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Abstract

Reaction-diffusion systems involving a large number of unknowns and a wide spectrum of
scales in space and time model various phenomena across disciplines such as combustion dynam-
ics, atmospheric science, or biomedical engineering. The numerical solution of these multi-scale
systems of partial differential equations entails specific challenges due to the potentially large
stiffness stemming from the broad range of temporal scales in the nonlinear source term or from
the presence of steep spatial gradients at the localized reaction fronts. A new generation of
techniques featuring adaptation in space and time as well as error control has been introduced
recently. Based on operator splitting, finite volume adaptive multiresolution and high order
time integrators with specific stability properties for each operator, these methods yield a high
computational efficiency for stiff reaction-diffusion problems. While demonstrating the poten-
tial of such techniques the data structures of the original implementation, based on trees of
pointers, provided limited opportunities for computational efficiency optimizations and posed
challenges in terms of parallel programming and load balancing. The present contribution
proposes a new implementation of the whole set of numerical methods relying on fully differ-
ent data structures together with the use of a specific library for shared-memory, task-based
parallelism with work stealing. The performance of our implementation is assessed in a series
of test-cases of increasing difficulty in two and three dimensions on multi-core and many-core
architectures, demonstrating high scalability.
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1 Introduction

Reaction-diffusion systems play an important role in many research domains such as chemistry,
combustion, air pollution modeling or biomedical engineering applications involving the dynamics
of moving fronts, usually very localized in space (see, e.g., [25] and references therein). They can
model complex phenomena and potentially involve a large number of unknowns as well as a large
spectrum of spatial and temporal scales. A general reaction-diffusion system can be written as
follows, for i = 1, 2, . . . ,m:

∂ui
∂t

(x, t)− div(εi(x) grad ui(x, t)) = fi(u(x, t)), x ∈ Ω ⊂ Rd, t > 0,

ui(x, 0) = u0
i (x), x ∈ Ω;

 (1)

with the compact notation: u = (u1, . . . , um)t. In particular we denote f(u) = (f1(u), . . . , fm(u))t.
With no loss of generality we restrict our presentation to homogeneous Neumann boundary con-
ditions. Such systems can be also seen as the building block of more complex models including
additional physical phenomena like convection.

Solving numerically this kind of problem involving a large number of nonlinear coupled equations
in two and three dimensions is a challenging task. In particular two major difficulties need to
be addressed. First, a large spectrum of temporal scales in the nonlinear source terms yields
highly stiff equations. The latter can be expected when the Jacobian matrices, (∂fi/∂uj)1≤i,j≤m,
have eigenvalues whose real part varies within a large negative interval. Systems of stiff ordinary
differential equations impose the use of dedicated numerical methods in order to achieve accuracy
and stability within reasonable memory and computing costs [38]. Secondly, steep fronts require
a very fine discretization mesh, at least locally, which leads to problems of large size if no mesh
adaptation is used. Additionally spatial stiffness may arise as a consequence of these steep spatial
gradients even with non-stiff source terms and diffusion coefficients of relatively small value [20].

1.1 A new numerical strategy

We have recently introduced in [30] a tailored numerical strategy to cope with the latter difficulties
using reasonable computing resources, that is, on a sufficiently powerful workstation possibly with
a shared-memory architecture [29]. It relies on the following key ingredients:

• Time operator splitting: high performance computing can be achieved in the numerical so-
lution of reaction-diffusion systems by choosing dedicated schemes for each split sub-system
[30, 31]. Additionally these methods exhibit a large data-driven parallelism, and their mathe-
matical analysis is well-established for relatively large splitting time steps even when stiffness
is present [22, 20, 17]. Dynamically adapted splitting time steps can be also considered in the
case of strongly varying dynamics [18].

• Multiresolution finite volume scheme: based on wavelet decomposition multiresolution schemes
yield highly compressed representations for problems displaying localized fronts [12, 46]. In
particular grid adaptation is performed dynamically between time steps according to an ac-
curacy tolerance that tracks the approximation errors coming from data compression.

• One-step high order integration schemes: Radau5 [38], an implicit, fifth order Runge–Kutta
scheme with A- and L-stability properties for the time integration of the reaction terms given
by stiff systems of ordinary differential equations; and Rock4 [1], a stabilized, explicit Runge–
Kutta method of order four for the diffusion problems. Both schemes feature time-stepping
strategies that guarantee numerical approximations within a user-defined accuracy.

All these numerical techniques were implemented in the MBARETE code [25], using a tree-
structured data with pointers and recursive navigation. While showing a great potential in several
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cases, such a multiresolution implementation relied on a data structure that offered reduced opti-
mization opportunities as well as limitations in terms of parallel programming due to the lack of data
locality and load balancing. A new paradigm of parallelism together with a different and customized
data structure needed to be sought for more performing splitting-multiresolution implementations.

1.2 A new paradigm of parallelism for shared-memory architectures

Until about 2005, continuous increases in both CPU clock frequency and transistor density had
been driving the increment of computing performance from one processor generation to the next
[7]. However, CPU frequencies have reached a plateau in the end of the last decade. This can
be jointly attributed to the rise of leakage currents with transistor density, and the fact that the
CPU total power budget has hit practical limits [8]. Still, improvements in manufacturing processes
have been delivering ever-increasing transistor densities following Moore’s law. As modern multi-
and many-core CPUs use the increasing transistor budget from Moore’s law to provide a growing
number of cores, the bulk of performance gains is due today to parallelism.

A wide spectrum of techniques and runtime implementations are available for application devel-
opers to express parallelism. For the problems we are interested in and using the multiresolution
approach, one single modern compute node provides enough memory and computing power to run
simulations with a reasonable time-to-solution. Therefore, we have so far focused on parallelism
over shared-memory architectures. Shared-memory parallelism provides a number of advantages
well-adapted to multiresolution applications. Contrary to uniform Cartesian grids for which arrays
can be generally accessed following regular patterns within long loops, adaptive meshing in mul-
tiresolution and AMR codes rely on fine-grained and dynamic data structures. The corresponding
algorithms can have intricate data dependencies, especially for complex operations such as those
associated with mesh adaptation. Therefore, exposing parallelism in these methods is best done
using programming techniques that combine both coarse- and fine-grained parallel constructs, keep-
ing in mind that maximizing parallel coverage is crucial to limiting the impact of Amdahl’s law
on scalability. Another key characteristic of multiresolution applications is their large dynamic
range in both spatial and temporal scales. Because the resulting adapted meshes have complex
geometries, an efficient parallel implementation requires non-trivial balancing of the computations
across all available computing cores. Since the mesh structure evolves during a simulation, the
load balancing needs to be frequently updated. Many existing mesh refinement algorithms and
libraries address this issue in distributed-memory settings for both patch- and cell-based AMR
[13, 49, 2, 53, 44, 64, 60, 15, 10, 16, 43].

