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General formulation of Luria-Delbrück distribution of the number of mutants.

Bahram Houchmandzadeh
CNRS, LIPHY, F-38000 Grenoble, France

Univ. Grenoble Alpes, LIPHY,
F-38000 Grenoble, France

The Luria-Delbrück experiment is a cornerstone of evolutionary theory, demonstrating the ran-
domness of mutations before selection. The distribution of the number of mutants in this experiment
has been the subject of intense investigation during the last 70 years. Despite this considerable ef-
fort, most of the results have been obtained under the assumption of constant growth rate, which is
far from the experimental condition. We derive here the properties of this distribution for arbitrary
growth function, for both the deterministic and stochastic growth of the mutants. The derivation
we propose uses the number of wild type bacteria as the independent variable instead of time. The
derivation is surprisingly simple and versatile, allowing many generalizations to be taken easily into
account.

I. INTRODUCTION.

The Darwin-Wallace theory of evolution rests upon
mutation of living organisms and their selection. In their
seminal article [1], Luria and Delbrück (LD) described an
experiment demonstrating the randomness of mutational
events before the selection process. The experiment con-
sists of growing C cultures of bacteria in parallel in iden-
tical environments, beginning with a small number N0

(typically 103) in each batch. After a sufficient growth
period, the cultures saturate and the number of wild type
bacteria reaches N (typically 109−1010). Each culture is
then tested against an antibacterial agent, a phage virus
in the LD case, and the number of surviving bacteria aris-
ing from mutation in the cultures is counted by a plating
method. If C is large, the probability P (m) of having m
mutants can be experimentally determined; in practice,
C cannot be large and therefore only statistical quanti-
ties such as the mean and the variance of the number of
mutants can be estimated.

The LD experiment has spurred a large interest and
many authors have developed increasingly refined mod-
els to estimate statistical properties of the random vari-
able X of the number of mutants, such as its cumu-
lant/probability/moment generating functions (cgf, pgf,
mgf), from which the mutation rate or probability can
be estimated. The pioneering authors were Lea and
Coulson[2], Armitage [3], Bartlett[4], Crump and Hoel[5],
Mandelbrot[6], Sarkar, Ma and Sandri[7] who set the LD
distribution on a solid mathematical ground, generalized
the model to take into account stochastic growth of the
mutant and the wild type, and developed algorithms to
estimate the mutation rate. The works of these and
other authors have been reviewed in an elegant article
by Zheng[8] which also contains original results and cor-
rections of some of the errors contained in the previous
works. These investigations have been extended during
the last 15 years by authors such as Angerer[9], Dewanji
et al[10], Ycart[11], Kessler and Levine[12, 13]. A descrip-
tion of some of these more recent works will be given in
the following sections.

The fundamental LD experiment is now currently used

to estimate mutation rates in various setups such as an-
tibiotic resistance or experimental investigation of the
evolutionary process[14–16].

However, nearly all of the existing computations have
focused on the exponential growth (either deterministic
or stochastic) of the wild type and mutant bacteria, al-
though Dewanji et al.[10] have extended these results to
Gompertz growth. The reason behind this choice is that
in these formulations, an explicit expression for the num-
ber of wild type (WT) cells as a function of time is needed
in order to compute the statistical properties of the num-
ber of mutants.

The assumption of constant growth rate is however too
restrictive. Experimentally, the growth is never exponen-
tial but follows a Monod curve[17] : the growth rate is
not constant, but begins with a value close to zero (called
the lag phase), increases gradually to a maximum value
and then decreases as the number of bacteria increases,
to finally reach zero when the culture is saturated. Var-
ious functions (logistic, Gompertz, Richards, Stannard,
...) are used in the literature to model the growth curve
and their relevance has been studied in depth by Zwi-
eteting et al. [18].

