Theorem 5 is not complete since we worked with the extra condition that ‖J s
2 f‖Lq < +∞.

To overcome this issue we proceed as follows.

Proposition 5.3 It is possible to consider only the two assumptions ∇f ∈ L1(G) and f ∈ Ḃ−β,∞
∞ (G) in order to

obtain the inequality

‖f‖Ẇ s,q ≤ C‖∇f‖θL1‖f‖1−θ
Ḃ−β,∞

∞
,

where 1 < q < +∞, 0 ≤ s < 1/q, β = 1−sq
q−1 and θ = 1

q .
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Proof. For the proof of this proposition we use again the spectral theory to build an approximation of f in the
following way

fj =

(∫ +∞

0

(
ϕ(2−2jλ)− ϕ(22jλ)

)
dEλ

)
(f) (j ∈ N),

where ϕ is a C∞(R+) function such that ϕ = 1 on ]0, 1/4[ and ϕ = 0 on [1,+∞[.

Lemma 5.7 If q > 1, if ∇f ∈ L1(G) and if f ∈ Ḃ−β,∞
∞ (G) then ∇fj ∈ L1(G), fj ∈ Ḃ−β,∞

∞ (G) and fj ∈ Lq(G).

Proof. The fact that ∇fj ∈ L1(G) and fj ∈ Ḃ−β,∞
∞ (G) is an easy consequence of the definition of fj. To prove that

fj ∈ Lq(G) we will use the identity

fj =

(∫ +∞

0

m(2−2jλ) dEλ

)
2−2jJ (f),

where we noted

m(2−2jλ) =
ϕ(2−2jλ)− ϕ(22jλ)

2−2jλ
.

Observe that the function m is in C∞(R+), we obtain then the following identity where Mj ∈ S(G) is the kernel of
the operator m(2−2jJ )

fj = 2−2jJ f ∗Mj = 2−2j∇f ∗ ∇̃Mj .

Taking the Lq norm in the preceding expression we have

‖fj‖Lq = ‖2−2j∇f ∗ ∇̃Mj‖Lq ≤ 2−2j‖∇f‖L1‖∇̃Mj‖Lq .

Finally, applying Proposition 3.1 to the norm ‖∇̃Mj‖Lq we obtain:

‖fj‖Lq ≤ C 2j(N(1− 1
q )−1)‖∇f‖L1 < +∞.

�

Thanks to this estimate, we can apply the previous computations made with the Propositions 5.1 and 5.2 to the
functions fj whose L

q norm is bounded, and we obtain the inequality

‖fj‖Lq ≤ C‖∇fj‖θL1‖fj‖1−θ
Ḃ−β,∞

∞
.

Now, since f ∈ Ḃ−β,∞
∞ (G), we have fj ⇀ f in the sense of distributions. It follows

‖f‖Lq ≤ lim inf
j→+∞

‖fj‖Lq ≤ C‖∇f‖θL1‖f‖1−θ
Ḃ−β,∞

∞
.

We have restricted ourselves to the two initial assumptions, namely ∇f ∈ L1(G) and f ∈ Ḃ−β,∞
∞ (G). Theorem 5 is

now completely proven.

�

6 Proof of Theorem 2

We will prove here, in the framework of stratified Lie groups, the inequality

‖f‖Λ̇s1,q(w) ≤ C‖f‖θ
Λ̇s,p(w)

‖f‖1−θ
Ḃ−β,∞

∞
,

where f : G −→ R is a function such that f ∈ Λ̇s,p(w)(G)∩Ḃ−β,∞
∞ (G) with 1 < p < q < +∞, θ = p/q, s1 = θs−(1−θ)β

and −β < s1 < s. We will always assume here that w is a weight in the Ariño-Muckenhoupt class Bp. The reason for
this particular choice of weights relies on the fact that we will need the boundedness of the Hardy-Littlewood maximal
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operator on Lorentz Λp(w) spaces and this is ensured by the condition w ∈ Bp. See [3] and [10] for details.

