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Integrated  (Pt/PEDOT–Pt–Ag/AgCl)  and (Au/PEDOT–Pt–Ag/AgCl)  electrochemical  microcells  (ElecCell)

were  elaborated for  the detection of  ascorbic acid,  dopamine and uric  acid by differential  pulse voltam­

metry.  Specific  attention  was  brought  to  the  integration of poly(3,4­ethylenedioxythiophene)  (PEDOT)

film  by electropolymerization.  Gold and platinum working microelectrodes  were  investigated  while

using  ethylenedioxythiophene  (EDOT) electrodeposition  processes in water or  acetonitrile solvents. For

the  three  antioxidant species, best (multi­)detection  properties  were  obtained  for acetonitrile­based

PEDOT  films  deposited  on gold working  electrode.  Thus, using  integrated (Au/PEDOT–Pt–Ag/AgCl)  Elec­

Cell  microdevices, analytical performances  were  determined for ascorbic  acid,  dopamine and  uric acid,

exhibiting  high selectivity (oxidation  potential:  −40, 150  and 280 mV, respectively),  linear concentra­

tion  range from 0.1  to 300  mM, high sensitivities  (0.85, 1.65 and 3.06  mA/mM  cm2, respectively)  and  low

detection  limit (0.2  mM,  0.1 mM and 0.05  mM, respectively).

1. Introduction

During the last two decades, the area of sensors has greatly

benefited from the development of micro/nanotechnologies in

term of design, fabrication and detection performances. This was

also true for chemical microsensors and electrochemical analysis

for biosensing applications. Consequently, integrated microelec­

trodes have become well­accepted tools for clinical, environmental,

chemical and pharmaceutical applications with high spatial and

temporal resolution [1,2]. Indeed, they present many advantages:

specificity, high sensitivity, fast response time, small capacitive

currents, enhanced mass transport, low ohmic drop allowing their

use in low conducting and highly viscous media, as well as  versa­

tility. Moreover, compared to ultra­microelectrodes (UME) sealed

into glass­capillaries [3–6], they take advantage of mass fabrication

at low cost thanks to the use of silicon­based microtechnologies

[7–9], addressing many bioanalytical applications [10–14]. Never­

theless, to realize a simple and functional electrochemical sensor,
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microfabrication strategies have to  address the problems related to

the analysis of real samples, emphasizing on sensitivity, selectiv­

ity, stability, reproducibility and reliability. We have selected this

approach to develop an integrated electrochemical microsensor for

the simultaneous detection of ascorbic acid (AA), dopamine (Dop)

and uric acid (UA) in the frame of antioxidant species analysis.

The  detection of these three analytes is of particular interest in

clinical, chemical, pathology, food analysis and many other fields

[15–17]. AA is  a vital vitamin popularly known for its antioxidant

properties and is present in mammalian brain along with sev­

eral neurotransmitter amines such as dopamine. Ascorbic acid has

been used for prevention and treatment of common cold, men­

tal illness, infertility and cancer [18]. Dopamine is an important

neurotransmitter for message transfer in central nervous system

[19]. Abnormal levels of Dop lead to neurological disorders such as

Parkinsonism and Schizophrenia [20]. Meanwhile, uric acid is the

primary final product of purine metabolism. The extreme abnor­

malities of UA levels lead to some diseases, such as hypertension,

hyperuricaemia, gout and Lesch­Nyan diseases [21].

In  real biological samples, AA, Dop and UA usually coexist, so

the development of accurate, selective and simultaneous determi­

nation methods for these three analytes is highly desired especially

in biomedical chemistry and medical diagnostics. AA, Dop and UA

http://dx.doi.org/10.1016/j.snb.2015.03.005



are electroactive compounds and can be detected using electroan­

alytical techniques. Unfortunately, with bare unmodified metallic

electrodes, they are oxidized at nearly same potentials and their

voltammetric responses overlap makes their discrimination in  real

samples very difficult [22,23]. Besides, bare electrodes often suf­

fer from a pronounced fouling affect due to the accumulation of

oxidized products on electrode surface. Furthermore, the modi­

fied electrode must be insensitive to interfering chemicals present

in biological media. To overcome this problem, many modifica­

tion strategies have been adopted to lower the overpotential, to

increase detection sensitivity and to  improve selectivity. In the

frame of antioxidant detection, they have led to  the realization

of various modified (micro)electrodes based on quantum dots

[24], nanoparticles [25–27], carbon nanotubes [28–30], graphene

[25–27,29,31–33] and conductive polymers [28,34–36]. Among

them, poly(3,4­ethylenedioxythiophene) (PEDOT) was one of the

widely used conducting polymers for the detection of AA, Dop and

UA [37–42]. It has a  low oxidation potential and moderate band

gap with good stability and transparency in the oxidized state, high

electrical conductivity [43], excellent thermal stability, intrinsically

low thermal conductivity and low price [44,45]. In parallel, elec­

tropolymerization is one of the methods used for the preparation

of polymer film with good quality. It allows the reproducible for­

mation of organic polymer films with precise spatial resolution.

Moreover, film thicknesses are easily controlled by the deposition

charge and the polymer is directly obtained in his conducting state

[46]. Thus, electrodeposition protocol of PEDOT is  easier compared

to others strategies of electrode modifications. Finally, ethylene­

dioxythiophene (EDOT) is  a commercially available monomer that

eliminates synthesis steps.

In  the frame of the detection of antioxidant species, PEDOT

acts as a redox mediator responsible for oxidation catalysis.

Since ascorbic and uric acids are in their anionic form (HA−) at

physiological pH, the occurring catalytic mechanism is globally

given by [47]:

PEDOTox + HA−
→ PEDOTred

−
+ A

PEDOTred
−

→ PEDOTox + H+
+ 2e−

In the case of dopamin known to be in its cationic form at  phys­

iological pH, the global catalytic mechanism is [37]:

PEDOTox + Dop → PEDOTred +  DoQ

PEDOTred → PEDOTox +  2H+
+ 2e−

Our previous works illustrated that PEDOT deposited on

hand­made microelectrodes has good catalytic properties for the

electrochemical oxidation of ascorbic and uric acids and can be

used for their simultaneous detection [39]. This work goes further

towards technological integration and mass fabrication of PEDOT­

based microelectrodes, focusing on three main goals: (i) to study

the electropolymerization of PEDOT on thin­film­based micro­

electrodes, (ii) to integrate fully PEDOT­based electrochemical

microcells (ElecCell), and (iii) to  analyze PEDOT­based ElecCell per­

formances for the selective detection of antioxidant species. Thus,

combining the advantageous features of silicon­based microtech­

nologies [23,48] and catalytic properties of PEDOT [46], we

presented here the analytic performances of integrated electro­

chemical microdevices modified with PEDOT electrodeposited in

different conditions of polymerization for a simultaneous assay of

AA, Dop, and UA.