The real time however is not the relevant independent
variable in terms of which the system may be described.
The WT population grows from an initial number of cells
N0 to reach a final value N . Each time a WT cell divides,
there is a small probability ν that a mutant having the
desired trait (phage or antibiotic resistance) appears. It
does not matter how much time the system spends be-
tween WT population size n and n+1, but only the fact
that once a division has taken place, a mutation may ap-
pear. For the mutants growing in the same environment
as the WT, their growth curve will be similar (but not
necessarily equal) to that of the WT. The only quanti-
ties that are indeed measured in an experiment are the
number of mutants m, the initial WT population N0 and
the final population N + m. Even though the growth
curve can theoretically be measured, its determination is
cumbersome and, as we will see, not relevant.

In this paper, we shall use the WT population size n
as the independent variable. It appears that this formu-
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lation of the LD distribution is surprisingly simple and
applies to any growth curve for the bacteria, including
of course exponential growth. As in the case of classical
derivation of the LD distribution, this derivation is valid
in the limit of large final population size, which is typi-
cal of experiments involving bacteria. The formulation is
versatile and can take into account many generalizations,
some of which are considered in this article. A similar
approach has been taken by Kessler and Levine[12, 13]
when solving directly for the Master equation governing
the dynamics of the mutant population.

This article is organized as follows: in the next section,
we present the basic concept for the simple case of deter-
ministic growth of both WT and mutant bacteria, where
only mutations apparitions are random. We present some
generalizations, such as different growth rates for WT
and mutants and non-constant mutation probability. In
the following section, we generalize the model to the case
of stochastic growth of the mutant, where we consider (i)
a linear birth process for the mutant and (ii) a random
relative growth rate for the mutant. We stress that in
the following computations, the growth rate is not con-
stant, but can have an arbitrary form. The last section
is devoted to a discussion of possible extensions of this
work and conclusions. An appendix, containing straight-
forward mathematical derivations is included in order to
make this article self sufficient.

II. DETERMINISTIC MODEL.

A. Equal growth of WT and mutant.

Consider a culture of WT bacteria growing from size
N0 to size N . The growth curve can be as general as pos-
sible assuming that no death event takes place. LetXn be
the random variable describing the occurrence of a mu-
tant when the WT population increases from n to n+1.
Throughout this paper, we use the term mutant to des-
ignate an individual which acquire a trait (e.g. phage or
antibody resistance) which will be tested once the growth
is stopped.

Denoting the mutation probability by ν,

Pr(Xn = 0) = 1− ν ; Pr(Xn = 1) = ν (1)

This may seem to be an approximate description, be-
cause if during a cell division, a mutation has occurred,
obviously the number of WT cells has not increased
from n to n + 1. A more precise formulation would be
Pr(Xn = k) = (1 − ν)νk, i.e., the number of mutants
when the WT population increases by one unit is geo-
metrically distributed. However, as ν ≪ 1 (ν is usually
of the order of 10−8), we will use the relation (1) to de-
scribe the random variable Xn. The generalization to
the geometric distribution of Xn is straightforward (see
appendix 1). Note that most formulations of LD distri-
bution use the above approximation.

Figure 1: The number of mutants X at WT population size N
is the sum of the contributions of mutants lineages appearing
at WT population size ni. The size of the lineage of mutant i
appearing at WT population size ni is mi(n) = n/ni for n ≥

ni. The i−th mutant, appearing at size 1 at WT population
ni will be present at size N/ni in the final population.

We assume in this subsection that both mutant and the
WT population follow a deterministic, equal growth. We
do not assume the growth rate to be a constant. As the
mutants are similar to the WTs, a mutant appearing in
one copy at WT population size n will contribute N/n to
the number of mutants when the WT population reaches
size N (figure 1). In other words, the proportion of the
number of this mutant to the number of WT population
will remain constant.

Let Y Nn = (N/n)Xn be the contribution of this mu-
tant to the final number of mutants X , when the WT
population reaches size N . Then

X =

N
∑

n=N0

Y Nn

As the mutant occurrences are independent random vari-
ables, the moment (mgf) and cumulant generating func-
tions (cgf) are

φ(s) =
〈

esX
〉

=

N
∏

n=N0

〈

esY
N
n

〉

ψ(s) = log
(〈

esX
〉)

=

N
∑

n=N0

log
(〈

esY
N
n

〉)

On the other hand, by its very definition,
〈

esY
N
n

〉

= 1− ν + νesN/n

which gives the cgf as

ψ(s) =
N
∑

n=N0

log
(

1− ν + νesN/n
)

= N

ˆ 1

x0

log
(

1− ν + νes/x
)

dx (2)
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where in the second expression, we have used the con-
tinuous approximation for the sum, x = n/N and x0 =
N0/N . The relative error in using the continuous approx-
imation is at most O (1/N0 log(x0)).

