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ABSTRACT

Motivation: The spatial conformation of the chromosome has a deep

influence on gene regulation and expression. Hi-C technology allows

the evaluation of the spatial proximity between any pair of loci along

the genome. It results in a data matrix where blocks corresponding to

(self-)interacting regions appear. The delimitation of such blocks is

critical to better understand the spatial organization of the chromatin.

From a computational point of view, it results in a 2D segmentation

problem.

Results: We focus on the detection of cis-interacting regions, which

appear to be prominent in observed data. We define a block-wise

segmentation model for the detection of such regions. We prove

that the maximization of the likelihood with respect to the block

boundaries can be rephrased in terms of a 1D segmentation problem,

for which the standard dynamic programming applies. The perform-

ance of the proposed methods is assessed by a simulation study

on both synthetic and resampled data. A comparative study on

public data shows good concordance with biologically confirmed

regions.

Availability and implementation: The HiCseg R package is available

from the Comprehensive R Archive Network and from the Web page

of the corresponding author.

Contact: celine.levy-leduc@agroparistech.fr

1 INTRODUCTION

Many key steps of the cell development and cycle, such as DNA

replication and gene expression are influenced by the 3D struc-

ture of the chromatin (Dixon et al., 2012). The folding of the

chromosome in the space defines chromosomal territories, the

function of which has been studied for few years now

(Lieberman-Aiden et al., 2009). Typically, topologically associat-

ing domains contain clusters of genes that are co-regulated (Nora

et al., 2012). Thus, the detection of chromosomal regions having

close spatial location in the nucleus will provide insights for a

better understanding of the influence of the chromosomal con-

formation on the cells functioning.
Several chromosome conformation capture technologies

have been developed in the past decade, among which Hi-C is

the most recent. This technology is based on a deep sequencing

approach and provides read pairs corresponding to pairs of

genomic loci that physically interact in the nucleus (Lieberman-

Aiden et al., 2009). The raw measurement provided by Hi-C

is therefore a list of pairs of locations along the chromosome,

at the nucleotide resolution. These measurement are often

summarized as a square matrix Y, where Yi,j stands for

the total number of read pairs matching in position i and

position j, respectively. Positions refer here to a sequence of

non-overlapping windows of equal sizes covering the genome.

The number n of windows may vary from one study to another:

Lieberman-Aiden et al. (2009) considered an Mb resolution,

whereas Dixon et al. (2012) went deeper and used windows of

100 kb.
Blocks of higher intensity arise among this matrix, revealing

both cis- and trans-interacting regions (Fraser et al., 2009).

Although both types of interaction are likely to exist, cis-inter-

acting regions seem to be prominent in the data (see Dixon et al.,

2012, and Figs 7 and 8, for instance), and some have been

confirmed to host co-regulated genes (Nora et al., 2012). Such

regions result in block of higher signal along the diagonal of the

data matrix. The purpose of the statistical analysis is then to

provide a fully automated and efficient strategy to determine

these regions. A first attempt was presented in Dixon et al.

(2012), where the author strategy is first to summarize the 2D

data into a 1D index, called the directionality index, then to

apply a regular hidden Markov model to the summary data to

retrieve the segmentation.
In this article, we show that such a two-step strategy can be

avoided, and that summarizing the data is not required to solve

the segmentation problem. Detecting diagonal blocks can be seen

as a particular 2D segmentation issue. The 2D segmentation has

been widely investigated for the detection of contour with arbi-

trary shape in images (see, for example, Darbon and Sigelle,

2006a, b; Hochbaum, 2001). From a computational point of

view, image segmentation is an open problem because no prede-

fined ordering exists that could be used to provide exact and

efficient algorithms. Compared with contour detection, it is

worth noticing that Hi-C data segmentation displays a specific

pattern that did not receive any special attention from the image

processing community. One of our contributions is to prove

that this 2D segmentation problem boils down to a 1D segmen-

tation problem for which efficient dynamic programming algo-

rithms apply (Bellman, 1961; Lavielle, 2005; Picard et al., 2005).