2. Experimental

2.1. Chemicals

3,4­Ethylenedioxythiophene (EDOT) monomer, poly(sodium 4­

styrenesulfonate) (NaPSS), ascorbic acid (AA), dopamine (Dop) and

uric acid (UA) were purchased from Sigma Aldrich. Tetrabutylamm­

onium perchlorate (TBAPC), potassium dihydrogenophosphate

KH2PO4,  di­potassium hydrogenophosphate K2PHO4, sodium chlo­

ride NaCl and acetonitrile CH3CN were purchased from Acros. All

reagents were of analytical grade and used as received. The aqueous

solutions were prepared with high­quality water (MilliQ gradient

A10 system, Millipore, Bedford, MA). High pure nitrogen was used

for deaeration.

2.2. Materials

Electrochemical Impedance Spectroscopy (EIS) measurements

were made in 0.1 M NaCl solution by applying a 5 mV RMS sine

wave with frequencies ranging from 10 Hz to 10 kHz. Scanning elec­

tron microscopy (SEM) studies were carried out using a  focused

ion beam (FIB) HELIOS 600i equipment operating at 3 kV. Sam­

ples were mounted on a double­sided adhesive carbon and optical

microscope images were then made using a  Hirox Microscope

(HI­SCOPE advanced KH­3000). PEDOT electropolymerization and

electrochemical experiments were performed using a VMP3 poten­

tiostat (Biologic) interfaced to a microcomputer and using the

EC­Lab software.

2.3. Electrochemical microcell (ElecCell) fabrication

Integrated (Pt–Pt–Ag/AgCl) and (Au–Pt–Ag/AgCl) electrochem­

ical microcells (ElecCell) were fabricated on silicon chip using

silicon­based microtechnologies (Fig. 1a) [23]. Oxidized silicon

wafers were used in order to ensure electrical insulation between

the different microelectrodes (oxide thickness: ∼1 mm). Then, the

different thin metallic layers were deposited by evaporation in

conventional physical vapour deposition (PVD) equipment, and

patterned using a bilayer lift­off process in order to improve fab­

rication reproducibility. Three PVD processes were performed in a

row: firstly, a  200 nm platinum layer was deposited on a 20 nm

titanium underlayer in order to ensure platinum adhesion on

silicon oxide, followed by a 800 nm gold and a 400 nm silver lay­

ers. Finally, a  biocompatible Si3N4 passivation layer (thickness:

100 nm) was deposited at the wafer level and patterned using pho­

tolithography techniques [48]. According to this final wafer­level

passivation process, the different metallic layers were insulated

electrically and their active surfaces were defined precisely. The

gold and platinum working microelectrodes were defined as disks

and their electroactive area was approximately 4.9 × 10−4 mm2

(diameter: 25 mm). In contrast, very large silver/silver chloride

reference microelectrode (0.02 mm2)  and platinum counter micro­

electrode (1 mm2)  were fabricated. After the silicon wafer dicing,

(Pt–Pt–Ag) and (Au–Pt–Ag) electrochemical microcells were man­

ufactured on silicon chip (Fig. 1a). The whole chip was then placed

and glued by an epoxy insulating glue on a  specifically coated

printed circuit, wire bonded and packaged at the system level using

a silicone glop­top in order to be fully compatible with liquid phase

measurement.

For each microdevice, the silver/silver chloride Ag/AgCl pseudo­

reference was finally obtained by oxidizing the silver­based

microelectrode in a 0.01 M KCl solution. This was performed

by linear voltammetry (potential scan rate: 1 mV/s between 0.1

and 0.25 V/SCE) using a standard saturated calomel electrode

(SCE) Hg/Hg2Cl2/KClsat as reference. Thus, (Pt–Pt–Ag/AgCl) and

(Au–Pt–Ag/AgCl) ElecCell microdevices were finally realized.



Fig.  1. Optical  microscope images of  (a)  the  integrated  (Au­Pt­Ag/AgCl)  electrochemical microcell (ElecCell)  device and  (b) the electrodeposited  PEDOT film  on  the  gold

working  electrode (solvent: acetonitrile)

2.4. Preparation and characterization of PEDOT modified

electrode

PEDOT electropolymerization processes were carried out in

organic, i.e. acetonitrile­based, or inorganic, i.e. water­based, solu­

tions.

For the organic acetonitrile­based process, the integrated work­

ing microelectrode surface was modified in a deaerated acetonitrile

solution containing 2.5 mM EDOT monomer and 0.1 M TBAPC as

supporting electrolyte [39]. Then, polymerization was performed

by cyclic voltammetry at a scan rate of 250 mV/s between 0.88 and

1.5 V.

For  the inorganic water­based process, electropolymerization

experiment was performed from EDOT (0.1% W/V, 0.01 M) and

NaPSS (0.7% W/V) in aqueous deaerated solutions. Such concentra­

tion was lower than EDOT solubility in water (estimated around

15 mM at 25 ◦C) to ensure its complete dissolving. Then, cyclic

voltammetry was carried between −0.9 and 1.2 V at a scan rate

of 25 mV/s [49].

In both cases, i.e. acetonitrile or water solvents, the amount

of PEDOT synthesized corresponded to the same anodic charge

of 12 mC/cm2.  After the electropolymerization, the modified elec­

trodes were rinsed with acetonitrile and/or deionized water in a

row to remove any physically adsorbed monomer (Fig. 1b).

2.5.  Electrochemical experiments of PEDOT­based ElecCell

integrated microdevice

For  the quantitative determination of AA, Dop and UA, dif­

ferential pulse voltammetry (DPV) was investigated since it is

more sensitive than cyclic voltammetry. Differential pulse voltam­

mograms were collected in the potential range between 0.2 and

0.4 V, with a 50 mV amplitude, a  6 mV potential step, a 119 ms

pulse time, a 1  s interval time and a 6 mV/s potential scan rate.

Integrated (Au/PEDOT–Pt–Ag/AgCl) and (Pt/PEDOT–Pt–Ag/AgCl)

electrochemical microcells were used for these DPV experiments.