Note that this derivation is analogous to the filtered
Poisson process derivation used when the problem is for-
mulated in real time ([8],eq. 14). However, because the
problem is formulated in terms of WT population size,
the propagator is simply a straight line regardless of the
growth rate function (figure 1).

Expanding the expression (2) to the first order in ν
and restricting the domain of definition to s . −x0 log ν,

ψ(s) = −θφ+ θ

ˆ 1

x0

es/xdx+O(ν2) (3)

Where θ = Nν and φ = 1 − x0. For the particular case
of exponential growth, the expression (3) for the cgf has
been obtained by Crump and Hoel [5] and in closed form
by Zheng ([8],eq.14). Note that for Zheng, N = exp(βt),
i.e. the initial number of WT bacteria is 1.

The first two cumulant coefficients κp = ψ(p)(0) are
then

κ1 = −θ log x0 (4)

κ2 =
θφ

x0
(5)

These expressions for the average (κ1 ) and the variance
(κ2 ) have been obtained originally by LD for the ex-
ponential growth of bacteria [1]. As we see here, the
hypothesis of exponential growth is superfluous and the
expressions (4-5) are valid for arbitrary growth curves.
To the leading order in ν and x0 , the general expression
for cumulant coefficients is

κp+1 =
θ

pxp0
p > 0 (6)

These expressions are known for the special case of ex-
ponential growth ([8],eq.9 for equal growth rate).

B. Different growth of WT and mutant.

Let us now consider the case where WT (n) and mu-
tants (m) (once they have appeared) have similar but
different growth rates:

dn

dt
= α(n, t)n ;

dm

dt
= cα(n, t)m

where c is a constant. We do not specify any particular
form for the growth rate, but we suppose that the mu-
tant follows the same law as the WT, within a constant
multiplicative factor. This is the case for example where
the resources are depleted by the growth of the bacteria,
and the mutant is inferior to the WT for its duplication.

Time can be eliminated between the above equations:
dm/dn = c(m/n). A mutant appearing at one copy when

Figure 2: Contribution of mutants with different growth rate.
The size of the lineage of mutant i appearing at WT popula-
tion size ni is mi(n) = (n/ni)

c for n ≥ ni.

the population size is n will contribute (N/n)c to the final
number of mutants (figure 2). The computation of the
preceding section can be repeated and leads to

ψ(s) = N

ˆ 1

x0

log
(

1− ν + νes/x
c
)

dx

Keeping only the leading term in ν and x0, for c 6= 1/p,
the p−th cumulant coefficient is given by

κp =
θ

cp− 1
(x1−cp0 − 1)

The case c = 1/p can be recovered from the above for-
mula by taking the limiting value for c→ 1/p and reads

κp = −θ log x0

For the particular case of exponential growth (α(n, t) = α
), this is the expression given by Zheng ([8],eq.9).

C. Variable mutation probability.

In most models the mutation probability ν is consid-
ered to be a constant and independent of time, i.e., pop-
ulation size. This is a sound hypothesis when the muta-
tion involves only point-mutations on the chromosome.
However, traits such as virus or antibiotic resistance may
involve many point mutations before the trait is func-
tional. Bacteria at the end of the growth process, having
achieved more divisions, may be more prone to mutate
to the given trait than bacteria at the early stage of the
growth. A crude approximation of the above phenomena
will be a mutation rate that depends on the population
size ν = ν(n). The formulation for the number of mu-
tants of the previous section does not suppose a constant
rate of mutation and the relation 2 for ψ(s) remains valid.
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Figure 3: The stochastic propagator KN

n of the mutant ap-
pearing at WT population size n.