Our formulation of the problem also allows us to solve some non-

block diagonal segmentation problems (see the end of Section

2.2).
The article is organized as follows. In Section 2, we define a

general statistical model for Hi-C data, which can deal with

both raw and normalized data. We prove that the maximum

likelihood estimates of the block boundaries can be efficiently

retrieved. In Section 3, we first present an extensive simulation

study to assess the performance of our approach on both

simulated and resampled data. We then apply the proposed

methodology to the data studied by Dixon et al. (2012),

which are publicly available, and compare our results with

their regions. The package implementing the proposed method

is presented in Section 4 where some open problems are also

discussed.*To whom correspondence should be addressed.
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2 STATISTICAL FRAMEWORK

2.1 Statistical modeling

We first define our statistical model. Because the Hi-C data

matrix is symmetric, we only consider its upper triangular part

denoted by Y, in which Yi;j ð1 � i � j � nÞ stands for the inten-

sity of the interaction between positions i and j. We suppose

that all intensities are independent random variables with

distribution

Yi;j � pð�;�i;jÞ; �i;j=EðYi;jÞ ð1Þ

where the matrix of means ð�i;jÞ1�i�j�n is an upper triangular

block diagonal matrix. An example of such a matrix is displayed

in Figure 1 (left). Namely, we define the (half) diagonal blocks

D*
k ðk=1; . . .K*Þ as

D*
k=fði; jÞ : t*k�1 � i � j � t*k � 1g ð2Þ

where 1=t*05t*15 � � �5t*
K*=n+1 stand for the true

block boundaries and K* for the true number of blocks. We

further define E*
0 as the set of positions lying outside these

blocks:

E*
0=fði; jÞ : 1 � i � j � ng \ [D*

k

� �
; ð3Þ

where A denotes the complement of the set A. The parameters

ð�i;jÞ are then supposed to be block-wise constant:

�i;j=�*
k if ði; jÞ 2 D*

k; k=1; . . . ;K*;

=�*
0 if ði; jÞ 2 E*

0:
ð4Þ

As for the distribution pð�;�i;jÞ defined in (1), we will consider

Gaussian, Poisson or negative binomial distributions:

ðGÞ : Yi;j �Nð�i;j; �
2Þ;

ðPÞ : Yi;j �Pð�i;jÞ;

ðBÞ : Yi;j �NBð�i;j; �Þ:

ð5Þ

The Gaussian modeling (G) will be typically used for

dealing with normalized Hi-C data and the others [(P)

and (B)] to deal with raw Hi-C data, which are count

data. In Models (G) and (B), note that the parameters

� and � are assumed to be constant and depend neither on

i nor on j.

2.2 Inference

We now consider the estimation of the block boundaries

ðt*kÞ0�k�K* in the case where the number of blocks K* is known.

Model selection issues will be discussed in Section 2.3. We con-

sider a maximum likelihood approach. For an arbitrary set of

blocks Dk, with boundaries ðtkÞ0�k�K and parameters ð�kÞ0�k�K,

the log-likelihood of the data satisfying (1) and (4) writes

‘ðYÞ=
X

1�i�j�n

log pðYi;j;�ijÞ

=
XK
k=1

X
ði;jÞ 2Dk

log pðYi;j;�kÞ+
X
ði;jÞ2E0

log pðYi;j;�0Þ;

whereDk and E0 are defined as in (2) and (3), respectively, except

that the t*ks are replaced by the tks.

Parameter estimation For given boundaries t0; . . . ; tK, the esti-
mation of the block parameters �k is straightforward for each of

the distribution considered in (5). Denoting ‘kðYi;jÞ and ‘0ðYi;jÞ

the contribution of each data point to the log-likelihood (up to

some constants), in Dk and E0, respectively, we get, for known

parameters � and �0,

‘Gk ðYi;jÞ=�ðYi;j � YkÞ
2; ‘G0 ðYi;jÞ=�ðYi;j � �0Þ

2;

‘Pk ðYi;jÞ=Yi;j log ðYkÞ � Yk; ‘
P
0 ðYi;jÞ=Yi;j log ð�0Þ � �0;

‘Bk ðYi;jÞ=�� log ð�+YkÞ+Yi;j log ðYk=ð�+YkÞÞ;

‘B0 ðYi;jÞ=�� log ð�+�0Þ+Yi;j log ð�0=ð�+�0ÞÞ;

where Yk=
X
ði;jÞ 2 Dk

Yi;j=jDkj, for k in f1; . . . ;Kg; jAj denoting

the cardinality of the set A.