For each of them, gold or platinum PEDOT­modified microelec­

trodes were used as working electrodes whereas the platinum

and silver/silver chloride microelectrodes were used as  counter

and pseudo­reference electrodes, respectively. All electrochemical

experiments were performed in a  glass cell containing 100 mL of

0.1 M deaerated phosphate buffer solution (PBS, pH = 7.0) with dif­

ferent concentrations of AA, Dop, and UA. The standard addition

method was applied for drawing the calibration curves for each

specie. Freshly concentrated solutions of AA, Dop, and UA were

prepared and stored at 4 ◦C.  Then a  small known concentration of

desired element is increasingly added to PBS solutions. Currents

were  then plotted against the added concentrations. The limit of

detection was estimated for a  signal­to noise­ratio equal to three.

3.  Results and discussion

3.1.  Effect of EDOT solvent

The  solvent used during the electropolymerization step has a

key influence on the conducting polymers ultimate properties. It

should lead to a high electrical conductivity and good electrochem­

ical stability against decomposition at high potentials required to

oxidize the monomer. Thus, electrosynthesis of PEDOT is often

performed in organic solvent [37,39]. Nevertheless, even if water

has some drawbacks such as  high nucleophilicity, narrow poten­

tial window for electrochemical stability and high EDOT oxidation

potential (higher than the acetonitrile one), it was also used as  sol­

vent for PEDOT electrodeposition even if  the EDOT monomer is

slightly soluble in aqueous solution [49,50]. Above all these prob­

lems, the selection of water as the synthesis medium would be

self­evident merely from environmental, economic and biocom­

patibility reasons.

Fig.  2a and b shows the cyclic voltammograms recorded during

PEDOT electrogeneration on a gold integrated microelectrode, in

water­based or in acetonitrile­based solutions, respectively. Simi­

lar electrochemical behaviours were observed for both solvents. In

water (Fig. 2a), the EDOT monomer oxidation starts at 0.6 V and the

anodic current increases from cycle to cycle indicating the polymer

growth. Then, the PEDOT redox properties are evidenced at −0.1 V.

The electropolymerization potential decrease was attributed to  the

strong electrostatic interactions between EDOT•+ cation radicals

and PSS− species, facilitating the polymerization process [51].

In acetonitrile (Fig. 2b), it is clearly visible that the EDOT

monomer oxidation stars at 1.2 V whereas the redox potential of

PEDOT is obtained around −0.25 V. It is  known that peaks position

of the polymer redox activity is  relative to p­doping process, leads

to differences in conductivity properties [52], and might indicate

that a higher molecular mass polymer is obtained when electrosyn­

thesis is performed in organic medium. Thus, even if a similar

anodic charge of 12 mC/cm2 was chosen for the PEDOT synthesis,

this should also be responsible for some thickness and morphology

discrepancies for the different PEDOT layers.

To have further information on PEDOT depositions, they

were characterized by impedancemetry and scanning electron

microscopy (SEM). Compared to water solvent, acetonitrile leads to

lower impedance modulus and therefore to higher electrical con­

ductivity (data not shown). Such difference in term of electrical

conductivity might be explained by the doping level of each PEDOT



Fig.  2. Cyclic  voltammogramms  of electropolymerization  at gold  working  microelectrode  in deaerated  0.1  mol/L TBAPC and  2.5  mmol/L EDOT (a)  water­based  (potential  scan

rate:  25  mV/s) and  (b)  acetonitrile­based  solutions (potential  scan  rate:  250  mV/s).

film. Indeed, the use of TBAPC, and especially the perchlorate ion

ClO4
−, as charge compensation was shown to give PEDOT films with

higher doping level and better stability [53].

Nevertheless, more significant results were obtained by SEM.

Fig. 3a and b presents the different surface morphologies of

PEDOT layers electrodeposited on gold microelectrode while using

water and acetonitrile solvents. In contrast to water­based PEDOT

that forms a  cauliflower­type, compact structure, acetonitrile­

based ones show a porous complex structure. To the best of

our knowledge, the effects of solvent on morphological features,

and the correlation between the morphology of electropolymer­

ized films and their catalytic properties were never systematically

investigated. To explain the significant differences between the

morphological properties of PEDOT films prepared in water or in

acetonitrile, we can speculate that these changes are attributed to

the different intrinsic properties of each solvent that contribute

to different solute–solvent and/or polymer–solvent interactions.

The best solvents were found to have high dipole moments, low

polarizability and high capacity to donate electrons [54]. Further­

more, higher dielectric constants (∼80 for water compared to ∼36

for acetonitrile) lead to lower electropolymerization rate and to

more compact films [55]. Meanwhile, we cannot exclude the fac­

tor that the solubility of EDOT oligomers produced at initial stages

of electropolymerization in both solvents might be responsible of

such morphological structures [56]. Certainly, in the very begin­

ning stage of polymerization, oxidation of monomers and coupling

of radical cations take place. When the chain length of oligomers

is high enough, they precipitate onto the electrode, generating

the first polymer nuclei. At this point, the PEDOT deposition on

the  electrode starts, i.e. nucleation begins, and subsequently the

propagation of polymer chains and polymer precipitation are the

main processes. In water, the presence of poly­styrenesulphonate

(PSS), which is  a  good solubilizing agent for both EDOT monomer

and PEDOT polymer, facilitates the formation of relatively long

polymeric chains on solution and consequently smoother films

are observed. In acetonitrile, short oligomers are deposited on the

electrode, leading to a high number of nucleation centres, which

yield to  more heterogeneous and very rough films as observed

in SEM. Finally, since it was shown that the surface morphology

is influenced by the polymerization potential [57], electropoly­

merization at higher oxidation potential (1.2–1.5 V)  in acetonitrile

should produces rougher PEDOT films.

The modified microdevices were therefore tested in an equimo­

lar solution of AA, Dop and UA 1 mmol/L pH 7.0. Results are shown

in Fig. 4. It is clear that the PEDOT grown in acetonitrile has

much better performances than the PEDOT grown in water. For

acetonitrile­based PEDOT layers, the oxidation peaks of AA, Dop

and UA appear at −0.04, 0.15 and 0.28 V, respectively, and higher

sensitivities are evidenced. For water­based ones, oxidation of AA,

Dop and UA occurs at more positive potentials, i.e. 0.125, 0.335

and 0.45 V, inducing lower sensitivities. Such results should be

associated to the differences between PEDOT films in terms of

structure, morphology and electrical conductivity (as shown by

SEM and impedancemetric characterizations, see below). In  the

case of acetonitrile, rougher and more porous morphologies as well

as higher electrical conductivity provide larger electroactive sur­

face, faster diffusion phenomena in and out the polymer network,

and better access to  electroactive sites, enhancing PEDOT films

Fig.  3.  Scanning electron  microscopy  (SEM) pictures of  PEDOT  films  deposited  on (a) on  gold  surface  using  water as solvent,  (b) on  gold surface  using  acetonitrile  as  solvent

and  (c)  on  platinum  surface  while  using  acetonitrile  as solvent



Fig.  4.  Differential  pulse voltammograms  (DPV) of (Au/PEDOT–Pt–Ag/AgCl)  ElecCell

in 0.1 M PBS  pH  7.0 solution  containing an  equimolar AA/Dop/UA  (1 mmol/L):  PEDOT

electrodeposited in acetonitrile  solution  (plain line)  or  in  aqueous  solution  (dashed

line).