The first two cumulants are given by

κ1 = N

ˆ 1

x0

ν(x)

x
dx

κ2 = N

ˆ 1

x0

ν(x)− ν2(x)

x2
dx

III. STOCHASTIC GROWTH OF MUTANTS.

A. General discussion.

Until now, we have considered the deterministic prop-
agation of the mutant from its appearance at population
size n to its final value at population size N . We will
denote the propagator as KN

n . The contribution of the
mutant appearing at WT population size n to the final
population N was expressed as

Y Nn = XnK
N
n

For the deterministic case, KN
n = N/n and the mgf of

Y Nn was simply

〈

esY
N
n

〉

= 1− ν + νesN/n

We will now consider for the mutant a stochastic prop-
agator KN

n (figure 3). Because Xn takes only the values
0 or 1,

〈

esY
N
n

〉

=
〈

esXnK
N
n

〉

= 1− ν + ν
〈

esK
N
n

〉

(7)

(see appendix 2). Therefore, all the discussion of the pre-
ceding section naturally generalizes to stochastic propa-
gation and the cgf for the number of mutants at popula-

tion size N is

ψ(s) =
N
∑

n=N0

log
(

1− ν + ν
〈

esK
N
n

〉)

. (8)

Knowing the statistical properties of the propagator gives
access directly to the statistical properties of the total
number of mutants. Before applying this concept to spe-
cific cases, let us compute the first two cumulant coeffi-
cients:

κ1 = ν
N
∑

n=N0

〈

KN
n

〉

(9)

κ2 = ν

N
∑

n=N0

〈

(

KN
n

)2
〉

− ν2
N
∑

n=N0

〈

KN
n

〉2
(10)

The mean κ1 is what we already had in the deterministic
case, where

〈

KN
n

〉

= N/n. Let us express the second

moment of KN
n as a function of its mean and variance

V Nn
〈

(

KN
n

)2
〉

= V Nn +
〈

KN
n

〉2

Then

κ2 = ν(1− ν)

N
∑

n=N0

〈

KN
n

〉2
+ ν

N
∑

n=N0

V Nn

The first term on the RHS of the above relation is what
we already had in the case of deterministic growth. The
second term is the contribution of the stochasticity of the
propagator to the variance of the number of mutants at
population size N .

B. Linear birth process.

Consider the case where the growth of the WT is de-
terministic and continuous

dn

dt
= α(n, t)n

while the mutant, once it has appeared, follows a stochas-
tic growth with transition probability density

W̃ (m→ m+ 1) = α(n, t)m

where W̃ (m → m + 1)dt is the probability that this lin-
eage of the mutant has increased its size by one unit in the
interval [t, t+dt]. This model was first introduced by Lea
and Coulson[2] for exponential growth case α(n, t) = α.

A note of caution should be made here. Although
widely used, the linear birth model may not be very re-
alistic, as bacterial division times are not exponentially
distributed. Indeed, after a division, a bacterium needs
to elongate again to its original size before being able to
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divide again, so that the next division time cannot be
smaller than a finite time τ . In fact, the distribution of
division times around the time τ is fairly narrow and the
division process is much less random than a linear birth
process. The phenomenon has been experimentally in-
vestigated by a microfluidic device by Wang et al [19] ;
the overestimation of the mutation rate by a linear birth
model, for the exponential growth case, has been inves-
tigated by Ycart [11].

Let us now come back to the linear birth model. As in
the previous section, the real time is not the best choice
of independent variable and we can write the stochastic
growth of the mutant in terms of WT population size:
noting W (m → m+ 1)dn the probability that a mutant
has divided when the WT population size ∈ [n, n+ dn],
we have

W (m → m+ 1) = W̃ (m → m+ 1)
dt

dn
=
m

n
(11)

Note that the equation for the mean of this lineage is

d 〈m〉

dn
=

〈m〉

n

which conserves the ratio between the size of this lineage
and the WT population, in agreement with the deter-
ministic case investigated above (subsection II A).