Dynamic programming algorithm Let us now consider the esti-

mation of the boundaries t0; . . . tK. The objective function can be

rewritten as follows:

‘ðYÞ=
XK
k=1

X
ði;jÞ 2 Dk

‘kðYi;jÞ+
X
ði;jÞ 2 E0

‘0ðYi;jÞ

=
XK
k=1

X
ði;jÞ 2 Dk

‘kðYi;jÞ+
X
ði;jÞ 2 Rk

‘0ðYi;jÞ

 !

where Rk corresponds to the rectangle above Dk (see Fig. 1),

namely, Rk=fði; jÞ : tk�1 � j � tk � 1; 1 � i � tk�1 � 1g. (Note

that R1 is empty.) Note that the rectangles Rk do not overlap

and that E0=[
k
Rk, so the last equality holds. The important

point here is that the objective function is now additive with

respect to the successive intervals ftk�1; . . . tk � 1g; 1 � k � K.

Defining the gain function

Cðtk�1; tk � 1Þ=
X
ði;jÞ 2 Dk

‘kðYi;jÞ+
X
ði;jÞ 2 Rk

‘0ðYi;jÞ; ð6Þ

we have to maximize w.r.t. 1=t05t15 . . .5tK=n+1

XK
k=1

Cðtk�1; tk � 1Þ;Fig. 1. Examples of block diagonal and extended block diagonal matrices

ð�i;jÞ1�i�j�n. Left: Model (4), right: Model (9)
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which can be done using the standard dynamic programming

recursion (Bellman, 1961). For any 1 � L � K and 15� � n,

we define

ILð�Þ= max
1=t05t15���5tL=�+1

XL
k=1

Cðtk�1; tk � 1Þ

the value of the objective function for the optimal segmentation

of the submatrix made of the first � rows and columns of Y into

L blocks. Clearly, we have I1ð�Þ=Cð1; �Þ,

I2ð�Þ= max
15t15�+1

Cð1; t1 � 1Þ+Cðt1; �Þ

= max
15t15�+1

I1ðt1 � 1Þ+Cðt1; �Þ

and, for 3 � L � K,

ILð�Þ= max
15tL�15�+1

IL�1ðtL�1 � 1Þ+CðtL�1; �Þ: ð7Þ

Hence, the optimal segmentation can be recovered with complex-

ity OðKn2Þ, once the Cð�; �Þ have been computed.

Common parameters The optimization procedure described
above applies when both �0 and � are known. Estimates of

these parameters can be obtained in the following way. The es-

timate �̂0 of �0 can be computed as the empirical mean of the

observations lying in the right upper corner of the matrix Y, for

instance,

T0=fði; jÞ : 1 � i � n=4; ð3n=4+1Þ � j � ng: ð8Þ

As for the overdispersion parameter of the negative binomial

distribution �, we computed �̂ as follows: �̂=�̂2
0=ð�̂

2
0 � �̂0Þ;

where �̂2
0 corresponds to the empirical variance of the observa-

tions lying in the same right upper corner of the matrix Y as

for �̂0.

Non-block diagonal segmentation problem Observe that a simi-
lar procedure could be used for dealing with a more general

matrix ð�i;jÞ1�i�j�n defined by

�i;j=�*
k if ði; jÞ 2 D*

k; k=1; . . . ;K*;

=�0k
* if ði; jÞ 2 R*

k; k=2; . . . ;K*;
ð9Þ

where the diagonal blocks D*
k and the rectangles R*

k are defined

as above (see Fig. 1, right). In this case, no prior estimation of

any mean parameter is required, as each �0k
* is specific to one

single rectangle.

2.3 Model selection issue

In the case where the value of K* in the model defined by (1) and

(4) is known a priori ðt̂kÞ1�k�K* can be obtained from the recur-

sion (7), which actually gives the values of ðt̂kÞ1�k�K for all

1 � K � Kmax, where Kmax is a given upper bound for the

number of blocks. If K* is unknown, it can be estimated by K̂

defined as follows:

K̂=Argmax1�K�Kmax
IKðnÞ: ð10Þ

This strategy is illustrated in the next section.

3 RESULTS

Dixon et al. (2012) studied intrachromosomal interaction matri-

ces for various chromosomes in both the human genome and the

mouse genome at different resolutions (20 and 40kb) and iden-

tified topological domains for each analyzed chromosome. Both

the data and the topological domains found by Dixon et al.

(2012) are available from the following Web page http://

chromosome.sdsc.edu/mouse/hi-c/download.html. We worked

on the same data, at a resolution 40kb, to study the performance

of our approach described above.