Fig.  5.  Differential  pulse  voltammograms  (DPV) of  (Au–Pt–Ag/AgCl)  (plain line)  and

(Pt–Pt–Ag/AgCl)  (dashed  line) ElecCell in 0.1 M PBS pH 7.0 solution  containing  an

equimolar AA/Dop/UA  mixture (1 mmol/L).

electrocatalytic properties and improving further antioxidant

detection properties [47].

Finally,  even if water was successfully developed and gave

acceptable results, acetonitrile appears to  be the best solvent

for integrating PEDOT­modified electrochemical microsensors and

Fig. 6.  Differential  pulse  voltammograms  (DPV) of (Au/PEDOT–Pt–Ag/AgCl)  (plain

line) and (Pt/PEDOT–Pt–Ag/AgCl)  (dashed  line)  ElecCell  in 0.1 M PBS  pH 7.0  solution

containing  an  equimolar AA/Dop/UA  mixture (1 mmol/L).

improving PEDOT­based detection performances of antioxidant

species in terms of sensitivity and selectivity.

3.2. Effect of working electrode nature

As described previously in section 2.3, the integrated work­

ing microelectrode can be made from platinum or gold. Previous

works showed that the physico­chemical properties of the anode

metallic material could determine the nature and the strength

of the bond between the electropolymerized polymer and the

electrode, impacting its resulting properties [46]. So, we studied

the influence of the metal nature on the PEDOT­based detec­

tion properties. In this view, acetonitrile solvent was used for the

electrodeposition of PEDOT films on gold and platinum working

surfaces (see section 3.1). Then, the electrochemical performances

of the PEDOT­modified working microelectrodes were evaluated

in an equimolar solution of AA, Dop and UA 1 mmol/L pH 7.0.

For comparison, bare gold and platinum integrated microelec­

trodes were also studied in the same way. Results are shown in

Figs. 5 and 6.

For  bare gold and platinum microelectrodes, a  badly defined

peak and low current values are observed (Fig. 5). Such amperomet­

ric responses were related to competitive oxidation phenomena

between AA, Dop and UA. Indeed, by studying separately each ana­

lyte (result not shown), their respective oxidation potentials appear

at 0.26, 0.42 and 0.47 V on gold microelectrode, and at 0.32, 0.28

and 0.52 V on platinum microelectrode, in agreement with previous

results [22,23].

On PEDOT­based microelectrodes made from gold or platinum,

three well­defined oxidation peaks are observed corresponding to

Table  1

Comparison  of  the  analytical  performances  of different  electrochemical,  PEDOT­modified, electrodes  for  the simultaneous  detection of AA,  Dop, and  UA.

Ref. Ep vs  SCE  (mV)  Limit  of  detection  (mM)  Linear range  (mM)

AA Dop  UA AA  Dop UA AA Dop  UA

[37] −50  150 365  –  1 1  –  1–30 1–20

[38]  −80  120 275  7.4  – –  500–3500 20–80  20–130

[39]  −94  –  308 2.5  – 1.5  5–300 –  2–600

[40]  100  250 320 –  – –  100–500  100–500  100–500

[41]  3  210 360 10  1.5 2.7  20–1400  12–48  36–216

[42]  69  232  364  400  6 2  400–8000  6–75  2–40

This  work  −40  150 280 0.2  0.1 0.05 0.5–300 0.2–300  0.1–300



the oxidation of AA, Dop and UA, respectively (Fig. 6). Compared

to the broad and overlapped amperometric responses obtained

with bare electrodes, all above results clearly validate the catalytic

activity of PEDOT for the electrochemical oxidation of AA, Dop and

UA by lowering the oxidation potential and increasing the cur­

rent [37,38,47]. Nevertheless, electrochemical performances are

still slightly lower on platinum PEDOT modified microelectrode:

the peak potentials are shifted to more positive values, and more

precisely at 0.01, 0.215 and 0.34 V, respectively (compared to −0.04,

0.15 and 0.28 V, see section 3.1), and with lower sensitivities. Ear­

lier, by studying the experimental conditions of polymerization, we

have observed that the morphological properties of PEDOT films

determine to a  large extent the catalytic behaviour for the assay of

AA and UA [39]. So, this electrochemical performances discrepancy

could be also due to the electrical, morphological and structural

properties of the resulting polymers. Indeed, through impedance­

metric characterization, PEDOT synthesized on gold is confirmed to

have the higher electrical conductivity compared to platinum one.

These differences can be due either to the intrinsic conductivities

or to the roughness of PEDOT films [49]. Furthermore, SEM charac­

terizations show that acetonitrile­based PEDOT films deposited on

platinum surface show less porous structure than those deposited

on gold surface (Fig. 3b and c). On the other hand, PEDOT adhe­

sion is best on gold surface due to the strong interactions between

gold and sulphur atoms [58,59]. Thus, compared to platinum­based

ones, (Au/PEDOT–Pt–Ag/AgCl) ElecCell integrated microdevices

are more suitable for the simultaneous electrochemical deter­

mination of antioxidant species at millimolar concentration

levels.

3.3. Analytical performances

According to our previous results and optimizations (see sec­

tions 3.1 and 3.2), acetonitrile­based PEDOT electrodeposition was

performed on gold microelectrode. Since silicon­based integration

enables mass fabrication, these investigations were performed for

five different (Au/PEDOT–Pt–Ag/AgCl) electrochemical microcells.

