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In this paper we present an efficient decision-making framework allowing optimization via simulation combining metaheuristics algorithms and DEVS formalism. A proposed object-oriented approach provides an universal interface between any existing DEVS models and some existing metaheuristics. To do this we explode the optimization algorithms into several actions involved in an optimization loop. Concerning the evaluation step which one can find in each metaheuristic we propose to externalize it into decision models using DEVS messages. This interconnection of components generates the following new concepts: (i) event-driven metaheuristic parametrization that allows an automatic execution of the associated algorithm; (ii) creation of dynamic and hydrid metaheuristics used for hard-optimization problems; (iii) decision support variables temporization that allows optimization on a specific time interval. We validated the effectiveness of the previous concepts through the implementation of the popular genetic algorithms and the more recent harmonic search algorithm. Furthermore the validation is completed on a real case example concerning medical treatment through a simple glycemic DEVS model. Simulation results show that the resulting treatement reduces the risk of over-tratement or under-treatement.

INTRODUCTION

Modeling and simulation of complex systems are widely used in research and industry in order to study the behavior of systems. These studies include planning, prediction, prevision, computer-aided design, etc. tasks. To improve the performance of a studied system the modeling and simulation phases are integrated with an optimization technique. The simulation allows improving the purposes of a given model. The integration of optimization techniques into modeling and simulation relies on the evolution of the model using decisions based on previous simulation results. Usually a specialist of the domain performs the evolution manually. Therefore, it seems to be natural to try to find the set of parameters that optimizes the system performance.

Optimization via Simulation (OvS) is a structured approach to determine optimal settings for input parameters, where optimality is measured by a function of output variables associated with a simulation model [START_REF] Swisher | Discrete-event simulation optimization using ranking, selection, and multiple comparison procedures: A survey[END_REF]. Depending on the parameters format (also called decision variables), three main categories of OvS methods may be pointed out: (i) Rank and Selection category ; (ii) Branch and Bound OvS category ; (iii) Metaheuristic based OvS category.

In this paper we proprose a generic OvS framework based on evolutionist algorithms. This framework is defined using an automatic integration of evolutionist algorithms optimization techniques into a discrete event modeling using the DEVS (Discrete EVent system Specification) formalism. This paper shows how the integration of metaheuristic based OvS optimization technique into DEVS framework is realized. The validation of the resulting framework is performed in the case of the optimization of a medical therapy. The rest of the paper is as follows. The next section presents the background of our study which leans on : (i) the DEVS formalism, (ii) metaheuristics for optimization and (iii) work involving the integration of optimization techniques into DEVS environment software. The proposed approach is presented in detail in section 3. Section 4 deals with the implementation and results obtained on the medical therapy real case. Finally conclusions and perspectives are given in the last section.

STATE OF THE ART 2.1. DEVS formalism

The Discret EVent System specification (DEVS) formalism was introduced by B. Zeigler in 1970 [START_REF] Zeigler | Theory of Modeling and Simulation[END_REF]. This formalism allows an easy representation of discrete time sytems and continuous systems. Moreover the formalism automatically generates the simulation algorithm from the modeling part. Moreover the formalism is based on an explicit seperation between the modeling and simulation parts: the simulation algorithm can therefore be automatically generated from the modeling part. The formalism is composed by two types of models: (i) atomic models, (ii) coupled models.

Atomic models describe the system's behavior through an oriented components approach. These componements can be reused on different modeling scenarios. This type of models uses the following structure: AM = (X, Y, S, δext, δint, λ, ta) X is the set of inputs Y is the set of outputs S is the set of sequential states δext is the external state transition function δint is the internal state transition function λ is the output function ta is the time advance function Coupled models meanwhile describe the system's structure. They allow hierarchical and modular modeling and allow pointing out the links between models. The communication between models is possible through messages exchanges that represent events. This type of models uses the following structure: CM = (X, Y, D, Cxx, Cyx, Cyy, Select) X is the set of inputs Y is the set of outputs D is the set of models Cxx xis the external input couplings Cyx is the internal couplings Cyy is the external output couplings Select is the selection function Several software frameworks have been developed such as: Atom3 [START_REF] Lara | AToM3: A Tool for Multi-formalism and Meta-modelling[END_REF], VLE [START_REF] Quesnel | VLE: a multimodeling and simulation environment[END_REF], MS4 Me [START_REF] Seo | DEVS Modeling and Simulation Methodology with MS4Me Software[END_REF], Power DEVS [START_REF] Bergero | PowerDEVS. A Tool for Hybrid System Modeling and Real Time Simulation[END_REF], DEVSimPy [START_REF] Capocchi | DEVSimPy: A Collaborative Python Software for Modeling and Simulation of DEVS Systems[END_REF], etc. They provide an easy modeling process for developers.