In shared-memory architectures, the common memory address space enables dynamic load bal-
ancing while avoiding data transfers, but it also requires careful synchronizations between threads.
Starting from the original implementations on a single computer [13, 4], several authors have pro-
posed multithreaded implementations for adaptive gridding techniques [3, 23] with some focusing
on specialized grid structures for multi-core processors [32, 57]. Task-based parallelism provides an
attractive shared-memory solution to both granularity and dynamic load balancing requirements.
In a task-based approach the programmer introduces parallelism by specifying computations that
can be carried out in parallel. Expressing tasks can be done using different techniques, for example,
relying on compiler directives or through library calls. Scheduling of the tasks is determined at
runtime based on the available computing resources, yielding dynamic load balancing using tech-
niques such as work-stealing [5, 6]. A key feature associated with tasks is that parallelism is not
limited to flat parallel iteration constructs, but can be introduced recursively by having tasks create
other tasks. This makes the task concept particularly suited to codes with complex hierarchical
operations, such as multiresolution applications.

We have thus opted for a shared-memory parallel approach based on task-stealing, relying in
particular on the Intel R© Threading Building Blocks (TBB ) library, very well suited to our case.
Such a choice involved a completely new implementation of the MBARETE code, where a different
and more efficient data structure has been introduced as an alternative to the original pointer-based
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approach. Important performance enhancements, due to task-stealing techniques and in particular
the use of the TBB library, have been already demonstrated in [39, 54] for multiresolution schemes
applied to non-stiff time-dependent PDEs, that is, using explicit time integration schemes. These
authors developed a different data structure based on the definition of wavelet blocks and thus a
tree of wavelet blocks, where each block contains a predefined number of cells at the same grid-
level. Here we focus on the numerical solution of stiff reaction-diffusion systems using the numerical
strategy developed in [30] and summarized in § 1.1. In order to assess the new implementation and
code performance we have chosen three reaction-diffusion models with increasing complexity.

1.3 Benchmark problems

In this work we consider three reaction-diffusion problems in dimension d = 2 and d = 3, with
increasing complexity:

1. A bistable, Nagumo-type reaction-diffusion equation1 (NAGUMO), similar to what can be
found in combustion models [65] or in nonlinear chemical dynamics when studying traveling
waves due, for instance, to chemical reactions with cubic auto-catalysis for which analytic
solutions are available [35]. Here we have in (1), m = 1 and f1(u1) = ku2

1(1−u1). We consider
k = 10, ε1 = 0.1, and an initial condition verifying 0 ≤ u0

1(x) ≤ 1 everywhere. In general the
reaction term is not stiff as |df1(u1)/du1| ≤ 3k. However, with this setting, traveling waves
develop with a sharp spatial gradient yielding a space multi-scale configuration.

2. The Belusov-Zhabotinsky reaction (BZ). This is a system of m = 3 equations. The reaction
term reads

f1(u1, u2, u3) = 105 (−0.02 u1 − u2u1 + 1.6 u3),

f2(u1, u2, u3) = 102 (u2 − u2
2 − u1(u2 − 0.02)),

f3(u1, u2, u3) = u2 − u3.

This set describes a chemical reaction between HBrO2, Ce(IV ) and Br− [48, 41], also known
as the Oregonator problem. For the diffusion part, we set ε1(x) = 2.5 × 10−3, ε2 = ε1,
and ε3(x) = 1.5 × 10−3 in (1). The reaction term is stiff. Actually, this system of ordinary
differential equations has a limit cycle along which the amplitude of the eigenvalues2 of the
Jacobian attains values of the order of 105. As a comparison, when computing in Ω = [0, 1]d

with a spatial discretization step h = 1/1024, the largest negative eigenvalues in the diffusion
term are about −2× 104. Propagating fronts with steep spatial gradients are also developed
in this case yielding a time-space multi-scale configuration.

3. An ischemic stroke model (STROKE) [24, 19, 31]. This is a system of m = 21 equations. The
reaction term is very stiff. A numerical computation of the eigenvalues of the Jacobian near a
stable equilibrium state, f(u) = 0, shows real parts in the interval of [−108, 0[. This stiffness
is due in part to the fact that f(u) models voltage-gated ion channels that open or close when
the difference of potential between a cell and the surrounding media attains some threshold.
Gates are modeled through sigmoid functions, closely approximating a Heaviside function.
Simulations show steep spatial gradients, as well. The right-hand side, f(u), incorporates an
important amount of biological knowledge about ion channels and consequently, its computa-
tion is performed using a quite complex program of about 400 instructions, computationally
expensive, containing many log-function evaluations.

1Type A bistable case in [61] is a limit case of the Nagumo function.
2In such systems, the eigenvalues can be positive, even with large amplitude, in some regions of the limit cycle.
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1.4 Paper outline

The paper is organized as follows: in a second section, the operator splitting strategy is presented on
the systems semi-discretized in space, and we describe the resolution of the split sub-steps, that is,
parabolic diffusion equations and stiff systems of ordinary differential equations. Then we justify the
use of an adaptive mesh strategy and summarize briefly the finite volume multiresolution approach
in order to have a comprehensive picture of the numerical strategy. The main part of the paper
is devoted to our choice of parallel runtime and the description of our parallel implementation of
multiresolution with a specific data structure, as well as the new parallel implementation of Rock4
and Radau5 solvers for diffusion and reaction. The last part is devoted to a detailed performance
analysis of our new software applied to reaction-diffusion systems. Potential improvements and
future developments are highlighted in conclusion.

2 Numerical strategy

We are interested in two- and three-dimensional simulations. Discretizing (1) in space yields a large
and stiff system of ordinary differential equations given by

dU

dt
= AεU + F (U), (2)

where Aε is a matrix corresponding to the discretization of the diffusion operator. Using a Cartesian
mesh Aε is in general a block-diagonal matrix with 5 (resp., 7) non-zero elements per line in
dimension 2 (resp., 3). In order to avoid the drawbacks of purely explicit or implicit methods a
decoupling technique could be implemented instead. Here we consider operator splitting methods,
briefly described in what follows in the context of the dedicated splitting solver introduced in [30].