Fig. 7 a–c represents the DPV responses of the PEDOT­modified

microelectrodes to various concentrations of AA, Dop and UA,

respectively. Calibration plots indicate an excellent linearity of

the amperometric responses with AA, Dop and UA concentra­

tions at −0.04, 0.15 and 0.28 V, respectively (Fig. 8). For AA, an

excellent linear relationship (sensitivity: 0.85 mA/mM cm2) was

obtained in the concentration range from 0.5 to 300 mM, with

a limit of detection estimated at 0.2 mM for a signal to  noise

ratio of 3. Then, the calibration for dopamin was also found

to be linear in the range of 0.2–300 mM. In this case, a higher

slope (1.65 mA/mM cm2) value and a limit of detection of 0.1 mM

were evidenced. Finally, in the case of UA, a  linear relation­

ship was found again in the range of 0.1–300 mM with a still

higher sensitivity (3.06 mA/mM cm2) and a limit of detection of

0.05 mM. All these analytical responses can be resumed as  following

(R2 > 0.998):

Ascorbic acid detection (oxidation potential: −0.04 V):

j  (mA/cm2)  = 24 + 0.85 CAA (mM);

Dopamine detection (oxidation potential: 0.15 V):

j  (mA/cm2)  = 9.7 + 1.65 CDop (mM);

Uric acid detection (oxidation potential: 0.28 V):

j (mA/cm2)  = 25 + 3.06 CUA (mM).

In term of concentration ranges, these results were well suited

to the assay of these analytes in medical fields [60,61]. Compared

to works reported in  literature for the simultaneous determination

of AA, Dop, and UA on PEDOT­modified electrodes, it is worth to

note that our results were better or  comparable to most of these

Fig. 7.  Differential  pulse voltammograms  of  (Au/PEDOT­Pt­Ag/AgCl)  elecCell in

0.1 M PBS (pH  7.0) containing  different  concentrations  of (a)  ascorbic  acid,  (b)

dopamine and  (c) uric acid.

electrodes (Table 1), although analytes were used in excess for most

of them. Finally, with the integrated electrochemical microdevice, it

appears that a  significant improvement in limits of detection was

obtained compared to our previous results [39], making it more

suitable for biological analysis.



Fig.  8. Calibration  curves  for  the three  analytes:  ascorbic acid,  dopamine and  uric

acid.

3.4. Reproducibility and stability

The reproducibility and stability of the sensor were investigated

by sensing studies. Ternary mixture of an equimolar solution of

AA, Dop and UA 100 mM was used for the reproducible examina­

tions of five different (Au/PEDOT–Pt–Ag/AgCl) ElecCell. The relative

standard deviation (RSD) was found to be lower than 4.2% for AA,

4.5% for Dop and 3.2% for UA, suggesting that the ElecCell technol­

ogy reproducibility was sufficiently good to  deal with calibration.

The stability of our sensors was examined in ternary mixture after

being stored two weeks in air or in phosphate buffer solution (PBS).

Thus, PEDOT modified microdevices retained 90% of their initial

sensitivities to the different antioxidant species studies (data not

shown).

4. Conclusion

We have developed fully integrated, PEDOT­based, electro­

chemical microcells (ElecCell) allowing the selective detection

of ascorbic acid, dopamine and uric acid in aqueous media.

PEDOT has been successfully synthesized on integrated gold and

platinum microelectrodes while using water and acetonitrile as

solvent. According to DPV characterization, results show improved

detection performances in term of sensitivity and selectivity for

electrodeposited PEDOT layers, emphasizing good results using

water as solvent, better results using acetonitrile as solvent and

best results on gold surfaces compared to platinum ones. For

this last and best case, detection properties of ascorbic acid,

dopamine and uric acid were studied, exhibiting well­separated

oxidation phenomena (oxidation potential: −0.04, 0.15 and 0.28 V,

respectively), linear current variations, high sensitivities (0.85,

1.65 and 3.06 mA/mM cm2,  respectively) and low detection limit

(0.2 mM, 0.1 mM and 0.05 mM, respectively). As a result, the ElecCell

technological platform is adapted to  the mass fabrication of PEDOT­

modified electrochemical devices for the analysis of antioxidant

species. It was applied to model solutions up  to now, but should be

extended to real samples of blood sera and/or urines in the frame

of clinical diagnosis and/or environmental applications.

Acknowledgements

The authors would like to thank Professor Maurice Comtat (LGC,

Toulouse) for helpful discussions and advices. The technological

realizations and associated research works were partly supported

by the French RENATECH network.

References

[1]  V.  Beni,  D.W.M. Arrigan, Microelectrode  arrays  and microfabricated
devices  in electrochemical  stripping  analysis,  Curr. Anal.  Chem. 4  (2008)
229–241.

[2]  O.A.  Sadik,  A.O.  Aluoch,  A.  Zhou, Status  of biomolecular  recognition  using elec­
trochemical  techniques,  Biosens. Bioelectron.  24  (2009)  2749–2765.

[3]  J.W. Schultze,  V.  Tsakova, Electrochemical  microsystem  technologies:  from
fundamental  research to  technical  systems,  Electrochim.  Acta  44  (1999)
3605–3627.

[4]  C. Amatore, S. Arbault,  C.  Bouton, K. Coffi,  J.C.  Drapier, H.  Ghandour,
Y.  Tong,  Monitoring  in  real  time  with  a  microelectrode the release  of
reactive oxygen  and nitrogen  species  by a single macrophage  stimula­
tion by its membrane  mechanical depolarization,  ChemBioChem  7  (2006)
653–661.

[5]  A. Ruffien­Ciszak,  P. Gros,  M. Comtat,  A.M. Schmitt,  E.  Questel,  C.  Casas,
D. Redoules,  Exploration  of  the global antioxidant  capacity  of the stratum
corneum by cyclic voltammetry,  J. Pharm.  Biomed. Analysis  40  (2006)
162–167.

[6]  J.G. Roberts,  J.V. Toups,  E.  Eyualem,  G.S. McCarty,  L.A.  Sombers,  In situ  electrode
calibration  strategy  for  voltammetric  measurements in  vivo,  Anal.  Chem. 85
(2013) 11568–11575.

[7] R.S. Pai, K.M.  Walsh,  M.M.  Crain,  T.J.  Roussel, D.J.  Jackson, R.P. Baldwin,
R.S. Keynton, J.F. Naber,  Fully  integrated three­dimensional  electrodes for
electrochemical detection  in microchips:  fabrication,  characterization  and
applications, Anal.  Chem.  81  (2009) 4762–4769.

[8]  Y.P. Chen,  Y. Zhao,  J.  Chu, S.Y.  Liu,  W.W.  Li, G.  Liu,  Y.C.  Tian, Y.  Xiong,  H.Q. Yu,
Fabrication  and characterization  of an  innovative  solid­state microelectrode,
Electrochim. Acta 55  (2010)  5984–5989.

[9]  K.  Dawson, A. Wahl, S. Barry, C.  Barrett,  N.  Sassiat, Fully­integrated  on­chip
nano­electrochemical devices for  electroanalytical applications, Electrochim.
Acta 115  (2014) 239–246.

[10] N. Pereira­Rodriguez,  Y. Sakai, T. Fujii, Cell­based  microfluidic  biochip for the
electrochemical  real­time  monitoring of glucose  and oxygen,  Sens. Actuators
B 132  (2008) 608–613.