By the definition of Lorentz-Sobolev spaces given in Section 4, this inequality can be rewritten in the following
way

‖J
s1
2 f‖Λq(w) ≤ C‖J s

2 f‖θΛp(w)‖f‖1−θḂ−β,∞
∞

.

For the proof of this inequality, we will use a variant of Hedberg’s inequality. Indeed, since 0 < s1 < s, we use the
characterization of the positive powers of the Laplacian given in (12) and we have for k > s/2 > s1/2

J
s1
2 f(x) =

1

Γ(k − s1/2)

∫ +∞

0

tk−
s1
2 −1J kHtf(x)dt

=
1

Γ(k − s1/2)

(∫ T

0

tk−
s1
2 −1J kHtf(x)dt+

∫ +∞

T

tk−
s1
2 −1J kHtf(x)dt

)
,

where T will be defined below. In particular we have

|J
s1
2 f(x)| ≤ 1

Γ(k − s1/2)

(∫ T

0

tk−
s1
2 −1|J kHtf(x)|dt+

∫ +∞

T

tk−
s1
2 −1|J kHtf(x)|dt

)
. (35)

For the first integral of the right-hand side of the previous formula we will use the following fact.

Lemma 6.1 Let f ∈ S ′(G) and ϕ ∈ S(G). We denote by Mϕ(f) the maximal function of f (with respect to ϕ) which
is given by the expression

Mϕf(x) = sup
0<t<+∞

{|f ∗ ϕt(x)|}, with ϕt(x) = t−N/2ϕ(t−1/2x).

If the function ϕ is such that |ϕ(x)| ≤ C(1 + |x|)−N−ε for some ε > 0, then we have the following pointwise inequality

Mϕf(x) ≤ CMBf(x),

where MBf(x) is the Hardy-Littlewood maximal function defined by (13).

For a proof of this lemma see [22] or [18]. With this lemma in mind, and since k > s/2, we remark that we have the
identity

J kHtf(x) = J k− s
2ht ∗ J

s
2 f(x).

Now, by homogeneity we obtain J k− s
2 (ht)(x) = t−k+

s
2

(
J k− s

2 ht
)
(x) and if we denote ϕt by ϕt(x) =

(
J k− s

2 ht
)
(x) we

have that ϕt(x) = t−N/2ϕ(t−1/2x), moreover, since the heat kernel ht is a smooth function, with the previous notation
we obtain |ϕ(x)| ≤ C(1 + |x|)−N−ε. Then we can write

J kHtf(x) = t−k+
s
2ϕt ∗ J

s
2 f(x),

and applying the Lemma 6.1 we have the following pointwise inequality for the first term of (35):

|J kHtf(x)| = t−k+
s
2MB

(
J s

2 f
)
(x).

Now, for the second integral of the right-hand side of (35) we simply use the fact that ‖J kf‖Ḃ−β−2k,∞
∞

≃ ‖f‖Ḃ−β,∞
∞

and the thermic definition of Besov spaces to obtain

|J kHtf(x)| = |HtJ kf(x)| ≤ Ct
−β−2k

2 ‖J kf‖Ḃ−β−2k,∞
∞

.

With these two inequalities at hand, we apply them in (35) and one has

|J
s1
2 f(x)| ≤ C

Γ(k − s1/2)

(∫ T

0

tk−
s1
2 −1t−k+

s
2MB

(
J s

2 f
)
(x)dt+

∫ +∞

T

tk−
s1
2 −1t

−β−2k
2 ‖J kf‖Ḃ−β−2k,∞

∞
dt

)

≤ C

Γ(k − s1/2)

(
T

s−s1
2 MB

(
J s

2 f
)
(x) + T

−β−s1
2 ‖J kf‖Ḃ−β−2k,∞

∞

)
.
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We fix now the parameter T by the condition

T =

(
‖J kf‖Ḃ−β−2k,∞

∞

MB

(
J s

2 f
)
(x)

) 2
β+s

,

and we obtain the following inequality

|J
s1
2 f(x)| ≤ C

Γ(k − s1/2)
MB

(
J s

2 f
)1− s−s1

β+s (x)‖J kf‖
s−s1
β+s

Ḃ−β−2k,∞
∞

.