2.1 Dedicated splitting solver

We consider the two sub-problems:

dV

dt
= AεV,

dW

dt
= F (W ),

and we denote D∆tV0 and R∆tW0 the solution of the first and second sub-problem, respectively,
after a time step ∆t with the initial conditions V = V0 and W = W0. One can define the first order
Lie schemes: Un+1 = D∆t ◦R∆t Un and Un+1 = R∆t ◦D∆t Un, as well as the second order Strang
schemes: Un+1 = R∆t/2 ◦D∆t ◦R∆t/2 Un and Un+1 = D∆t/2 ◦R∆t ◦D∆t/2 Un [58]. The practical
implementation of both Lie and Strang schemes is straightforward once the substeps R∆t and D∆t

have been defined. In this work we focus on the Strang scheme. In particular it has been shown that
better accuracies are expected by ending the splitting scheme with the substep involving the fastest
time scales [21, 22, 17]. Therefore, assuming in general stiff reaction terms, we consider without any
loss of generality the scheme, Un+1 = R∆t/2 ◦D∆t ◦R∆t/2Un. Both theoretical and practical results
show that this method performs very well for stiff reaction-diffusion systems [29, 30, 31]. One of
the most interesting properties is that the splitting time step, ∆t, can be chosen independently of
standard stability constraints associated with mesh size or stiff source terms, as long as the sub-
problems are solved either exactly or with dedicated solvers with appropriate stability properties
and time-stepping features [30]. This property allows us to choose ∆t some orders of magnitude
larger than the fastest time scales of the system. Additionally, an adaptive splitting scheme can be
easily implemented within this framework [18] to cope with solutions displaying different dynamic
behaviors in time.
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2.1.1 General considerations on the splitting implementation

The following remarks can be made in terms of the solvers implemented for the numerical time
integration of the split sub-systems and their capabilities for parallelism in the context of the
present work.

Reaction step R∆t/2: after spatial discretization by finite volumes, finite differences or finite ele-
ments one obtains a large set of independent Cauchy problems given by systems of ordinary
differential equations. As previously mentioned, when these systems are stiff we use the
Radau5 method [38] which has experimentally proved to be highly efficient in terms of com-
putational costs, accuracy and robustness. When the systems are not stiff one can consider
any explicit Runge–Kutta method such as the well-known and simple RK4 explicit method.

Diffusion step D∆t: one could consider, for instance, diagonally implicit Runge–Kutta methods
like SDIRK schemes [38], for which we would need to solve several linear systems successively.
However, when the diffusion problem is mildly stiff, one can consider instead a stabilized,
explicit Runge–Kutta scheme like the Rock4 method [1]. The main advantage of such an
alternative is that one only needs to evaluate matrix-vector products3 given its explicitness.
The number of Runge–Kutta stages, s, can be larger than the order of the method, but the
stability domain grows like s2. For system (1) the stiffness of the diffusion sub-systems, given
by εi(x)∆t, must be contained within the stability domain. In particular we have chosen
∆t = 10−2, 10−3, and 1 for the (NAGUMO), (BZ), and (STROKE) models, respectively.
Rock4 is well-suited to all these cases. An additional advantage in the context of dynamic
meshing strategies is that an explicit approach does not need to compute any preconditioner
nor perform any factorization when the mesh has changed.

Parallelism: the R∆t/2 step exhibits a high data-driven parallelism for one has as many inde-
pendent problems as nodes in the spatial discretization. However, for the D∆t step one can
only achieve a poor man’s parallelism based on the solution of m independent parabolic linear
equations [29]. Better alternatives should be thus considered to enhance the parallel perfor-
mance of the diffusion solver. The latter can be much simpler to achieve in the case of an
explicit scheme like Rock4 since matrix-vector product are easier to parallelize than linear
solvers.

2.1.2 Numerical experimentation on uniform Cartesian meshes

Let us consider a numerical implementation of the Strang scheme to solve (1) on a uniform Carte-
sian grid. Rock4 and Radau5 are considered to solve the diffusion and reaction sub-systems,
respectively. With this setting the following table provides an estimate of the percentage of total
CPU time spent in the diffusion step of the splitting strategy:

Grid size (NAGUMO) (BZ) (STROKE)
5123 92.5 34.5 1.6
10242 88.5 20.1 1.0

Notice that for the models of higher complexity, that is, (BZ) and (STROKE), most of the simula-
tion time is spent in the reaction step. Consequently, as a measure of the computational complexity,
we use the number of evaluations of the right-hand side performed by the Radau5 program on a
given grid-node during the R∆t/2 step. However, this complexity measure can vary considerably
throughout the computational domain given that the splitting time step ∆t/2 can be further split

3Additionally, one scalar product per time step must be performed but only when the time-stepping technique is
enabled.
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according to the time-stepping procedure and that an iterative, simplified Newton method is im-
plemented to solve the nonlinear systems. In particular the minimum complexity corresponds to
grid-nodes where only one reaction sub-step is required during a given ∆t/2, as well as one iteration
of the Newton method.
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Figure 1: BZ problem: histogram of complexity (left). In the right picture, white zones correspond
to points where the complexity is greater than 17.
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Figure 2: STROKE problem: histogram of complexity (left). In the right picture, white zones
correspond to points where the complexity is greater than 80.

Considering a uniform mesh of 10242 grid-nodes, Figures 1 and 2 show the computational
complexity measured for a given ∆t/2 for the (BZ) and (STROKE) models, respectively. For the
(BZ) problem the Jacobian is computed analytically involving three right-hand side evaluations.
In this case 87 % of the reaction CPU time is spent over regions where the complexity is less than
17. These are the regions where the solution is close to the reaction equilibrium and therefore, the
complexity remains also close to its minimum value. Similarly, about 90 % of the reaction CPU
time is spent in regions where the complexity is less than 60 for the (STROKE) model. Here the
Jacobian is computed numerically. One can conclude that an adaptive meshing technique that
reduces the number of grid-nodes over near-equilibrium zones would significantly reduce the CPU
time together with the required computer memory.