Metaheuristics

Metaheuristics are powerful optimization search tools used to solve a large panel of complex problems [START_REF] Martello | Knapsack problems: algorithms and computer implementations[END_REF][START_REF] Shmoys | The Traveling Salesman Problem[END_REF]. These NP-hard problems, such as travelling salesman problem or knapsack problem can have different characteristics: discrete or continuous, mono-objective or multi-objective, stochastic or determinist. However they are difficult or impossible to solve with classical mathematical optimization tools. That is why metaheuristics have known a large success since the last decade. More and more scientists and industrial engineers use them in different domains such as water management [START_REF] Yang | Metaheuristics in Water[END_REF], power consumption [START_REF] Hutterer | Overview: A Simulation Based Metaheuristic Optimization Approach to Optimal Power Dispatch Related to a Smart Electric Grid[END_REF], human resources scheduling [START_REF] Xhafa | Metaheuristics for Scheduling in Industrial and Manufacturing Applications[END_REF], structures conception [START_REF] Gandomi | Metaheuristic Applications in Structures and Infrastructures[END_REF], etc.

The main idea of these algorithms can be summarized by two concepts: diversification and intensification. Diversification allows a global exploration of problem search space and avoids optimization process to stay in local minima. Intensification explores solution neighborhood. The algorithms execution is an iterative process that provides a convergence towards acceptable solutions or best solution called the "optimum" described in Figure 1. As shown on Figure 1, the metaheuristic general process can be seen as a procedure that searches global optimal solutions from a local solution.

When optimization starts, random solutions generation process occurs (first step). During the process the algorithm attributes to each problem solution description variables a random value chosen among the search space.

Figure 1 Metaheuristic general process

Each group of variables representing a solution is evaluated through a fitness function relevant to problem resolution (second step). After this evaluation, each solution has it own fitness value which represents an error level to minimize or a score to maximize. The third step is the solutions alteration. For each execution point metaheuristics algorithms select one or more solutions to generate one ore more new solutions by recombination or merging. These new proposed solutions are supposed to produce better problem resolution. Finally the algorithms loop until all satisfaction criterions are reached. Metaheuristics can be classified into several families: (i) bio-inspyred algorithm like genetic algorithm [START_REF] Holland | Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[END_REF] and artificial immune system [START_REF] Dasgupta | An Overview of Artificial Immune Systems and Their Applications[END_REF] and swarm algorithms such as an algorithm cuckoo search [START_REF] Yang | Cuckoo search: recent advances and applications[END_REF] and bat algorithm [START_REF] Yang | A New Metaheuristic Bat-Inspired Algorithm[END_REF] and (ii) physics-based algorithms like harmonic search [START_REF] Geem | A New Heuristic Optimization Algorithm: Harmony Search[END_REF] and simulated annealing [START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF].

DEVS & Optimization

Thanks to the popularity of the DEVS formalism some works have already been done to solve decision problem using optimization technics. Over the past few decades several optimization frameworks based on this formalism have been developed by research teams.

In 1996 authors proposed a multi-resolution optimization framework [START_REF] Kim | Hierarchical Distributed Genetic Algorithms: A Fuzzy Logic Controller Design Application[END_REF]. This framework used the hierarchical distributed genetic algorithms (HDGA); they validated their concepts on the Bohachevsky function. In the same year Bernard Zeigler and Yoonkeon Moon used Distributed Asynchronous Genetic Algorithm (DAGA) for optimization of large scale systems applied to reduce simulation time of watershed models [START_REF] Zeigler | DEVS approximation of infiltration using genetic algorithm optimization of a fuzzy system[END_REF]. In 2003 S. Iassinovski and A. Artiba proposed a new framework [START_REF] Iassinovski | Integration of simulation and optimization for solving complex decision making problems[END_REF]. They focused on sharing, reusability and integration of their complex discret system models. Then in 2008, Hojun Lee and Bernard P. Zeigler proposed a new framework for tunning a gateway using Link-11 and TCP/IP networks [START_REF] Lee | A DEVS-based framework for simulation optimization: Case study of Link-11 gateway parameter tuning[END_REF].