The master equation governing the growth of the mu-
tant is

∂P (m;n)

∂n
= W (m− 1 → m)P (m− 1;n)−

W (m→ m+ 1)P (m;n) (12)

and the mgf of the propagator KN
n is given by (see ap-

pendix 3):

〈

esK
N
n

〉

=
nes

(n−N)es +N
(13)

Using now the expression (8) and the continuous variable
x = n/N , we obtain the cumulant generating function of
the number of mutants

ψ(s) = N

ˆ 1

x0

log

(

1− ν +
νesx

es(x− 1) + 1

)

dx (14)

Note that the above integral can be expressed in an an-
alytical, albeit cumbersome, form. The expressions for
the two first cumulant coefficients are

κ1 = −θ log x0

κ2 =
θφ

x0
(2− ν) + θ log x0

≈ 2
θφ

x0
+ θ log x0

Where as before, θ = Nν and φ = 1 − x0. The variance
of the number of the mutants is now approximately twice
what we had for the deterministic case. The exponential

growth case can be recovered from the above expression
and is equal to the expressions given by Lea and Coulson
and Zheng ([8], eq.52-53).

Other cumulant coefficients can be readily recovered
by multiple derivation of expression (14). Restricting the
computations to the leading order of ν and x0, the ex-
pression for the cumulant coefficients is (see appendix 4):

κp = θ
p!

(p− 1)xp−1
0

p ≥ 2 (15)

Note that even in the case of exponential growth, no
general expression for the cumulant coefficients could
be obtained by classical methods ([8]). Comparing the
above expression with the deterministic case where κp =

Nν/(p− 1)xp−1
0 , we see that indeed the linear birth pro-

cess induces large amplification of the p−th cumulant
coefficient by a factor of p!.

The probabilities. To compute the probabilities, it
is more advantageous to use the probability generating
function (pgf)

G(z) =
〈

zX
〉

= eψ(z)

where ψ(z) is defined from (14) by setting z = es, i.e.:

ψ(z) = N

ˆ 1

x0

log

(

1− ν +
νzx

z(x− 1) + 1

)

dx (16)

Approximating the above expression to the first order in
ν, we have

ψ(z) = θ(
1

z
− 1) log (1− φz) +O(ν2) (17)

where θ = Nν and φ = 1 − x0. We therefore obtain a
simple expression for the probability generating function

G(z) = (1− φz)θ(1/z−1) (18)

For the case of exponential growth, the above expres-
sion (without the φ factor) was first discovered by Lea
and Coulson[2]; omitting the φ factor however results
in divergent moments. The correct expression can be
seen in the Zheng review ([8], eq 65). We stress again
that relation (18) is very general and does not depend on
the assumption of exponential growth. Note that in the
case of exponential growth, θ ∼ exp(βt) and all the mo-
ments diverge as t → ∞. This divergence, discussed by
Bartlett and later by Zheng [8], cannot be cured within
the framework of the exponential growth model. No such
divergence exists in the present formulation, as the WT
population size, following any realistic growth curve, will
remain finite.

In order to evaluate the probabilities, we have first to
compute ψ(p)(0). Expanding expression (17) in powers
of z we have

ψ(z) = −θφ+ θ

∞
∑

n=1

(

φn

n
−
φn+1

n+ 1

)

zn
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Keeping only the first leading terms in θ and x0 we have

ψ(z = 0) = −θφ (19)

1

p!
ψ(p)(z = 0) =

θ

p(p+ 1)
−
θpx20
p+ 1

(20)

where the second term in x20 can be neglected for p ≪
1/x0 and θφ ≈ θ. We can now use the Faà Di Bruno
Formula [20] to compute the k−th derivative of G(z) at
z = 0 and obtain the probabilities :

P (k) =
1

k!
G(k)(0)

= e−θ
∑

{mj}

k
∏

j=1

1

(mj)!

(

θ

j(j + 1)

)mj

where the sum is taken over all k−tuples {mj} such that
∑k

j=1 jmj = k. The above formula can be easily pro-
grammed to compute numerically the probabilities. The
only linear term in θ in the above formula is for mk = 1,
mi<k = 0. Therefore, for θ ≪ 1, the probabilities take
the simple form of

P (0) = e−θ

P (k) = e−θ
θ

k(k + 1)
k > 0

The explicit expression for the probabilities in the linear
birth model has been intensely investigated by many au-
thors, and reviewed by Zheng ([8], 5.3) and the above ex-
pressions are known for the constant linear birth model.
An explicit expression in terms of Landau distribution
has been found recently by Kessler and Levine [12, 13]
for both the deterministic and stochastic growth model.