Since s−s1
β+s = 1− θ and using again the fact ‖J kf‖Ḃ−β−2k,∞

∞
≃ ‖f‖Ḃ−β,∞

∞
we have

|J
s1
2 f(x)| ≤ C

Γ(k − s1/2)
MB

(
J s

2 f
)θ

(x)‖f‖1−θ
Ḃ−β,∞

∞
. (36)

Once we have obtained this pointwise inequality, we will use the following properties of the nonincreasing rearrangement
function.

Lemma 6.2 If f, g : G −→ R are two measurable functions, we have

(i) if |g| ≤ |f | a.e. then g∗ ≤ f∗,

(ii) if 0 < θ, then (|f |θ)∗ = (f∗)θ.

For a proof see Proposition 1.4.5 of [22]. Recalling that θ = p/q and applying these facts to the inequality (36) we
obtain (

(J
s1
2 f)∗(t)

)q
≤ C

(
(MB

(
J s

2 f
)
)∗(t)

)p ‖f‖q−p
Ḃ−β,∞

∞
. (37)

Multiplying the previous inequality by a weight w from the Ariño-Muckenhoupt class Bp and integrating with respect
to the variable t we obtain

∫ +∞

0

(
(J

s1
2 f)∗(t)

)q
w(t)dt ≤ C

∫ +∞

0

(
(MB

(
J s

2 f
)
)∗(t)

)p
w(t)dt ‖f‖q−p

Ḃ−β,∞
∞

,

and then, by the definition of classical Lorentz spaces given in Section 4 we have

‖J
s1
2 f‖Λq(w) ≤ C‖MB(J

s
2 f)‖θΛp(w)‖f‖1−θḂ−β,∞

∞
.

Now, since the weight w belongs to the class Bp with 1 < p < +∞, we have that the Hardy-Littlewood maximal
operator is bounded on the space Λp(w) and we obtain

‖MB(J
s
2 f)‖Λp(w) ≤ ‖J s

2 f‖Λp(w),

and finally we have the desired inequality for classical Lorentz spaces:

‖J
s1
2 f‖Λq(w) ≤ C‖J s

2 f‖θΛp(w)‖f‖1−θḂ−β,∞
∞

.

�

Now we will state in the following corollaries some interesting consequences of this previous theorem.

Corollary 6.1 Let w ∈ Bp be a weight and let f : G −→ R be a function such that f ∈ Λ̇s,p,∞(w)(G) ∩ Ḃ−β,∞
∞ (G).

Then we have the following version of improved Sobolev inequalities of weak type:

‖f‖Λ̇s1,q,∞(w) ≤ C‖f‖θ
Λ̇s,p,∞(w)

‖f‖1−θ
Ḃ−β,∞

∞
,

where 1 < p < q < +∞, θ = p/q, s1 = θs− (1 − θ)β and −β < s1 < s.
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Proof . We start again with the pointwise inequality (37):

(
(J

s1
2 f)∗(t)

)q
≤ C

(
(MB

(
J s

2 f
)
)∗(t)

)p ‖f‖q−p
Ḃ−β,∞

∞
.

Now, we multiply both parts of this inequality by W (t) and we take the supremum in the variable t:

‖J
s1
2 f‖qΛq,∞(w) = sup

t>0
W (t)

(
(J

s1
2 f)∗(t)

)q
≤ C sup

t>0

{(
MB(J

s
2 f)∗(t)

)p
W (t)

}
‖f‖q−p

Ḃ−β,∞
∞

≤ C‖MB(J
s
2 f)‖pΛp,∞(w)‖f‖

q−p

Ḃ−β,∞
∞

,

since it is known (see e.g. [34]) that for w ∈ Bp the Hardy-Littlewood maximal operator MB is bounded on Λp,∞(w),
therefore we obtain that

‖J
s1
2 f‖Λq,∞(w) ≤ C‖J s

2 f‖θΛp,∞(w)‖f‖1−θḂ−β,∞
∞

.