[11] M. Miyashita, N.  Ito, S. Ikeda,  T.  Murayama,  K. Oguma,  J. Kimura, Development
of urine  glucose  meter  based  on  micro­planar  amperometric  biosensor  and  its
clinical  application  for  self­monitoring of urine  glucose,  Biosens.  Bioelectron.
24 (2009) 1336–1340.

[12] S. Ben Amor, E. Vanhove,  F. Sékli  Belaïdi, S.  Charlot, D. Colin,  M.  Rigoulet,  A.
Devin,  J. Launay, P. Temple­Boyer,  S. Arbault,  Enhanced detection  of hydrogen
peroxide  with platinized  microelectrode  arrays  for  analyses  of mitochondria
activities, Electrochim.  Acta  126 (2014)  171–178.

[13]  O. Frey, P.D.  van  der Wal,  S.  Spieth,  O. Brett, K.  Seidl,  O.  Paul,  P. Ruther,  R.
Zengerle, N.F. de  Rooij,  Biosensor microprobes  with integrated  microfluidic
channels for  bi­directional  neurochemical  detection,  J. Neural  Eng. 8  (2011)
1–9.

[14]  A. Altuna, L.  Menendez  de  la  Prida, E. Bellistri, G. Gabriel,  A.  Guilera,  J. Berganzo,
R. Vila,  L.J. Fernandez,  SU­8  based microprobes with  integrated  planar  elec­
trodes  for  enhanced neural depth recording, Biosens. Bioelectron.  37  (2012)
1–5.

[15]  J. Dawson, P.  Jeemon, L.  Hetherington,  C.  Judd, C.  Hastie,  C.  Schulz,  W.  Sloan,  S.
Muir,  A. Jardine,  G. McInnes,  D. Morrison, A.F. Dominiczak,  S.  Padmanabhan,  M.
Walters,  Serum  uric  acid level, longitudinal blood  pressure,  renal function, and
long­term  mortality  in  treated  hypertensive  patients,  Hypertension  62 (2013)
105–111.

[16]  S.S. Rodriguez,  K.A. Salazar,  N.A.  Jara, M.A.  Garcia­Robles,  F.  Perez,  L.E. Ferrada,
E. Luciano, F. Martinez,  F.J.  Nualart,  Superoxide­dependent  uptake of vitamin  C
in  human glioma cells,  J. Neurochem. 127  (2013) 793–804.

[17] S.D.  Cekic, A. Cetinkaya,  A.N.  Avan,  R. Apak,  Correlation  of  total antioxidant
capacity with reactive  oxygen species  (ROS)  consumption  measured  by  oxida­
tive conversion,  J. Agric.  Food Chem. 61  (2013) 5260–5270.

[18] O. Orrigoni,  M.C. De Tullio, Ascorbic  acid: much  more than  just  an  antioxidant,
Biochim. Biophys.  Acta  1569  (2002) 1–9.

[19]  R.M. Wightman,  L.J. May,  A.C.  Michael, Detection  of  dopamine dynamics  in the
brain,  Anal.  Chem. 60  (1988)  769A–793A.

[20]  C. Martin, The  Parkinson’s  puzzle: new developments in  our  understanding  of
Parkinson’s  disease have generated a  number  of promising  new treatments for
this  disabling  condition,  Chem. Britain  34 (1998)  40–42.

[21] V.V.S. Eswara  Dutt, H.A. Mottola, Determination  of uric acid  at  the microgram
level by a  kinetic  procedure  based  on  a pseudo­induction period,  Anal.  Chem.
46  (1974) 1777–1781.

[22] H. Etnet, M. Knoll,  Electrochemical  characterization of  uric acid and ascorbic
acid at a  platinum  electrode, Anal.  Chim. Acta  449  (2001) 129–134.

[23] C. Christophe,  F.  Sékli  Belaïdi, J. Launay,  P. Gros,  E. Questel,  P. Temple­Boyer,
Elaboration of integrated microelectrodes  for the  detection  of  antioxidant
species, Sens. Actuators  B77 (2013)  350–356.

[24]  M. Roushani,  M. Shamsipur, H.R.  Rajabi,  Highly  selective  detection of dopamine
in  the  presence  of ascorbic  acid and uric  acid using thioglycolic  acid capped
CdTe quantum  dots  modified electrode,  J.  Electroanal. Chem.  712  (2014)
19–24.



[25]  B. Kaur,  T.  Pandiyan, B.  Satpati, R.  Srivastava,  Simultaneous  and sensitive  deter­
mination of  ascorbic acid,  dopamine,  uric acid,  and tryptophan  with  silver
nanoparticules­decorated  reduced  graphene oxide  modified  electrode,  Colloid
Surf.  B  111  (2013)  97–106.

[26] X. Wang, M.  Wu,  W.  Tang, Y.  Zhu, L.  Wang,  P. He, Y.  Fang,  Simultaneous  elec­
trochemical  determination  of ascorbic acid,  dopamine  and uric acid using a
palladium  nanoparticle/graphene/chitosan  modified  electrode,  J. Electroanal.
Chem. 695 (2013)  10–16.

[27] T.Q.  Xu, Q.L. Fhang, J.N.  Zheng, Z.Y.  Lv, J.  Wei, A.J. Wang,  J.J.  Feng,  Simultaneous
determination of  dopamine and uric acid  in the presence of ascorbic  acid  using
Pt  nanoparticles  supported  on  reduced  graphene  oxide, Electrochim.  Acta 115
(2014)  109–115.

[28] E. de Pieri Troiani, E.R. Pereira­Filho,  R.  Censi  Faria, Chemometric  strate­
gies to  develop  a  nanocomposite  electrode for  simultaneous  determination
of ascorbic  acid,  dopamine,  and uric acid,  Electroanalysis  23  (2011)
2822–2831.

[29]  H. Li,  Y. Wang, D.  Ye, J. Luo, B.  Su, S. Zhang,  J.  Kong,  An  electrochemical  sensor for
simultaneously  determination  of ascorbic acid,  dopamine,  uric  acid and trypto­
phan based on MWNTs bridged  mesocellular graphene  foam  nanocomposite,
Talanta 127  (2014)  255–261.

[30]  J. Zhan, Z. Zhu, J. Zhu, K. Li, S. Hua, Selective determination  of  dopamine,  ascorbic
acid  and  uric acid at  SDS­MWCNTs modified glassy carbon electrode,  Int. J.
Electrochem.  Soc. 9  (2014) 1264–1272.