3.1 Application to synthetic data

We conducted several Monte Carlo simulations first on synthetic

data and then on resampled real data to assess the sensibility of

our method to block size and signal-to-noise ratio. The synthetic

data are generated by using the domains found by Dixon et al.

(2012) for Chromosome 19 of the cortex mouse. As for the

resampled data, they are generated by using the Hi-C data of

the chromosomes of the human embryonic stem cells (hESCs)

provided by Dixon et al. (2012). The different simulation strate-

gies are further described hereafter.

3.1.1 Fixed block design To evaluate the performance of our
methodology in the negative binomial framework, we generated

block diagonal matrices according to Model (5) (B) where ð�i;jÞ

is defined by (4). More precisely, we generated 50 block diagonal

interaction matrices of size n=300 with a structure inspired

by the one found by Dixon et al. (2012) for the inter-

action matrix of Chromosome 19 of the mouse cortex. The

different parameters �*
k; �

*
0 and � are estimated from this

matrix. This resulted in matrices including five diagon-

al blocks such that �*
1=2:87; �*

2=4:85; �*
3=7:92; �*

4=4:33;
�*
5=11:99; �*

0=0:09 and �=0:67. Then, for each simulated

dataset, new matrices were derived by multiplying the �*
ks by

a constant c 2 f0:1; 0:2; 0:3; . . . ; 1g to reduce the signal-to-noise

ratio. For each simulated dataset and each constant, we com-

puted K̂ and the corresponding t̂ks using the procedure

described in Section 2.
The upper part of Figure 2 displays the histograms of the

estimated change-points for c=0.1, c=0.2 and c=0.5. The

black dots correspond to the true change-points, and the bars

indicate the frequency of each estimated change-point. One can

observe that both the change-points and the number of change-

points are well estimated even in low signal-to-noise ratio frame-

works (except for c=0.1). The bottom part of Figure 2 displays

the log-likelihood curves (up to some constants) with respect to

K for the same values of c, obtained on a given simulated matrix.

The dotted line indicates the location of the estimated number of

change-points. Even when the signal-to-noise ratio is small, the

estimated number of change-points K̂ corresponds to the true

number of change-points K*. When the signal-to-noise ratio is

too small, i.e. for c=0.1 here, some model selection issues arise.

Figure 2 shows that for such signal-to-noise ratio, the method

provides some spurious change-points within the blocks having

the lowest mean. When c=0.1, the value of the mean in the first

diagonal block is very low (0.28) and very close to �0.

Nevertheless, when taking the true number of blocks, the true

change-points are recovered. We also assessed the performance
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of our methodology in the Poisson framework, and we obtained

similar results, which are not reported here.

3.1.2 Resampling of the data In this second analysis, we first get

the boundaries found by Dixon et al. (2012) in all the chromo-

somes of the hESCs. We shall call the corresponding blocks the

Ren domains. From these domains, we generate a set of diagonal

blocks ðD1; :::;DKÞ, such that (i) the size of each block is drawn

in the empirical distribution of Ren domain lengths and (ii) the

cumulated number of positions is not4300. Once the block sizes

are drawn, we choose at random a human chromosome, and for

each diagonal block Dk, a Ren domain in this chromosome is

randomly selected, and observations in block Dk are resampled

from the Ren domain data. Accordingly, the data outside the

diagonal blocks are simulated by resampling from the data of the

E0 Ren domain in the selected chromosome. This strategy is

repeated 100 times to obtain 100 interaction matrices.

Compared with the previous simulation design, one can observe

that the change-point positions now change from one dataset

to the other, and that the data are not anymore simulated

according to a negative binomial distribution. While the statis-

tical analysis of datasets generated from this second simulation

setting is more difficult, it allows one to visit more realistic data

configurations closely similar to real data. We report here the

results obtained when the simulated data are analyzed with

Model (5) (B), the results obtained with Model (5) (P) being

similar.