2.2 Adaptive multiresolution method

Grid adaptation must be achieved automatically by the software. We describe here some basic fea-
tures of the multiresolution method introduced in [12], applied to system (1). For a comprehensive
overview on adaptive multiresolution techniques, we refer to the books of Cohen [11] and Müller
[46]. More details on this particular multiresolution implementation can be found in [25].
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Figure 3: One-dimensional graded tree composed of nested grids. The resulting adapted mesh is
given by the leaves of the tree, indicated in bold.

Without loss of generality we consider the computational domain Ω = [0, 1]d, d = 1, 2, 3. A
recursive dyadic subdivision of Ω is then performed yielding 2dj cells (segments, squares or cubes)
of equal size at each grid-level j, from j = 1 to j = J . Levels 0 and J stand, respectively, for the
whole computational domain Ω and the mesh at the finest spatial resolution. An adapted spatial
discretization can be thus achieved by truncating the set of nested grids throughout the tree as
shown in Figure 3 for a one-dimensional case. In particular the adapted grid is given by the leaves
of the tree. Finite volumes are associated with all cells of the tree and throughout this paper we
will refer to all cells, including the leaves, and their corresponding finite volumes as nodes. The
root of the tree is the entire domain Ω. Even though the solution of problem (1) is performed on
the adapted mesh, that is on the leaf nodes, the solution is updated and stored at all nodes of
the tree. Hence, we denote Uj as the set of values at nodes of level j. Data at different levels of
discretization are related by two inter-level transformations performed by means of the projection
and prediction operators. The projection operator, P j

j−1, which maps Uj to Uj−1, is obtained
through exact averages computed at the finer level; that is, for a given node at level j− 1 one takes
the average of values associated with its children at the successive level j. The prediction operator,
P j−1
j , which maps Uj−1 to an approximation Ûj of Uj . The following two constraints must be

observed when defining P j−1
j [12]:

1. The prediction must be local, that is, it must depend on cells contained in a finite neighbor-
hood.

2. The prediction must be consistent with the projection in the sense that P j
j−1 ◦ P

j−1
j = Id.

2.2.1 Compression on graded tree-structured data

Data compression and thus grid adaptation are achieved by introducing a local estimator of the
spatial regularity of the solution at a given simulation time. These local estimators are known as
details, and for a given node at level j its detail is defined as

dj,k = uj,k − ûj,k = uj,k − P j−1
j ◦ P j

j−1uj,k,

where k ∈ Zd accounts for the location of the node at level j and uj,k represents the cell-average of
u(x, t) there. Introducing a tolerance parameter, ε > 0, threshold values are defined level-wise as

εj = 2
d
2 (j−J)ε, j = 0, 1, . . . , J . Data compression is thus achieved by discarding nodes whose details

are smaller than εj in a given norm; here we consider an L2-norm [25]. Conversely, nodes whose
details exceed εj must be refined. However, a graded tree-structure must be guaranteed during

the coarsening/refining procedure, meaning that all cells required to compute P j−1
j must always be

available (see [12] for more details).

In this work the approximated values, Ûj , generated with the P j−1
j -operator are obtained using

centered polynomial interpolations of accuracy order r = 2l + 1, computed with the l nearest
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neighboring cells in each direction including the diagonals in multi-dimensional configurations.
This procedure is exact for solutions given by polynomials of degree 2l. For a one-dimensional
configuration with l = 1, the prediction operator is explicitly given by [12]

ûj+1,2k = uj,k +
1

8
(uj,k−1 − uj,k+1), ûj+1,2k+1 = uj,k +

1

8
(uj,k+1 − uj,k−1). (3)

Higher order formulas can be found in [46], while extension to multi-dimensional Cartesian grids
is easily obtained by a tensor product of the one-dimensional operator (3) (see, e.g., [55]). In
general the interpolation stencil is given by (2l + 1)d cells at the coarser level. Here we will only
consider third order interpolations with l = 1; the impact of higher order approximations has been
investigated, for instance, in [59, 30].

3 Shared memory task-based parallelism for multiresolution
problems

In our application, we have chosen to introduce shared memory parallelism using the task-based
Intel R© Threading Building Blocks runtime, which we found to be particularly suited to our multires-
olution implementation. We now discuss parallel runtimes in the context of multiresolution codes,
and motivate our choice of TBB, in particular instead of the OpenMP R© application programming
interface (API).

There is a number of runtimes available today supporting task parallelism, such as Intel R©

Threading Building Blocks [52, 40], the OpenMP API [50], XKaapi [33], among others. We have
considered the OpenMP API and Intel R© Threading Building Blocks, both well-established and
proven options. The OpenMP standard is a widely supported and popular option for shared memory
parallelism, in particular in HPC codes. It relies on compiler directives to introduce parallel regions,
work sharing constructs, and tasks, and interfaces with a runtime library component. However, the
OpenMP API relies on a thread-based (instead of task-based) approach to parallelism; among
important consequences are:

• OpenMP parallelism is strongly tied to explicitly defined parallel regions: a parallel region
enforces parallel execution, and no code outside parallel regions will be executed in a thread-
parallel way.

• OpenMP worksharing constructs such as omp for decompose the work across worker threads,
not in terms of tasks. But since all threads of a parallel region are required to enter a
worksharing construct, a consequence is that it is not legal to arbitrarily nest OpenMP tasks
and worksharing constructs. In particular, one cannot introduce parallelism by nesting omp

for constructs within task constructs.

Because of the above points, OpenMP parallelism is not composable: it is not possible to expose
parallelism in an opportunistic way, regardless of the outer context from which a piece of code may
be called. We believe that composability is a desirable property for parallel runtimes, in particular
for C++ multiresolution codes which combine complex call graphs with code reuse through classes.

The OpenMP standard provides some support for nested parallel regions which can help re-
solve this composability issue, but which also introduce problems of their own. Depending on
the OpenMP implementation, nested regions can lead to exponential creation of OpenMP worker
threads, easily resulting in oversubscription. More fundamentally, dynamic load balancing cannot
occur between two concurrently executing parallel regions, because the standard requires that the
worker threads participating in a region are determined when entering the region.

Intel R© Threading Building Blocks (TBB) relies on a different approach to parallel programming.
TBB is an open-source C++ template library for task parallelism, and requires no special support
in the compiler. In addition to task-based parallel constructs, TBB also provides concurrent data
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structures and memory allocators. The library implements a composable task-based runtime: any
C++ function can expose parallelism and combine tasks with constructs such as parallel for or
parallel reduce, irrespective of the calling context. Dynamic load balancing is achieved through
work stealing. Since both tasks and constructs such as parallel for rely on the same task-based
scheduler, TBB’s parallel idioms may be combined and nested arbitrarily, as long of course as the
programmer avoids races through appropriate synchronizations.