Experimentally, obtaining the probabilities implies a
very large number of parallel cultures and the above ex-
pressions may not be of great practical use.

Different growth rate. The discussion of the preced-
ing subsection can be extended to take into account a
different relative growth rate for the mutant compared
to the WT:

dn

dt
= α(n, t)n

W̃ (m→ m+ 1) = cα(n, t)m

Repeating the discussion of the preceding sections, the
cumulant generating function in this case is (see ap-
pendix 3)

ψ(s) = N

ˆ 1

x0

log

(

1− ν + ν
xces

(xc − 1)es + 1

)

(21)

from which the cumulant coefficients can be deduced as
before.

Figure 4: Deterministic growth, random relative growth rate.
The size of the lineage of mutant i appearing at WT popula-
tion size ni is mi(n) = (n/ni)

c for n ≥ ni. This time however,
c is a random variable.

C. random relative growth rate.

The traditional formulation of LD distribution assumes
that all mutants are similar in their growth function. As
many different mutations can bring a bacteria to the same
phage resistance, this assumption may seem too restric-
tive and can be easily relaxed. For example, a compre-
hensive study of this phenomenon has recently been pub-
lished [21] where the growth rate of all mutants in the
gene TEM-1, conferring resistance to the antibiotic ce-
fotaxime, where measured and shown to be variable in
some conditions.

Consider the case where the growth of both mutants
and WT are deterministic as in subsection II B

dn

dt
= α(n, t)n ;

dm

dt
= cα(n, t)m

but the relative growth rate c is now a random variable
(figure 4): when it appears, a mutant picks a relative
growth rate c from a given distribution, which is trans-
mitted to its progeny.

Following the discussion of subsection III A, the prop-
agator this time is

KN
n = (N/n)c

where c is now a random variable. Let us denote ρ(s) its
moment generating function

ρ(s) = 〈esc〉

Then according to relations (9-10), the first two cumu-
lants are now, to the first order in ν:

κ1 = θ

ˆ − log x0

0

ρ(z)e−zdz

κ2 = θ

ˆ − log x0

0

ρ(2z)e−zdz
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For example, if c follows a Normal distribution c =
N (µ, σ), then ρ(s) = exp(µs + (1/2)σ2s2) and these ex-
pressions can be evaluated in terms of the error function.
For the specific case of µ = 1 and σ ≪ 1, restricting the
computation to the leading orders of ν and x0, we have

κ1 = −θ log x0

(

1 +
σ2

6
(log x0)

2

)

κ2 =
θ

x0

(

1 + 2σ2
(

1 + (1 + log x0)
2
))

IV. DISCUSSION AND CONCLUSION.

In the previous sections we have given the general so-
lution of the LD distribution through the derivation of
its cumulant generating function. The key point to this
derivation is to change the independent variable from
time to WT population size, which is indeed the relevant
variable : whatever the growth function, a mutation can
occur only when a WT cell divides and WT population
size changes from n to n+1. This consideration consider-
ably simplifies the solution of the problem and allows us
to extend the solution to arbitrary growth curves for the
WT population. The mathematical formulation applies
equally well to the case of deterministic and stochastic
growth.

This mathematical formulation is sufficiently simple to
allow for many generalizations, some of which have been
considered in this article: for example variable mutation
probability (subsection II C) or random relative growth
rate (subsection III C) have been investigated.

Other generalizations that we have not developed can
be considered. For example, for the stochastic growth
case, we have only considered the linear birth process.
Other, more realistic cases can be envisaged where the
distribution of the division times are not exponential,
along the lines developed by Ycart[11]. One can also con-
sider the case where both mutants and WT grow stochas-
tically. These generalizations would be straightforward if
the moment generating function of the propagator KN

n

can be derived in explicit form. Another possible gener-
alization would be to take into account the experimen-
tal uncertainty on the initial and final value of the WT
population, and its influence on the estimation of mu-
tation probability, as has been considered by Ycart and
Veziris[22].