�

Now we will study other variations of the previous results by considering a different type of weights. To be more
precise, we will study two-weighted inequalities and in what follows, for v and w two weigths and for t > 0, we will

denote by V (t) and W (t) the quantities V (t) =

∫ t

0

v(s)ds and W (t) =

∫ t

0

w(s)ds.

Our first two-weighted improved Lorentz-Sobolev inequality is given in the following corollary.

Corollary 6.2 Let 1 < p < q < +∞ and let (v, w) be a pair of positive weights satisfying the following properties

sup
t>0

W (t)1/p

V (t)1/p
< +∞ and sup

t>0

(∫ +∞

t

w(s)

sp
ds

)1/p
(∫ t

0

v(s)sp
′

V (s)p′
ds

)1/p′

< +∞.

If f : G −→ R is a function such that f ∈ Λ̇s,p(v) ∩ Ḃ−β,∞
∞ with s > 0, then we have a two-weighted version of

improved Sobolev inequalities

‖f‖Λ̇s1,q(w) ≤ C‖f‖θ
Λ̇s,p(v)

‖f‖1−θ
Ḃ−β,∞

∞
,

where 1 < p < q < +∞, θ = p/q, s1 = θs− (1 − θ)β and −β < s1 < s.

This inequality is interesting since it is possible, under some hypotheses, to consider different weights in the left-hand
side and in the right-hand side of the inequality.

Proof . Using the pointwise inequality (37) and the fact that the Hardy-Littlewood maximal operator

MB : Λp(v) −→ Λp(w)

is bounded for such weights (see [38] for details) we obtain the desired inequality. �

If we are allowed to change the weights that define the Lorentz spaces in the previous inequalities, it is then also
possible to change, with specific conditions on the weights, the parameters of these spaces. In the following corollary
we gather some results where we consider different Lorentz spaces in the right-hand side of the inequality. Indeed,
the first point is a generalization of the previous corollary and we will consider in the right-hand side Lorentz-Sobolev
spaces of type Λ̇s,q0(v) instead of Λ̇s,p(v) where 1 < q0 ≤ p < +∞. The second point allows us to study the case when
1 < p < q0 < +∞ and finally, the third point treats the case when 0 < q0 < 1.

Corollary 6.3 Let 0 < q0 < +∞, s > 0, let f : G −→ R be a measurable function and let (v, w) be a pair of weights.

1) If 1 < q0 ≤ p < +∞ and if (v, w) are satisfying the following conditions

sup
t>0

W (t)1/p

V (t)1/q0
< +∞ (38)
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and

sup
t>0

(∫ t

0

w(s)

sp
ds

)1/p
(∫ t

0

v(s)sq
′
0

V (s)q
′
0

)
< +∞, (39)

then, if f ∈ Λ̇s,q0(v)(G) ∩ Ḃ−β,∞
∞ (G), we have the following inequality

‖f‖Λ̇s1,q(w) ≤ C‖f‖θ
Λ̇s,q0 (v)

‖f‖1−θ
Ḃ−β,∞

∞
,

where 1 < p < q < +∞, θ = p/q, s1 = θs− (1− θ)β and −β < s1 < s.

2) If 1 < p < q0 < +∞ and (v, w) are satisfying

(∫ +∞

0

(
W (s)

V (s)

)r/q0
w(s)ds

)1/r

< +∞

and 

∫ +∞

0



(∫ +∞

s

w(t)

tp
dt

)1/p
(∫ t

0

v(t)tq0
′

V (t)q0 ′ dt

)1/p′


r

v(s)sq0
′

V (s)q0′ ds




1/r

< +∞,

where r is given by 1
r = 1

p − 1
q . Then, if f ∈ Λ̇s,q0(v)(G) ∩ Ḃ−β,∞

∞ (G), we have

‖f‖Λ̇s1,q(w) ≤ C‖f‖θ
Λ̇s,q0 (v)

‖f‖1−θ
Ḃ−β,∞

∞
,

where 1 < p < q < +∞, θ = p/q, s1 = θs− (1− θ)β and −β < s1 < s.