In addition to a composable task runtime, TBB provides a parallel algorithm library, with
support in particular for parallel reductions and parallel sort.

We chose TBB over the OpenMP model because the former provides an efficient task runtime
with dynamic load balancing, composability of parallel code, and an array of parallel data structures
and algorithms. Equivalent functionality could likely have been achieved using OpenMP tasks, but
with more effort to circumvent some of the shortcomings of the OpenMP model we discussed in
this section.

4 Sketch of the implementation

• For the Reaction step R∆t/2, the implementation is very simple, once the leaf nodes of the
spatial discretization are numbered from 0 to M −1, and an access to the values of u at nodes
is provided: one must write a class R which computes the solution on an interval of nodes (a
blocked range<size t> for TBB); then, a call to parallel for(blocked range<size t>(0,M),R)

parallelizes the computation.

• For the Diffusion step D∆t, one can use 2 levels of parallelism: a parallelization on the
m unknowns of (1), and a parallelization of the matrix-vector products, using here two
parallel for constructions.

5 Parallel implementation of the multiresolution algorithm

The implementation of multiresolution faces two problems:

1. Data locality: projection and prediction operators are defined on trees (quad-trees in dimen-
sion 2, oct-trees in dimension 3). Moreover the prediction operator is based on a stencil, and,
for any given node, one must access not only the father and the brothers of the node in the
tree but also its uncles and cousins (see Figure 4).

B1

B2

P P

PP

B3

B4

Stencil points

B1 B2

P P P P

B3 B4

Figure 4: Computing values at nodes marked p; stencil extends on 4 brotherhoods Bi, i = 1, 4.

The projection operator is much less demanding, as it needs only to access the sons of the non
leaf nodes. An efficient implementation of quad-trees and oct-trees which insures as much data
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locality as possible is necessary: classical implementation of trees using pointers is probably
not efficient, since it is certainly difficult to ensure any data locality.

2. Parallelism: the projection and prediction operators, refinement and coarsening operations,
all defined on trees, must be parallelized in order to maximize parallel coverage and minimize
the impact of Amdahl’s law.

In the following, we explain our implementation of quad-trees and oct-trees, and describe the parallel
implementation of the most important parts of the multiresolution.

5.1 Implementation of trees

Now, Ω will be ]0, 1[d with d = 2 or d = 3. In a refinement process, we first note that the coordinates
xi, i = 1, d of the centers of the volumes created have all a base 2 development limited to n digits:
xi = 0.xi,1xi,2 . . . xi,n, n being the level of the volume in the tree. The idea, which has already been
used in multiresolution [9, 14] and AMR [10, 62] contexts, is to index all nodes in the tree by a
space-filling curve [56]. We have used a Morton order indexation [45] (also known as Z-Order curve
or Morton code): in dimension 2, for a given node (x1 = 0.x1,1x1,2 . . . x1,n, x2 = 0.x2,1x2,2 . . . x2,n),
we define his Morton abscissa by

s = x1,1x2,1x1,2x2,2 . . . x1,nx2,n,

(that is to say by interlacing the digits of x1 and x2). This generalizes immediately in dimension 3.
For all nodes of the tree, we store s and the level of the node in the tree in a 64 digits (unsigned)
integer: in dimension 3, this allows to code all nodes of a 16 levels tree, and to add some tag marks
during the computation (see Figure 5). This representation of nodes by unique integers, instead of
an explicit tree in memory, is similar to the so-called CSAMR data structure introduced by [42].
Even though we also rely on hash tables for efficient node lookup, we use a slightly more complicated
data structure based on blocks described below, which allows fine control over lookup granularity,
and makes it easier to implement shared memory parallelism.

Data structure We define 2 levels:

1. Blocks: as r = 0.s ∈ [0, 1[ we partition [0, 1[ into intervals; a block is then a structure which
contains data related to given interval, that is to say:

• The bounds of the interval smin and smax.

• A vector, where all the nodes with abscissa s for s ∈ [smin, smax[ are stored.

• The size of the vector.

2. Collections of blocks: We store the pointers to the blocks ordered by the smin values in vectors.
Actually, we manage 2 collections of blocks: one for leaf nodes and one for non leaf nodes:
test have shown that transfers between these 2 structures is more efficient than using a unique
collection.

Abscissa are not necessary ordered in a block, and the strategy for searching a given node is to find
by a dichotomic search the block where his abscissa is (possibly) stored, and then do a sequential
search in the block. This strategy has proven to be the most efficient, in particular compared to a
fully ordered storage. A system of caches get track of the last blocks accessed, allowing to decrease
the number of dichotomic searches. Caches are local to TBB tasks.

Associated to this data-structure, we just need to implement few methods:

1. cut a block in 2 blocks when the size of the block exceeds some threshold,

2. fusion of two neighbor blocks when the sum of their size is less than some other threshold.



TASK-BASED ADAPTIVE MULTIRESOLUTION ON MULTI-CORE ARCHITECTURES 12

abscissa
(48 bits)

level
(4 bits)

free
(12 bits)

Figure 5: Representation of a node using 64-bit integers.

3. enlarge the vector contained in blocks (this is done by allocating a vector of double size,
copying and deleting the old vector).

4. decrease the size of the vector contained in blocks when it contains too few data (here also by
allocating, copying deleting).

5. some garbage collecting operations (for example suppress nodes marked for deletion).

With these methods, we maintain the size of individual blocks between some fixed limits: thus the
complexity of a search is O(log2Nb) + Constant where Nb is the number of blocks in the collection.

New nodes, in a refinement process, are just added at the end of the vector of the block which
contains their abscissa. To delete nodes in the coarsening process, we use a lazy strategy: first a
digit is positioned in the free digits part of the 64 digits word which represent the nodes we want
to delete; in a second step, the garbage collector really suppresses marked nodes. Note that the
5 operations described above can all be done in parallel, using the parallel for structure of the
TBB library, looping on blocks.

5.2 Parallel implementation of some multiresolution algorithms

Computing the “details” Here, we have two steps: 1) projection, then 2) prediction and Details
computation.