To summarize, we have developed in this article a ver-
satile method for investigating the Luria Delbrück distri-
bution with an arbitrary growth function. The method
uses only very few measurable parameters, namely the
initial and final number of the WT population. We be-
lieve that the method we propose here can be used as a
simple basis for further investigations of the LD distribu-
tion.

Appendix: Mathematical details.

1. Geometric distribution of mutants appearing at

WT population size n.

We have noted ν the probability of apparition of a
mutant when a WT cell divides, and Xn the random
variable tracking the number of mutants appearing when
WT population changes its size from n to n + 1. The
probability of producing k mutant during this change is
geometrically distributed:

Pr(Xn = k) = (1− ν)νk

As ν ≪ 1, we have approximated Xn by a binary process
(Xn = 0, 1) in the article. This constraint can be relaxed.
Following notations of subsection II A,

〈

esY
N
n

〉

=
1− ν

1− νesN/n

and

ψ(s) =
N
∑

n=N0

log
(〈

esY
N
n

〉)

= N

ˆ 1

x0

log

(

1− ν

1− νes/x

)

dx

= −θφ−N

ˆ 1

x0

log
(

1− νes/x
)

dx

where θ = −N log(1 − ν) and φ = 1 − x0. The above
expression is equal to expression (2) to the first order in
ν.

2. Moment generating function of Y N

n in the

stochastic case.

Consider the random variable Y Nn = XnK
N
n where Xn

is a boolean variable P (Xn = 0) = 1 − ν and P (Xn =
1) = ν (subsection III A); For simplicity, we suppose that
KN
n is a positive discrete random variable. Then,

P (Y Nn = 0) = 1− ν + νP (KN
n = 0)

P (Y Nn = k 6= 0) = νP (KN
n = k)

The mgf is then

〈

esYn
〉

=

∞
∑

k=0

P (Yn = k)esk

= 1− ν + νP (KN
n = 0) +

∞
∑

k=1

νP (KN
n = k)esk

= 1− ν + ν
〈

esK
N
n

〉

which is the expression (7).
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3. Moment generating function of the propagator

KN

n .

A mutant appearing in one copy when the WT popu-
lation size is n0 will reach size Kn

n0
when the WT popu-

lation reaches size n. The forward master equation gov-
erning the probabilities of the propagator, Pr(Kn

n0
= m)

is given by equation (12). The mgf of the propagator,
φ(s, n) therefore obeys the following equation :

n
∂φ

∂n
+ (1− es)

∂φ

∂s
= 0 (A.1)

with the boundary conditions

φ(s, n = n0) = es

φ(s = 0, n) = 1

Equation (A.1) is a linear first order partial differential
equation that can be solved by the method of character-
istics:

φ(s, n) =
(n0/n)e

s

(n0/n− 1)es + 1

Changing now the notation to denote n as the WT popu-
lation size of the mutant occurrence, and N the final size
of the WT population, we obtain the expression (13).

If the relative growth rate of the mutant is not 1 but
c, where c is an arbitrary constant, the transition proba-
bility for the mutant once it has appeared is

W (m→ m+ 1) = c
m

n

and φ(s, n) obeys the following equation:

1

c
n
∂φ

∂n
+ (1− es)

∂φ

∂s
= 0 (A.2)

This equation can be transformed into equation (A.1) by
a simple scaling n → nc and the mgf is therefore given
by

φ(s, n) =
(n0/n)

ces

((n0/n)c − 1) es + 1

from which the cumulant generating function of the num-
ber of mutants can be deduced.

4. Cumulant coefficients for the stochastic growth.

To the first order in ν, the cgf for the linear birth model
(subsection III B) is given by

1

θ
ψ(s) = (e−s − 1) log (1− es + x0e

s)

Expanding the above function into powers of (1 − e−s),
we have

ψ(s) = (s+ log x0)(e
−s − 1) +

∞
∑

n=2

1

n− 1

(1− e−s)n

xn−1
0

Evaluating the p− th derivative at s = 0, we have

ψp(0) =
p!

(p− 1)xp−1
0

+O(
1

xp−2
0

)

which is the expression given in equation (15).
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