3) If 0 < q0 < 1 and 1 < p < +∞ and if (v, w) are satisfying (38) and

sup
t>0

t

V (t)1/q0

(∫ +∞

t

w(s)

sp
ds

)1/p

< +∞,

then, assuming that f ∈ Λ̇s,q0(v)(G) ∩ Ḃ−β,∞
∞ (G), we obtain

‖f‖Λ̇s1,q(w) ≤ C‖f‖θ
Λ̇s,q0 (v)

‖f‖1−θ
Ḃ−β,∞

∞
,

where 1 < p < q < +∞, θ = p/q, s1 = θs− (1− θ)β and −β < s1 < s.

Proof. From the pointwise inequality (37) we obtain that

‖J
s1
2 f‖Λq(w) ≤ C‖MB(J

s
2 f)‖θΛp(w)‖f‖1−θḂ−β,∞

∞
.

Now, under all these hypotheses on the weights v and w, we have that the Hardy-Littlewood maximal operator
MB : Λq0(v) −→ Λp(w) is bounded (see [38] and [7]) and then we obtain

‖f‖Λ̇s1,q(w) ≤ C‖f‖θ
Λ̇s,q0(v)

‖f‖1−θ
Ḃ−β,∞

∞
.

�

We have also the following two-weighted version of improved Sobolev inequalities of weak type:

Corollary 6.4 Let 1 < p < +∞, 0 < q0 < +∞. Let (v, w) be a pair of weights such that

sup
t>0

W (t)1/p

t

∫ t

0

V −1/q0(s)ds < +∞, (40)

and let f : G −→ R be a function such that f ∈ Λ̇s,q0,∞(v)(G) ∩ Ḃ−β,∞
∞ (G). Then we have the following inequality

‖f‖Λ̇s1,q,∞(w) ≤ C‖f‖θ
Λ̇s,q0,∞(v)

‖f‖1−θ
Ḃ−β,∞

∞
,

where 0 < q0 < +∞, 1 < p < q < +∞, θ = p/q, s1 = θs− (1 − θ)β and −β < s1 < s.
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Proof . It is enough to follow the same lines of the Corollary 6.1 to obtain

‖J
s1
2 f‖qΛq,∞(w) ≤ C‖MB(J

s
2 f)‖pΛp,∞(w)‖f‖

q−p

Ḃ−β,∞
∞

,

since the pair of weights (v, w) satisfies the condition (40) it implies that the operator MB : Λq0,∞(v) −→ Λp,∞(w) is
bounded (see [34]) and we obtain

‖J
s1
2 f‖qΛq,∞(w) ≤ C‖J s

2 f‖pΛq,∞(v)‖f‖
q−p

Ḃ−β,∞
∞

,

which is the desired inequality. �

7 Generalizations

In this section we give some generalizations of Theorems 1 and 2 and we prove Theorem 3. These generalizations are
made possible since the techniques developed in our proofs are based on general harmonic analysis arguments and
since many of the tools used in this article are available in other frameworks. Indeed, the spectral theory associated to
the Laplace operator, the boundedness of the Hardy-Littlewood maximal operator and the use of appropiate weights
in order to define well suited functional spaces are intensively studied and many interesting properties were generalized
to different settings.

7.1 Ap Weighted Inequalities

In this section we consider weights belonging to the Ap class with 1 ≤ p < +∞ and we will study a weighted ver-
sion of Theorem 1. B. Muckenhoupt introduced in [29] the Ap class of weights which are also known as Muckenhoupt
weights. For the sake of simplicity, we present the tools and the framework in the general setting of stratified Lie groups.