1. projection: we must propagate information from the leaves to the root of the tree, which can
be seen as a recursive computation. The most efficient implementation we have tested is the
following:

(a) We cut the tree at a low, fully populated level Jmin: for each node N of level Jmin we have
an independent computation to perform, recursively transferring data from leaves to the
node N . These computations are done using recursive parallel for constructions.

(b) A sequential (recursive) computation propagates data from level Jmin to the root of the
tree.

In practice, we choose Jmin = 3 in dimension d = 3 and Jmin = 5 in dimension d = 2. Note also
that, often, the second sequential phase of the computation does not need to be performed,
as the leaves remain everywhere at a level ≥ Jmin; anyway, phase (b) is an inexpensive task.

2. prediction and Details computation:

for N ∈ {Non leaf Nodes} do
Make the list L of Nodes connected to N by the prediction stencil 3;
Get values associated to Nodes in L
Compute prediction and details, and store details.

end for

These computations are easily be implemented using a parallel for structure, iterating on
blocks.
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Mesh management Here also, lazy strategies are the key to parallelism.

1. Refinement: Once the “details” have been computed, we first tag in parallel the nodes which
must be refined. Then the idea is to loop on the following two steps (1) and (2) until a fixed
mesh is obtained:

(1) Refine the Nodes which are tagged. Note that, after this step, the tree is no more graded.

(2) Attempt to make the tree graded: for this, some nodes must be refined, and thus we tag
them.

For (1) we proceed in 2 sub steps (see Figure 6):

(1a) Each task operates on a consecutive set S of blocks, thus on an interval [s0, s1[. The
created nodes which belong to [s0, s1[ are directly stored in S ; other nodes (which are
actually very few) are temporally stored in new created blocks (2 blocks by task). All of
these operations can be safely done in parallel, because no task will be writing into any
other’s blocks or temporary storage.

(1b) Each task works on a consecutive set T of blocks; the blocks created in (1a) only need
to be accessed read-only to move the stored nodes to leaves, and thus this can be done
in parallel.

S

T

(1
a
)

(1
b
)

new block new block

Figure 6: Refinement, phases (1a) and (1b).

2. Coarsening: we iterate on the following steps, as long as some nodes can be suppressed:

(a) Tasks work on consecutive sets of blocks, searching for the leaf nodes which can be deleted
(that is to say the leaf nodes which have not been created in the refinement phase, and
which can be suppressed keeping the graded structure of the tree) and marking them as
deleted.

(b) Fathers of suppressed nodes are moved in the leave collection (using the technique de-
scribed for Refinement, see (1a), (1b) above).

(c) A parallel call to the garbage collector really suppress the nodes deleted.

Each of these operations can parallelized using parallel for on blocks, since they involve either
changes to blocks local to the task, or in the case of (b), two passes as described in the refinement
steps (1a) and (1b) above.
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Data storage The values of the computed unknowns are associated to nodes of the tree. We
have two options for the storage memory layout of the unknowns: either to store the data related
to each node in a common structure (in the so-called “array of structures” scheme), or to store each
unknown in its own contiguous array (as a “structure of arrays”). As we shall see later, a large
fraction of the run time is spent in the reaction and diffusion steps. The reaction step computes local
reaction rates from all the unknowns at the current point, and would therefore in principle benefit
from the array of structures scheme for data locality. However, the reaction solver is extremely
compute intensive, and therefore largely insensitive to the memory layout. The diffusion step, on
the other hand, has very low compute intensity, which makes it sensitive to the memory layout.
Since the diffusion step is computed on each unknown independently, the “structure of arrays”
scheme provides better data locality. We have therefore opted to store each unknown in its own
contiguous array, which will prove to be a relevant choice when the variables are not coupled in
the diffusion operator. The Morton order defines the order of the unknowns, which are stored in
vectors. For the sparse matrices used in the diffusion steps, we use a classical CSR storage [47] or a
more compact storage as described in the appendix when the diffusion coefficients εi are constant.

5.3 Implementation of Rock4 for the heat equation

Rock4 [1] is an explicit method; it is the composition of two methods. The first one is based
on orthogonal polynomials: thus its implementation uses a three-term recurrence formula (whose
length depends on the spectral radius of the Jacobian of the system). The second one is an explicit
4-stage Runge–Kutta formula; for a system dy/dt = f(y) and a time step ∆t it is given by:

Compute ki = f(xn + ∆t
∑i−1

j=1 ai,jkj), i = 1, 4, and then: xn+1 = xn + ∆t
∑4

i=1 biki.

(ai,j and bi being the coefficients of the formula). One must remark that in a naive implementa-
tion of the second method, we would compute linear combinations of (large) vectors (from 1 to 4
vectors). Let us recall that the arithmetic intensity of an algorithm is the ratio of total floating-
point operations to total data movement (bytes). Achieving a high arithmetic intensity is a key
for obtaining high FLOP/s efficiency (see [63]). For linear combinations of large vectors of double,
this intensity is very low (less than 1/4). Here, the arithmetic intensity can be improved using the
well known fact [37] that an explicit Runge–Kutta formula applied to a linear problem dy/dt = Ay
is given by xn+1 = P (∆tA)xn where P is a polynomial whose coefficients depends of the ai,j and
ki Runge–Kutta coefficients. An implementation based on Horner formula avoids expensive linear
combinations (note that P has complex roots, thus an evaluation based on a factorization of P is
not feasible). The spectral radius RA of A is estimated using the Gershgorin theorem; RA is used
to determine the number s of stages of the method.

6 The computing code

We have developed a pure C++ code, named Z-code, where the most part uses the dimension d
as template parameter. This program runs on recent Linux systems, and as been tested with gcc

(version ≥ 4.8) and the Intel C++ (version ≥ 14.0.1) compilers. Figure 7 shows some results of
computations.

Related developments

Codes for Radau5 and Rock4 methods are publicly available on the Internet[36]. These codes,
albeit very efficiently coded in Fortran 77 can be improved; for Radau5 a careful rewriting in
C++ allows to remove a lot of branching; this result in a limited but not negligible improvement
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Figure 7: (BZ) model, a simulation in dimension d = 2 with 9 levels. left: u1, right: levels.

of the performances (20 to 30 %). For Rock4, we have developed a complete alternative avoiding
unnecessary vector copies and a version adapted to linear problems, as described above4.