[31]  P. Manivel,  M. Dhakshnamoorthy,  A.  Balamurugan,  N. Ponpandian,  D. Man­
galaraj, C. Viswanathan,  Conducting  polyaniline­graphene  oxide fibrous
nanocomposites:  preparation,  characterization  and  simultaneous  electro­
chemical  detection of  ascorbic  acid,  dopamine and  uric acid, RSC Adv. 3  (2013)
14428–14437.

[32]  J. Du, R.  Yue, F.  Ren, Z.  Yao, F.  Jiang,  P. Yang, Y.  Du, Novel  graphene  flowers  mod­
ified  carbon  fibers  for  simultaneous  determination  of  ascorbic  acid,  dopamine
and uric  acid,  Biosens.  Bioelectron. 53  (2014) 220–224.

[33] D. Wu,  Y. Li,  Y. Zhang, P. Wang,  Q.  Wei, B. Du, Sensitive  electrochemical
sensor  for  simultaneous determination  of dopamine, ascorbic acid,  and uric
acid  enhanced  by amino­group  functionalized  mesoporous Fe3O4@graphene
sheets, Electrochim. Acta  116 (2014)  244–249.

[34]  Y. Li, X.  Lin,  Simultaneous  electroanalysis  of  dopamine, ascorbic  acid and  uric
acid  by poly  (vinyl  alcohol)  covalently  modified  glassy  carbon electrode,  Sens.
Actuators B  115 (2006)  134–139.

[35]  M. Mazloum­Ardakani,  M.A. Sheikh­Mohseni,  A.  Benvidi, Electropolymeriza­
tion of thin  film  conducting  polymer and its application  for  simultaneous
determination of ascorbic  acid, dopamine and  uric  acid,  Electroanalysis  23
(2011)  2822–2831.

[36] J. Samseya,  R.  Srinivasan,  Y.T.  Chang,  C.W. Tsao,  V.S. Vasantha,  Fabrication
and characterisation  of high  performance  polypyrrole modified  microar­
ray sensor  for  ascorbic acid determination,  Anal.  Chim.  Acta 793  (2013)
11–18.

[37]  S.S. Kumar, J. Mathiyarasu,  K.L.N. Phani,  V.  Yegnaraman, Simultaneous  deter­
mination of  dopamine  and ascorbic acid on poly  (3 4­ethylenedioxythiophene)
modified  glassy  carbon electrode, J. Solid State  Electrochem.  10 (2006)
905–913.

[38]  J. Mathiyarasu,  S. Senthilkumar,  K.L.N. Phani, V.  Yegnaraman,  PEDOT­Au
nanocomposite film  for  electrochemical  sensing, Mater.  Lett. 62 (2008)
571–573.

[39] F.  Sekli  Belaidi, P. Temple­Boyer,  P. Gros, Voltammetric  microsensor  using
PEDOT  modified  gold electrode  for  the simultaneous  assay of ascorbic  and  uric
acids, J.  Electroanal.  Chem. 647  (2010)  159–168.

[40]  K.C. Lin, C.Y. Yin,  S.M.  Chen,  Simultaneous  determination  of  AA,  DA,
and UA  based  on bipolymers  by  electropolymerization  of  luminol  and
3,4­ethylenedioxythiophene monomers,  Int.  J.  Electrochem.  Sci.  6 (2011)
3951–3965.

[41]  S. Yu, C.  Luo, L.  Wang, H. Peng,  Z.  Zhu, Poly (3 4­ethylenedioxythiophene)­
modified  Ni/silicon microchannel  plate  electrode for  the simultaneous
determination of ascorbic  acid,  dopamine and uric  acid, Analyst  138  (2013)
1149–1155.

[42]  K.C. Lin, J.Y. Huang,  S.M.  Chen,  Simultaneous  determination  of ascorbic  acid,
dopamine,  uric  acid and hydrogen  peroxide  based  on  co­immobilization  of
PEDOT  and  FAD  using  multi­walled  carbon nanotubes, Anal. Methods  6  (2014)
8321–8327.

[43]  L.B.  Groenendaal,  F.  Jonas, D.  Freitag,  H. Pielartzik, J.R.  Reynolds,  Poly(3,4­
ethylenedioxythiophene) and its derivatives: past,  present,  and future, Adv.
Mater.  12 (2000) 481–494.

[44] R. Jolly, S. Pairis, C. Petrescu, Comparative  ageing  of three electroconductive
polymers, J. Chim.  Phys. 95  (1998)  1400–1405.

[45]  K.  Lerch,  F.  Jonas, M. Linke,  Properties  and  applications of Baytron  (PEDT),  J.
Chim.  Phys.  95  (1998) 1506–1509.

[46]  J. Roncali, A. Yassar,  F.  Garnier, Electrosynthesis  of  highly  conducting  poly(3­
methylthiophene)  thin films,  J. Chem. Soc. Chem. Commun.  9 (1988)  581–582.

[47]  C.P.  Andrieux, J.M.  Dumas­Bouchiat,  J.M. Savéant,  Kinetics of  electrochemical
reactions mediated  by  redox  polymers  films,  J. Electranal.  Chem. 169  (1984)
9–21.

[48]  E. Vanhove,  A.  Tsopéla,  L. Bouscayrol, A. Desmoulin, J. Launay,  P.  Temple­Boyer,
Final capping  passivation  layers  for  long­life microsensors in real  fluids,  Sens.
Actuators B  178 (2013)  350–358.

[49]  V. Castagnola,  C.  Bayon, E. Descamps,  C.  Bergaud, Morphology  and conductivity
of PEDOT  layers produced by  different electrochemical  routes, Synth.  Metals
189 (2014)  7–16.

[50]  E. Tamburri,  S. Orlanducci,  F.  Toschi, M.L.  Terranova, D.  Passeri, Growth
mechanisms, morphology  and  electroactivity  of  PEDOT layers  produced  by  dif­
ferent  electrochemical  routes  in  aqueous  medium,  Synth. Metals  159  (2009)
406–414.

[51]  J. Bobacka, A. Lewenstam, A. Ivaska, Electrochemical  impedance  spectroscopy
of oxidized  poly (3  4­ethylenedioxythiophene)  film  electrodes  in  aqueous  solu­
tions, J.  Electroanal. Chem.  489  (2000)  17–27.

[52]  L. Pigani,  B.  Zanfrognini, R. Seeber,  PEDOT­modified  microelectrodes,  prepara­
tion, characterisation  and  analytical performances,  Electroanalysis 24  (2012)
1340–1347.