Let us recall first that a weight ω (a locally integrable function on G with values in ]0,+∞[) belongs to the A1

class if
MB ω(x) ≤ C ω(x) for all x ∈ G,

where MB is the Hardy-Littlewood maximal function given in (13).
For 1 < p < +∞ we say that ω ∈ Ap if it satisfies the condition

sup
B

(
1

|B|

∫

B

ω(x)dx

)(
1

|B|

∫

B

ω(x)−
1

p−1 dx

)p−1

< +∞, where B is an open ball.

It is known that if 1 ≤ p < q < +∞ we have the inclusion Ap ⊂ Aq. For general properties of Ap weights and more
details see [18] and [22]. We define, for 1 ≤ p < +∞, the weighted Lebesgue spaces by the norm

‖f‖Lp(ω) =

(∫

G

|f(x)|pω(x)dx
)1/p

, with ω ∈ Ap. (41)

Let us notice that we also have a characterization in terms of the distribution function that is

‖f‖pLp(ω) = p

∫ +∞

0

αp−1ω({x ∈ G : |f(x)| > α})dα.

We just point out here that one of the main features of Ap weights is related to the boundedness of Hardy-Littlewood
maximal function:

∫

G

MBf(x)
pω(x)dx ≤ C

∫

G

|f(x)|pω(x)dx, f ∈ Lp(ω)(G) with 1 < p < +∞.

Weighted weak-Lp spaces are given for 1 < p < +∞ by

‖f‖Lp,∞(ω) = sup
σ>0

{σ ω({x ∈ G : |f(x)| > σ})1/p}, with ω ∈ Ap.
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Once we have defined the weighted Lp(ω) spaces with the expression (41), we can construct weighted Sobolev spaces
in the following manner, for ω ∈ Ap with 1 < p < +∞, we write:

‖f‖Ẇ s,p(ω) = ‖J s/2f‖Lp(ω),

and when p = s = 1 we have

‖f‖Ẇ 1,1(ω) = ‖∇f‖L1(ω).

With all these definitions and preliminaries, and using the arguments developed in [11] it is possible to adapt the proof
of Theorem 1 in the following way.

Theorem 6 Let ω be a weight in the Muckenhoupt class A1, if f is a function such that ∇f ∈ L1(ω)(G) and
f ∈ Ḃ−β,∞

∞ (G), then we have the inequality

‖f‖Ẇ s,q(ω) ≤ C‖∇f‖θL1(ω)‖f‖1−θḂ−β,∞
∞

,

where 1 < q < +∞, 0 ≤ s < 1/q, β = 1−sq
q−1 and θ = 1

q .

7.2 Morrey spaces

We prove now Theorem 3 in the setting of stratified Lie groups. Morrey spaces were studied in this framework by
many authors, see for example the articles [2], [31] and the references there in.

As said in the introduction, once we have at our disposal the fact that the Hardy-Littlewood maximal operator is
bounded in the convenient functional framework, it is possible to improve Sobolev inequalities in the following way.
The starting point of our proof is the pointwise inequality (36):

|J
s1
2 f(x)| ≤ C

Γ(k − s1/2)
MB

(
J s

2 f
)θ

(x)‖f‖1−θ
Ḃ−β,∞

∞
.

Since θ = p/q we have for r > 0 and for 0 ≤ a < N the inequalities

1

ra

∫

B(x0,r)

|J
s1
2 f(x)|qdx ≤ C

(
1

ra

∫

B(x0,r)

MB

(
J s

2 f
)p

(x)dx

)
‖f‖q(1−θ)

Ḃ−β,∞
∞

(
1

ra

∫

B(x0,r)

|J
s1
2 f(x)|qdx

)1/q

≤ C

(
1

ra

∫

B(x0,r)

MB

(
J s

2 f
)p

(x)dx

)1/q

‖f‖(1−θ)
Ḃ−β,∞

∞
,

from which we derive the estimate

‖J
s1
2 f‖Mq,a ≤ C‖MB

(
J s

2 f
)
‖θMp,a‖f‖(1−θ)

Ḃ−β,∞
∞

.