7 Performance

Application performance can be measured from many points of view; we present comparisons be-
tween Cartesian meshes and multiresolution computations and also focus on scalability of given
problem with increasing thread counts (strong scaling). The tests have been performed on an Intel
Xeon E5-2680 platform (2 Sandy Bridge CPUs, 16 cores total, 32 threads with hyperthreading),
and on a Xeon Phi (MIC) 5110P (60 cores, 240 threads with simultaneous multithreading, 8 GB
main memory) using the Intel icpc compiler.

7.1 Uniform Cartesian meshes versus multiresolution

We present comparisons between fixed mesh (full Cartesian) and multiresolution computations.
The question is whether the reduction of computing time using multiresolution is counterbalanced
or not by the cost of mesh adaptation. To obtain a correct comparison, we have replaced the matrix
vector products of the D∆t sub steps implemented in our code by an implementation adapted to
regular 5 and 7 points stencils in Cartesian meshes, using 2D or 3D arrays and cache blocking. This
avoids the extra cost of manipulating complicated data structures and also reduces the bandwidth
of the computation.

Results presented were obtained on the Sandy Bridge machine, using 32 threads (on 16 cores).

Results In the following figures, level is the maximum level authorized for mesh refinement. The
compression ratio is defined as cr = 1− nnodes/nlevel where nnodes is the number of nodes used
for the solution (number of leaf nodes in the tree) and nlevel is the number of nodes in the full
grid at the maximum authorized level (nlevel = 2d.level). Figure 8 shows the computing time (wall
clock, in seconds) for different levels lev of discretization in dimension 2 and 3 for our 3 model
problems. During all the computations, we had 80% ≤ cr ≤ 83%.

From these experiments, we conclude that the multiresolution approach is more efficient than
the Cartesian one, except for very small and easy computing cases (in dimension 2 with 8 levels,
for problems where the reaction is inexpensive to solve). In most cases, the extra cost of the mesh
adaptation, and of the manipulation of complex data structures for matrices is counter balanced by

4Sources for Z-code and related software can be obtained by contacting T. Dumont, the corresponding author of
the present contribution. All codes are under Cecill-B licence (http://www.cecill.info/licences.en.html).
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d = 2 d = 3
lev 8 9 10 8 9

(NAGUMO)
MR 2.45 10−3 2.50 10−3 3.50 10−3 0.12 0.43
Cartesian 1.23 10−3 3.33 10−3 1.82 10−2 0.21 1.78

(BZ)
MR 9.10 10−3 1.44 10−2 3.22 10−2 1.27 7.86
Cartesian 1.35 10−2 4.88 10−2 0.21 3.35 36.46

(STROKE)
MR 0.54 1.91 6.80 22.51 175.4
Cartesian 1.02 3.38 13.1 146.5 1194.

Figure 8: Multiresolution (MR) versus Cartesian computations: computing time in seconds.

the cost of the reaction sub step. One must also keep in mind that these results, advantageous for
multiresolution, are obtained only for problems where the solution exhibits localized large gradients.

7.2 Scalability

We explore the strong scalability (fixed problem size, increasing thread count) of the different parts
of the computing process: Mesh adaptation (A) (including details computation), Reaction steps (R),
Diffusion step (D) (building matrices and resolution) and the entirety of the step computation (S).
Let Tk the computing time (wall clock, in seconds) using k threads. We define the parallel efficiency
on k threads by sk = T1/nkTk, where nk is the number of cores used when computing on k threads.
Because of simultaneous multithreading, nk = min(k, 16) on the Xeon, and nk = min(k, 60) on
the Xeon Phi. Note that, using min, we compute the efficiency based on the number of CPU
cores, not the number of available hardware threads. The motivation is that the cores are what
constitute independent compute units: while using more than one thread per core can help hide
various latencies, one cannot expect performance to scale linearly with the number of threads per
core because these threads will compete for the same compute resources.

The following arrays give sk for different configurations:

• (NAGUMO) problem, in dimension d = 3, on the Sandy Bridge:

J = 9 J = 10
k 2 4 8 16 32 2 4 8 16 32

A 0.98 0.95 0.88 0.82 0.96 0.99 0.95 0.89 0.71 0.91
R 0.98 0.99 0.97 0.96 1.09 0.98 1.00 0.99 0.93 1.12
D 0.98 0.97 0.91 0.83 0.95 0.98 0.95 0.91 0.81 1.00
S 0.98 0.96 0.89 0.83 0.96 0.98 0.95 0.90 0.75 0.95

On the Xeon Phi we obtain, for d = 3 and J = 10:

k 8 30 60 120 240

A 0.96 0.74 0.60 0.73 0.72
R 1.01 1.01 1.00 1.53 1.39
D 0.96 0.84 0.71 0.90 0.94
S 0.96 0.79 0.65 0.80 0.81

• (BZ) problem in dimension d = 3, with J levels of grids and for a typical step:

1. On the Sandy-Bridge:
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J = 9 J = 10
k 2 4 8 16 32 2 4 8 16 32

A 0.97 0.95 0.89 0.85 1.00 1.01 0.99 0.94 0.90 1.09
R 1.06 1.03 1.13 1.15 1.39 1.01 1.12 1.15 1.13 1.43
D 0.99 0.95 0.89 0.87 1.01 0.99 0.95 0.90 0.88 1.01
S 1.03 1.01 1.05 1.04 1.24 1.01 1.07 1.06 1.04 1.28

2. On the Xeon-Phi, we are limited to 9 grid levels in dimension d = 3 due to the 8 GB of
main memory on our model. We obtain:

k 2 4 8 15 30 60 120 240

A 1.08 1.10 1.08 1.06 0.95 0.78 1.06 1.17
R 1.06 1.07 1.12 1.12 1.14 1.16 1.90 2.72
D 1.00 0.97 0.97 0.94 0.89 0.79 1.11 1.22
S 1.05 1.06 1.09 1.08 1.07 1.03 1.59 2.03

• (STROKE) problem in dimension d = 3, with J = 9 levels:

Sandy Bridge Xeon Phi
k 2 4 8 16 32 8 30 60 120 240

A 0.91 0.81 0.67 0.72 0.72 0.91 0.85 0.69 0.88 0.88
R 1.00 1.01 1.04 1.07 1.29 1.04 1.04 1.06 1.54 1.95
D 0.92 0.84 0.78 0.71 0.80 0.94 0.89 0.81 1.05 0.93
S 1.00 1.01 1.03 1.06 1.27 1.03 1.04 1.05 1.52 1.93

These results show that the full computation (S) scales correctly, even if the sub steps (A) and
(D) do not scale perfectly. This is better understood by looking at the percentage of time spent in
different steps of the computation (here, all computations were done in 3d, using 10 levels, with 32
threads on the Sandy Bridge):

(BZ) (STROKE) (NAGUMO)
Adaptation 17.17 1.64 61.00
Reaction 60.86 97.02 1.32
Diffusion 21.97 1.34 37.68

The scalability of (STROKE) closely follows the scalability of the reaction step, but for (NAGUMO)
the time is dominated by the adaptation and diffusion steps because the reaction term is much less
expensive to compute for this problem.