In their results they have found optimal gateway parameters in order to adjust the sample rate. In May 2009 Hagendorf proposed an architecture based on parameter and structure of DEVS models optimization [START_REF] Hagendorf | An approach for simulation based structure optimisation of discrete event systems[END_REF]. This work was validated on optimization of manufacturing system in photofinishing industry. More recently in 2010 Ronald Apriliyanto Halim and Mamadou Diou Seck proposed a formal substructure to define the integration between simulation and optimization. Their Simulation Based Multi-Objective Evolutionnary OptimizationN (SIMEON) framework guarantees generecity and efficiency [START_REF] Halim | The simulation-based multi-objective evolutionary optimization (SIMEON) framework[END_REF]. There are also some more specifics frameworks using DEVS formalism. Some work concerns catchment basin management optimization using OvS based on ranking and selection procedures [START_REF] Santucci | Catchment basin optimized management using a simulation approach within DEVSimPy framework[END_REF] or Branch Bound algorithm [START_REF] Capocchi | Discrete optimization via simulation of catchment basin management within the DEVSimPy framework[END_REF]. Advanced combat tactical strategy can be elaborate trough a military decision support based on simulations process [START_REF] Momen | Dynamic decision support in the advanced tactical architecture for combat knowledge system[END_REF]. Other work do by José L. Risco-Martin proposes an architecture for optimization of data types in embeded systems [START_REF] Risco-Martín | Optimization of dynamic data types in embedded systems using DEVS/SOA-based modeling and simulation[END_REF].

All works found in the literature have considerably enriched the quality of optimization via simulation theory. However the potential of optimization via simulation offers infinity of possible improvements. The presented work focuses on opportunites offered by the discrete event concepts in order to: (i) to drive the optimization, (ii) decrease the compute time and (iii) increase the quality of the proposed solutions.

PROPOSED APPROACH 3.1. General architecture

Genericity is one of the most important criterion of the proposed framework. We want to provide a robust framework which should be accessible and extensible to federate the optimization via simulation community while preserving perfomance. Our framewok can optimize large complex systems such as hydrolic networks and thereby simple systems like Rastringin Function. In figure Figure 2 we give a short description of the general architecture. This one is described through the set of DEVS atomic models which have been used in order to design and implement a generic solution for Metaheuristic based OvS.

This architecture generates three groups of models: the optimizer configuration models (Metaheuristic Manager), the solution external evaluation models (Translators, Decisions Models, and Statisfaction) and optimization models (Optimizer). During OvS execution the "Metaheuristic Manager" model handles the algorithm initilization. This process is decomposed into two steps: (1) the random population generation and (2) the algorithm elaboration and configuration. Two informations are sent to the "Optimizer" atomic model: the population and the optimization object. This object is a list of methods that analyse and change current solutions. The "Optimizer" model has a State variable called "Phase" which describes in the DEVS formalism the different phases which are available by the atomic model. The set of values of the state variable "Phase" of the "Optimizer" model are: {"WAIT CONFIGURATION", "SOLUTION EVALUATION", "SOLUTION

PERTURBATION"}. The potential transitions between the three values of the state variable "Phase" are given in Figure 3.

Figure 2 General Architecture

When the initialization process is completed, the "Optimizer" model state changes from "WAIT CONFIGURATION" to "SOLUTION EVALUATION". When the state is "SOLUTION EVALUATION" outputs corresponding to the binary representation of solutions are sent one by one to the "Translators" atomic models (see Figure 2). When all new solutions have been treated the optimizer model state changes from "SOLUTION EVALUATION" to "SOLUTION PERTURBATION". The following state will become again "SOLUTION EVALUATION" when the solution perturbation will be completed. The outputs of the Optimizer model (binary solutions) will be adapted to the decision model input format. The "Translator" atomic models will allow this adaptation. Each time a "Decision" atomic model receives a message (containing a traduced solution) coming from a "Translator" atomic model, an output result is sent to a "Satisfaction"atomic model. A "Satisfaction" model collects produced outputs until their buffers are full. When it happens the "Satisafaction" models sends a "Stop Message" to the corresponding "Decision Model" and computes a satisfaction value. The satisfaction value is then sent to the "Optimizer" atomic model and will be used to compute the current simulated solution fitness.