In order to conclude, we use the fact that the Hardy-Littlewood maximal operator is bounded in Morrey spaces and
we obtain

‖J
s1
2 f‖Mq,a ≤ C‖J s

2 f‖θMp,a‖f‖(1−θ)
Ḃ−β,∞

∞
,

which is the desired inequality stated in Theorem 3.

Remark 7.1 The boundedness of the Hardy-Littlewood maximal operator was studied for generalized Morrey spaces
in [2], [30] and [33]. As long as this boundedness property is satisfied it should be possible to generalize Theorem
3. Indeed, from the pointwise inequality (36) it should be easy (taking into account the necessary precautions) to
reconstruct the corresponding norms in order to obtain an improved Sobolev-like inequality.
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7.3 Nilpotent Lie groups

We consider now a more general framework than the one given by stratified Lie groups. Indeed, going one step further
in the process of generalization, it is possible to consider nilpotent Lie groups since all the tools used in the proof of
Theorems 1 and 2 are available in these settings.

We recall for the sake of completness this framework. Let G be a connected unimodular Lie group endowed with
its Haar measure dx. Denote by g the Lie algebra of G and consider a family (that will be fixed from now on) of
left-invariant vector fields on G

X = {X1, ..., Xk},
satisfying the Hörmander condition1. We endow the group G with a metric structure by considering the Carnot-
Carathéodory metric associated with X. See [39] for details. We will denote ‖x‖ the distance between the origin e
and x and ‖y−1 · x‖ the distance between x and y. For r > 0 and x ∈ G, denote by B(x, r) the open ball with respect

to the Carnot-Carathéodory metric centered in x and of radius r, and by V (r) =

∫

B(x,r)

dx the Haar measure of any

ball of radius r. When 0 < r < 1, there exists d ∈ N∗, cl and Cl > 0 such that, for all 0 < r < 1 we have

clr
d ≤ V (r) ≤ Clr

d.

The integer d is the local dimension of (G,X). When r ≥ 1, two situations may occur, independently of the choice
of the family X: either G has polynomial volume growth and there exist D ∈ N∗, c∞ and C∞ > 0 such that, for all
r ≥ 1 we have

c∞r
D ≤ V (r) ≤ C∞r

D,

or G has exponential volume growth, which means that there exist ce, Ce, α, β > 0 such that, for all r ≥ 1 we have

cee
αr ≤ V (r) ≤ Cee

βr.

When G has polynomial volume growth, the integer D is called the dimension at infinity of G. Recall that nilpotent
groups have polynomial volume growth and that a strict subclass of the nilpotent groups consists of stratified Lie
groups where d = D.

Once we have fixed the family X, we define the gradient on G by ∇ = (X1, ..., Xk) and we consider a Laplacian J
on G defined in the same way as in (11)

J = −
k∑

j=1

X2
j ,

which is a positive self-adjoint, hypo-elliptic operator since X satisfies the Hörmander’s condition, see [39]. Its associ-
ated heat operator on ]0,+∞[×G is given by ∂t +J and we will denote by (Ht)t>0 the semi-group obtained from the
Laplacian J . It is worth noting that many of the properties given in Theorem 4 remain true for the heat semi-group
Ht in this general setting. For more details concerning nilpotent Lie groups see the books [39], [18], [36] and the
articles [19], [32], [12] and the references there in.

Fractional powers of the Laplacian can be defined in a completely similar way using the expression (12) or using the
spectral theory associated to this Laplacian J just as in Section 3. It is then possible to define all the functional spaces
given in Section 4 in the framework of nilpotent Lie groups. Moreover, the Proposition 3.1 is completely available in
this general setting.

With all these preliminaries, we see that we have at our disposal all the ingredients needed in order to perform
the computations done in Sections 5 and 6, and thus Theorem 1 and Theorem 2 can be generalized to the setting of
nilpotent Lie groups.
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1which means that the Lie algebra generated by the family X is g.
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