Figure 3 (left and center) displays two log-likelihood curves

(up to some constants) as a function of the number of change-

points. The solid and dotted lines indicate locations of the true

and estimated number of change-points, respectively. One can

observe that while the maximum is not always achieved at the

true number of change-points K�, the estimated value K̂ corres-

ponding to the maximum likelihood is still fairly close to K�. The

true and estimated numbers of change-points are identical for 91

of the 100 simulations, and the absolute difference jK̂ � K�j is

never42 except for one example.
To further assess the quality of the estimated segmentation

compared with the true one, we computed the Hausdorff dis-

tance between these two segmentations defined in the segmenta-

tion framework as follows, see Boysen et al. (2009) and

Harchaoui and L�evy-Leduc (2010):

d t*; t̂
� �

=max d1 t*; t̂
� �

; d2 t*; t̂
� �� �

; ð11Þ

where t*=ðt*1; . . . ; t*
K* Þ; t̂=ðt̂1; . . . ; t̂K̂ Þ and

d1 a; bð Þ=sup
b 2 b

inf
a 2 a
ja� bj; ð12Þ

d2 a; bð Þ=d1 b; að Þ: ð13Þ

A small value of d2 (distance from true to estimate) means that

an estimated change-point is likely to be close to a true change-

point. A small value of d1 (distance from estimate to true) means

that a true change-point is likely to be close to each estimated

change-point. A perfect segmentation results in both null d1 and

d2. Oversegmentation results in a small d2 and a large d1.

Undersegmentation results in a large d2 and a small d1, provided

that the estimated change-points are correctly located. The two

parts d1 and d2 of the Hausdorff distance were computed in

the right part of Figure 3. Both distances d2 (‘true to estimate’)

and d1 (‘estimate to true’) were not 41 for 96 of the 100

simulations.
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Fig. 2. First line: Histograms of the estimated change-points in a fixed block design for different signal-to-noise ratios in the negative binomial

framework (from left to right: c=0.1, c=0.2, c=0.5). The dots correspond to the true change-points, and the bars indicate the frequency of each

estimated change-points. Second line: plots of the log-likelihood as a function of the number of change-points for one simulated dataset in the negative

binomial framework for different signal-to-noise ratios (from left to right: c=0.1, c=0.2, c=0.5). The dotted and solid lines give the value of the

log-likelihood (up to some constants) for K̂ and K*, respectively
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3.2 Application to real data

In this section, we applied our methodology to the raw inter-

action matrices of Chromosomes 13–22 of the hESCs at reso-

lution 40kb, and we compared the estimated number of blocks

and the estimated change-points found with our approach to

those obtained by Dixon et al. (2012) on the same data, as no

ground truth is available for those datasets.

From Figure 4, we can first see that the approach of Dixon

et al. (2012) tends to produce, in general, more change-points

than our strategy except for Chromosome 22. This can also be

seen in Figure 5, which displays the log-likelihood curves (up to

some constants) with respect to K as well as the number of

change-points proposed by Dixon et al. (2012) (dotted line)

and our approach (solid line).
We also compared both methodologies by computing the two

parts of the Hausdorff distance defined in (12) and (13) for

Chromosomes 13–22. More precisely, Figure 6 displays the box-

plots of the d1 and d2 parts of the Hausdorff distance without

taking the supremum. We can observe from this figure that some

differences exist between the segmentations produced by the two

approaches, but that the boundaries of the blocks are close.

To further illustrate the differences that exist between both

approaches, we display in Figures 7 and 8 the segmentations

provided by both approaches in the case of Chromosomes 17

and 19, respectively. In the case of Chromosome 17, we can

only provide the segmentation obtained with Model (5) (P)

because the overdispersion parameter �̂ is infinite (the mean
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d1 (left part) and d2 (right part) between the change-points

found by Dixon et al. (2012) and our approach for Chromoso-

mes 13–22 for Model (5) (P) [(a) and (b)] and for Model (5) (B) [(c)

and (d)]

0 100 200 300 400 500−9
e+

05
−7

e+
05

−5
e+

05

K

Lo
g−

lik
el

ih
oo

d

0 100 200 300 400

−4
50

00
0

−3
50

00
0

K

Lo
g−

lik
el

ih
oo

d

Fig. 5. Left: Log-likelihood (up to some constants) as a function of K for

the analysis of Chromosome 15 using Model (5) (P). The dotted vertical

lines is the number of blocks chosen by the Dixon et al. (2012) approach,

and the solid one correspond to the one of our approach. Right: The

same for Chromosome 19 using Model (5) (B)
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and the variance outside the diagonal blocks are of the same

order). In the other case where Models (5) (P) and (B)

can be applied, we used the following test procedure for

overdispersion under the Poisson model to decide between

both segmentations. Considering the data lying in T0 as

defined in (8), we first estimate the mean within this region by

�̂=
P
ði;jÞ 2 T0

Yi=N0 where N0 stands for the number of data

points within T0. We then consider the test statistic

Q0=
P
ði;jÞ 2 T0

Y2
i =N0. Reminding that, if Y has a Poisson distri-

bution with mean �, we have EðY2Þ=�+�2 and

VðY2Þ=4�3+6�2+�, it follows that

ffiffiffiffiffiffi
N0

p Q0 � ð�̂+�̂2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�̂3+6�̂2+�̂

q � Nð0; 1Þ

under the hypothesis that all observations from T0 arise from the
same Poisson distribution.
Following this rule, we chose Model (5) (B) only for