Figure 3 Optimizer state diagram

This process is repeated until an acceptable solution is found or is stopped when a maximum iteration number is reached. If the algorithm convergeance is too slow the "Optimizer" can ask to the "Metaheuristic Manager" a new configuration. The Metaheuritic Manager Model can then produces new parameters for the current algorithm or propose new actions to perform it. The user can configure deterministic changes or use random changes.

Event-oriented optimization with Translator

Most of metaheuritics work with binary representation or can work with. However models need different types of inputs like integer, float, objects and collection of these previous types of items. We consider in the proposed framework that the optimization process will always handle binary solution representations even if their real translation is not known. The "Optimizer" model knows only the fitness of a given binary solution. This information is sufficient since the evaluation is externalized. However the real meaning of solutions needs to be generated: that is the goal of the "Translator" model as illustrated in Figure 4. This one have been inserted between the "Optimizer" atomic model and a "Decision" model.

Figure 4 Translation process

The translation is realized in several steps: 1. the "Translator" model analyses the input binary solution representation and selects its corresponding part using two indexes ; 2. the corresponding part is cut into two sub-parts : the times representation and the variables representation. 3. The bitstring representations are then translated into segments. The number of segments is given by the number of problems variables. At the end of this process the model has two lists in it internal state. The first is the value to be sent and the second represents the time event of these values. In the current version of our framework, different types of translation models are implemented. They provide the following types of translation: binary to integer, binary to float, binary to character, binary to coordinates and binary to enumeration file. Other translaction model can be quickly developed by only coding a translate function whose input parameter is a bitstring that returns a translation.

Performance and adapation with Satisfaction

The goal of the "decision model" components is to generate outputs towards a "Satisfaction" model. The "Satisfaction" model will collect each generated output until a given number of outputs is reached or a specific value is obtained. When it occurs the concerned "Satisfaction" model reads collected outputs and produces a satisfaction score between zero and one. The one value represents a total satisfaction while zero represents a total dissatisfaction.

Actually we implement the "Satisfaction" model as shown in figure Figure 5. It is composed by two curves. At time t if the collected result is close to the optimal curve then satisfaction will be close to one. Otherwise, if it is near to the unexpected values curve the satisfaction will be near zero. When the collecting process ends, the satisfaction model computes the average satisfaction and transfers it to the "Optimizer" model.

Figure 5 Satisfaction curves

Coupling metaheuristics and simulation in a same tool can increase dramatically the total computed time of an OvS process. To reduce this problem we allow to the "Satisfaction model" component to send a message to the "decision model" to stop an executing simulation that produces very poor results as explain in Figure 6. We estimate poor results by performing an analysis of the past evaluated solutions.

Figure 6 Satisfaction process

It shoud be noted that the stop messages can be used to propose different levels of optimization: short-term, middle term, and long term by adjusting the size of satisfaction buffer.

Multicriteria with Optimizer

Many optimization applications can be seen as multicriteria problems. Decision support models outputs have different relevance for problem optimization. The behavior of the "Optimizer" model offers the possibility to compute a multicriteria fitness. We apply a weight on each input port connected to a "Satisfaction" model as described in Figure 7. When all satisfaction results are collected, the "Optimizer" model computes the weighted average and sets the fitness of the current simulated solution. 

Configuration and Hybridation with Manager

We focus on parameter control to avoid rigid parameters as suggest in recent researchs [START_REF] Eiben | Parameter control in evolutionary algorithms[END_REF]. The "Optimizer" model evals the fitness convergence speed. To evaluate this speed different methods are available. The model can evaluate the fitness progression on a given number of iterations. The model can trig itself when the best fitness reaches a defined threeshold. Then the "Optimizer" model sends a parameter request towards the "Metaheuristic manager" model that will provide a new pack of parameters. These parameters can be generated: (i) randomly; (ii) by reading a parametrization curve (Figure 8); (iii) by consulting a temporized list of methods (Figure 9) before execution. Recent advances in literature show the emergence of the concept of hydrid-metaheuristic algorithms [START_REF] Blum | Hybrid Metaheuristics: An Introduction[END_REF]. The purprose is to use advantage of a combination of several metaheuristic algorithms. Using the proposed DEVS oriented architecture we are able to provide a hybridmetaheuristic algorithm through the "Metaheuristic Manager" model. The "Meta-heuristic Manager" model can be used to create new metaheuristic algorithms by merging two or more existing algorithms. For example the "Metaheuristic Manager" model can build a hydrid alogirhtm composed by a genetic algorithm and harmony search components.