[53]  J.C.  Gustafsson,  B. Ledberg,  O.  Inganäs,  In  situ  spectroscopic  investigations
of electrochromism  and ion transport in a  poly  (3 4­ethylendioxythiophene)
electrode  in  a  solid  state electrochemical  cell, Solid  State  Ionics 69  (1994)
145–152.

[54]  T.F. Otero, I.  Cantero, H.  Grande,  Solvent  effects  on  the charge  storage  ability  in
polypyrrole,  Electrochim.  Acta 44  (1999) 2053–2059.

[55]  R. Kiefer,  G.A. Bowmaker,  R.P. Cooney,  P.A.  Kilmartin, J. Travas­Sejdic,  Cation
driven  actuation for  free  standing PEDOT films prepared from propylene
carbonate  electrolytes containing  TBACF3SO3 , Electrochim. Acta  53 (2008)
2593–2599.

[56]  H.J. Ahonen,  J.  Lukkari, T. Hellstrom,  J. Mattila, J. Kankare,  Characterisation  of
poly (3 4­ethylenedioxythiophene)  films  polymerised  in  aqueous  media,  Synth.
Metals  119  (2001) 119–120.

[57] S. Patra, K.  Parai, N.  Munichandraiah,  Scanning electron  microscopy  studies of
PEDOT  prepared  by various  electrochemical  routes, Synth.  Metals  158  (2008)
430–435.

[58] G.E. Poirier, M.J. Tarlov, Molecular ordering  and  gold migration  observed  in
butanethiol  self­assembled  monolayers  using  scanning  tunnelling  microscopy,
J. Phys. Chem. A 99  (1995)  10966–10970.

[59]  Y.C.  Yang, Y.P. Yen,  L.Y.  Yan,  S.L. Yau,  K.  Itaya,  Elucidation of  the deposition pro­
cesses  and  spatial structures  of alkanethiol  and arylthiol  molecules  adsorbed
on Pt(111)  electrodes  with in situ scanning tunnelling  microscopy,  Langmuir
20 (2004) 10030–10037.

[60] P. Boulanger,  J.,  Polonovski,  F.,  Tayeau, P. Mandel and  G. Biserte,  Biochimie
Médicale, 8th  Edition,  Masson,  Paris,  1971.

[61]  M.C. Polidori, W. Stahl,  O.  Eichler,  I.  Niestroj, H.  Sies, Profiles  of  antioxidants  in
human  plasma,  Free Radic. Biol. Med.  30  (2001) 456–462.

Biographies

Fadhila  Sekli Belaïdi  was born on  February  22  1980.  She  received  her  Master’s
Degree  in  process and  environmental  engineering  from  the  “Institut  National  des
Sciences Appliquées  de  Toulouse” (France) in  2006. She  joined the “Laboratoire
de  Génie  Chimique” (LGC) from the University  of Toulouse (France)  in  2007.  She
is working on  the  development  of  electrochemical microsensors  for  chemical  and
biochemical  detection.

Aurélie  Civélas was born  in Aix­en­Provence,  France, on  January  12  1989. She  joined
the “Laboratoire d’Analyse  et d’Architecture  des Systèmes”  (LAAS) of  the “Centre
National  de  la Recherche  Scientifique”  (CNRS) of  Toulouse  in  2012  for  a  one  year
training course. She  worked  on  the development  of electrochemical  microsensors
for  chemical and  biochemical  detection.  She received the degree in electronic  Engi­
neering from the in  “Chimie ­ Physique–Electronique”  school  (Lyon–France)  in 2014.

Valentina Castagnola was born in  Bologna,  Italy  in  1986. She received the master
degree  in  photochemistry  and  material  chemistry from the  University  of  Bologna,  in
2011. She  joined the “Laboratoire  d’Analyse  et  d’Architecture  des Systèmes”  of  the
“Centre National  de la Recherche  Scientifique”  (LAAS­CNRS),  in  2011 as PhD Student.
She is carrying  out her  experimental research  concerning  implantable  microdevices
for  the recording  of  the neural activity.

A. Tsopela  was  born in  Athens,  Greece  in  1988.  She  received  the  master degree
in  chemical  engineering  from the  National  Technical  University  of Athens  (NTUA ­
Greece), in  2011.  She joined the “Laboratoire  d’Analyse  et  d’Architecture  des  Sys­
tèmes” of the “Centre  National de  la  Recherche Scientifique”  (LAAS­CNRS),  in  2011
as PhD Student. She  is carrying out her  experimental research in  the development
of  microsensors  with environmental applications.

Laurent  Mazenq was  born on  May 30, 1982. He  joined the Laboratoire d’Architecture
et  d’Analyse  des Systèmes of the French Centre National  de  la  Recherche  Scientifique
(LAAS­CNRS)  in  2002. Since then, he  has  been  working  on  photolithography  and on
micro/nanotechnologies process realization.

Pierre  Gros  was  born in  1970.  He graduated in physical chemistry  in 1992 and
received  his PhD  degree in Chemical  Engineering  in  1996  at  the University  Paul
Sabatier  in  Toulouse.  He is  now Professor  in  Electroanalytical Engineering  in the
Chemical Engineering  Laboratory  (Toulouse­France).  He is currently  working  on the
development of electrochemical  (bio)sensors.

Jérôme Launay  was  born  on  March  11,  1975.  He received the degree in elec­
tronic engineering  from the  Institut  National  des  Sciences Appliquées de  Toulouse”
(France)  in 1998.  He  joined the “Laboratoire  d’Analyse et  d’Architecture  des Sys­
tèmes” from the  French  “Centre  National  de  la  Recherche  Scientifique” (LAAS­CNRS)
in  1998 and  received the  PhD  degree from the “Institut  National des Sciences
Appliquées  de  Toulouse”  (France)  in  2001. In 2002, he became lecturer  at  the



University  of  Toulouse (France).  His  research  activities  include the development
of  electrochemical  microsensors for  the detection in  liquid  phase.

Pierre  Temple­Boyer  was  born on  October 25, 1966. He  received  his Engi­
neer’s  Degree  in electronic engineering  from  the “Ecole  Supérieure  d’Electricité”
(Paris–France)  in  1990  and  his Master’s  Degree in microelectronics  from  the

University  of Toulouse  (France)  in  1992. He  joined  the “Laboratoire d’Analyse
et  d’Architecture  des Systèmes” (LAAS) from  the French  “Centre  National  de  la
Recherche Scientifique”  (CNRS)  in  1992  and  received  the PhD  degree from  the “Insti­
tut National  des  Sciences  Appliquées de  Toulouse” (France)  in 1995.  Since  then,  as
a CNRS researcher,  he has  worked  at  LAAS on the development  of  physical  and
chemical microsensors.