Chromosomes 1 and 2. We can see from this figure that with
the naked eye, the diagonal blocks found with our strategy pre-
sent a lot of similarities with those found by Dixon et al. (2012).

We did not report the segmentations that we obtained for the
Chromosomes 1–22, but they are available from the Web page of

the corresponding author http://www.agroparistech.fr/mmip/
maths/essaimia/_media/equipes:membres:page:supplementary_
eccb.pdf.

4 CONCLUSION

4.1 HiCseg R package

In this article, we propose a new method for detecting cis-inter-
acting regions in Hi-C data and compare it with a methodology
proposed by Dixon et al. (2012). Our approach described in

Section 2 is implemented in the R package HiCseg, which is
available from the Web page of the corresponding author

http://www.agroparistech.fr/mmip/maths/essaimia/_media/equip
es:membres:page:hicseg_1.1.tar.gz and from the Comprehensive
R Archive Network. In the course of this study, we have shown

that HiCseg is an efficient technique for achieving such a
segmentation based on a maximum likelihood approach. More
precisely, HiCseg package has two main features, which make

it attractive. Firstly, it gives access to the exact solution of
the maximum likelihood approach. Secondly, as we can see

from Figure 9 and Table 1, which give the computational
times on synthetic data following Models (5) (G), (P) or (B),
HiCseg is computationally efficient, which makes its use

possible on real data coming from Hi-C experiments. Note
that the computational times of Figure 9 were obtained with a

computer having the following configuration: RAM 3.8 GB,
CPU 1.6GHz and those of Table 1 with a computer
having the following configuration: RAM 33 GB, CPU

8	 2.3GHz.

4.2 Open questions

Our methodology could be extended, both to improve the
algorithmic efficiency of our method and the modeling of the

data.
On the one hand, all available approaches work with data

binned at the resolution of several kb. However, the original

data are collected at the nucleotide resolution. One of the main
challenges would be to alleviate the computational burden of the

algorithm to fully take advantage of the Hi-C technology high
resolution. Recent advances in segmentation algorithms for 1D
data, such as those proposed by Killick et al. (2012) or Rigaill

(2010), seem promising for dealing with this issue.
On the other hand, the modeling could be improved in two

directions. First, as observed by Phillips-Cremins et al. (2013),

Hi-C interaction matrices display a hierarchical structure corres-
ponding to regions interacting at different scales. The proposed

segmentation model does not account for such a structure but
could be improved in such a direction. Second, a more refined
modeling of the dispersion could be considered. While assuming

a common dispersion parameter for non-diagonal blocks is

Fig. 7. Topological domains detected by Dixon et al. (2012) (lower tri-

angular part of the matrix) and by our method (upper triangular part of

the matrix) from the interaction matrix of Chromosome 17 of the hESCs

using Model (5) (P)

Fig. 8. Topological domains detected by Dixon et al. (2012) (lower tri-

angular part of the matrix) and by our method (upper triangular part of

the matrix) from the interaction matrix of Chromosome 19 of the hESCs

using Model (5) (P)
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sensible because the signal is very low (and therefore, there is
little room for large changes in dispersion), the strategy that we
propose could incorporate non-homogeneous dispersion param-

eters for the diagonal blocks. This could be achieved, for in-
stance, by estimating a dispersion parameter per diagonal
block. Note that these two extensions could be implemented in

the same efficient algorithmic framework as the one proposed in
the article. These extensions will be the subject of a future work.
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Table 1. Computational times (in seconds) for Model (5) (G), (P) and (B)

n 1000 2000 3000 4000 5000 6000 7000

(G) 1.96 17.01 60.56 143.68 280.53 513.87 834.01

(P) 1.92 16.47 57.22 134.91 264.15 453.99 755.21

(B) 1.95 16.60 58.07 135.52 264.62 457.15 783.05
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