Some comments:

• As could be expected, the Reaction step scales very well on both computers, because the
arithmetic intensity is very high and it is embarrassingly parallel across mesh points.

• The Diffusion step scales correctly: here we have used the compact structure described in
the appendix; using a classical CSR structure results in lower performance. Note that because
the Diffusion step is memory-intensive, one cannot expect it to scale better than the memory
bandwidth with the number or cores. Because the available memory bandwidth per core
decreases with core count on common architectures, it will not be possible to achieve perfect
scaling on the diffusion step.

• All the adaptation process also scales quite correctly but not ideally, and the same arguments
discussed for the diffusion also apply.
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• With our code, simultaneous multithreading (running more than one thread per core) notice-
ably improves performance, in particular on Xeon Phi (where maximum performance cannot
be achieved with one thread per core alone). Performance gains are greatest for the reaction
solver; we speculate that simultaneous multithreading helps hiding the latencies related to
the complex control flow in Radau5.

8 Conclusions and prospects

The purpose of the present contribution was to investigate the capabilities of a new numerical
strategy (involving operator splitting with specific high order numerical integrators coupled to
adaptive multiresolution in space) in the framework of shared-memory architectures by introducing
new data structure and algorithms. Before getting into the summary of the achievements, let us
underline that we have tackled three model reaction-diffusion problems. They are representative
building blocks of more complex and realistic applications encountered in biomedical engineering
[31], combustion [28] even in the low Mach number approximation with detailed transport and
complex chemistry [17], plasma physics [27], and which can be coupled to a Poisson solver if needed
[26]. By representative, we mean that the level of stiffness reached in these three models is of the
same order compared to the ones observed in these realistic applications. It is also important to
notice that multiresolution methods are by no means universal: the solution must exhibit localized
sharp structures to get a significant performance advantage. Nevertheless, even if restricted to
specific problems, the proposed strategy can be the key to solve some multiscale problems in two
or three dimensions, which would be out of reach on standard computing resources using classical
approaches because of the induced stiffness and memory requirements (see [31] for example in
biomedical applications).

The main achievement of the paper is the introduction of a new data structure and algorithm
implementation focusing on the parallelism for finite volumes mesh adaptation for such stiff systems,
which allows reaching a very satisfactory level of efficiency on shared memory architectures such as
the Intel Xeon E5-2680 and the Xeon Phi (MIC) 5110P. This is conducted through a complete new
coding of Rock4 and Radau5 solvers associated with the use of the TBB library which seems
to be a good alternative in many cases to the OpenMP API, offering a different way of thinking
the parallelism. In particular, it is shown that, depending on the complexity of the problem, the
conclusions may differ. However, for the models involving some level of modeling complexity such
as (BZ) or (STROKE), high scalability is achieved for several reasons. First, the reaction step
constitutes an important part of the simulation time and it scales very well; second, the diffusion
and adaptation scale correctly; third, simultaneous multithreading improves the performance, in
particular on many-core architecture.

Beyond the fact that the proposed strategy is evaluated on a building block of more complex sim-
ulation and should allow tackling more complex systems, future work should address the following
aspects:

• The extension to arbitrary domains, possibly by some immersed boundary method [51]. Let
us recall that the domain can be as complicated as a human brain [31].

• The diffusion operator could involve some level of coupling of the variable in models involving
detailed transport for example in multicomponent reactive flows and flames [17, 34]. In such
a situation, the scope of the Rock4 solver has to be extended and the data structure should
be optimized.

• The implementation of hybrid parallelism including distributed memory architecture.

In terms of the last item, even though we have only covered shared memory considerations, we
believe the scope of this work is relevant to distributed memory codes as well. Achieving strong
scaling is particularly challenging for multiresolution and AMR codes, because of load imbalance
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and fine-grain communications. For some applications, shared memory parallelism with dynamic
load balancing may allow distributing work evenly between the CPU cores within an MPI rank,
thereby helping reduce total imbalance. We expect shared memory parallelism to only gain in
relevance for complex and imbalanced MPI applications.
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A A compact data structure for the sparse matrices associ-
ated to diffusion

When the coefficients εi(x) in (1) are constant, it is possible to reduce the amount of memory
necessary to store the matrix associated to diffusion, and lower the memory bandwidth requirements
of the program. For that, we remark that the coefficients fall into 3 types, describing either a link
between 2 same level nodes, a link to upper level or to lower level. Given the types of the unknowns
linked to a given node, and the level l of the node, one immediately knows the coefficient associated
up to a factor 1/2l. We use the data structure shown at Figure 9: the array P contains pointers to
the beginning of lines in the matrix ; the array K contains lines descriptions. The first integer of a
line description is a 32 bits integer word, which contains the level l of the node, and the number of
connections to level l, l+ 1 and l− 1. The following integers give the connections. Figure 10 shows
a typical line description, followed by the corresponding ranks of the nodes.

P

i i+1

K Line i l n1 n2 n3

n1 ints n2 ints n3 ints

Figure 9: Data structure. The right part shows the structure of a line.
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Figure 10: Example of line description.

Comparison with CSR matrices We compare the performance of the solution of D∆t using
Rock4 with the classical csr data structure and our compact storage, applied to the (BZ) problem
(Figure 11). In 2 dimensional computations, matrices are quite small, and the gain using compact
storage is negligible; unlike dimension 3 where the compact storage structure is clearly beneficial.
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SB, d = 2, J = 10 SB, d = 3, J = 10 XPhi, d = 2, J = 10 XPhi d = 3, J = 9
Ratio 0.98 0.67 0.97 0.86

Figure 11: Ratio= cpu time with compact storage / cpu time with csr storage.
SB: Dual-socket Sandy Bridge processor using 16 cores and 32 threads, XPhi: Xeon Phi coprocessor
using 60 cores and 240 threads. d: spatial dimension, J : maximum level in grids.
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