This hybridation is performed using the following steps: (1) at the beginning of the optimization process the behaviour of the "Optimizer" model is created by the "Metaheuristic manager" model; (2) the "Optimizer" model behaviour can be then viewed as a graph of actions as shown in Figure 10; (3) introduction of a new component (the "Simulation evaluation" model) in order to combine several algorithms.

Our architecture allows the use of different algorithms involved in the same optimization process. We provide a universal component called the simulation evaluation. The random solutions generator performs the creation of initial solutions using a binary representation which allows an easy translation towards any existing type. The "Simulation evaluation" model sends the proposed solutions one by one towards the decisions models (which are then used to, produce outputs in order to compute their fitness). To allow hybridation, we explode each metaheuristic in sub-actions using a programming oriented object (POO) strategy pattern. Each object has a method named "action" whose input type and output type are a list of proposed solutions. We organize the previously described models into a library of DEVSimPy models named "DEVovluationS" and perform somes tests on the elaboration of a medical therapy.

Optimization of a medical therapy

We choose to validate our architecture on a simple OvS health problem: the management of glycemic level for diabetic patient. Indeed drug doses and time to take is a really hard task. Even if the problem looks simple in first view, it is really a complex one because it handles multiple factors. We have to take into account the specificities of the drug treatement, patient glycemic level behavior, patient metabolism. Treating a glycemic level at time t increases the risk of over medication at time t+1 because glycemic level is not linear and can vary during the same drug effect. The antidiabetic treatement with a hight risk of under and/or over medication can cause serious side effects. In this example we create a model with one input describing the medical treatement and one output describing the traited glycemic lever at current time. We make the assumption the untreated glycemic levels are given by a body area network (BAN). We define the interaction between drug and metabolism as described in Table 1 On Figure 11 we consider that optimal glycemic level is 0.5.

As we can see the proposed treatement considerably reduces the glycemic level of patient while limiting the over medication. Hovewer we can observe over medication in some cases that causes a glycemic level under zero. The second optimization process is performed with optimization configuration described in Table 4 and results are showed in 5 Proposed treatement

In Table 5 the "Optimizer" model proposes at the same time two posologies. We can add them and also reduce the number of taken doses. In this optimization process we can observe that the over medication is low but the number of under medication during the day is high.

Figure 12 HS Treatement efficiency

Despite of the good obtained results we try to perform the proposed architecture using hydrid metaheuristics with dynamic parameters as summurized in Table 6. In this application we choose to use genetic algorithms for the 300 iterations, then 300 iterations with harmonic search. 

Algorithm

Figure 13 Hybrid treatment efficiency

As observed on Figure 13 the results obtained by using genetic algorithm and harmony search in a single optimization process point out that the hybridation process is working nicely and produces better results than using the two metaheuristic (the genetic algorithm and the harmonic search) separetly with the same number of iterations. Moreover the dynamic parametrization of this hybrid algorithm allows speeding up the optimization process and also to reduce the total computed time. Furthermore these variations allow avoiding local minimum problem by conserving the intensifaction research aspect.

CONCLUSION

In this paper we have presented of a generic OvS framework based on metaheuristic algorithms. The definition of an automatic integration of metaheuristic algorithms optimization techniques into a discrete event modeling using the DEVS formalism is validated on a medical therapy real case according to two axes: 1. Modeling of OvS interpretation and solutions, 2. Hybridation of metaheuristics concept (pointing out the new capabilities of this concept). This generic approach of the framework leads us towards the quick integration of others metaheuristics concepts and some applications results. However an important work has to be done on the choice of metaheuristics and its parameters to reduce the random aspect and increase the optimization performances.
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 2 The optimized treatement is exposed in Table3. Then glycemic levels are compared in Figure11.
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	Take hour	Posologie (Ml)
	8	9.28586259468
	11	7.95386148248
	17	8.72738256056
	20	10.8587165386
	23	14.8236083891
	Over-medication and under-medication sum
		= 5.23092976198 (in 200 seconds)

Table 3 Proposed treatement

 3 

Table 5 and

 5 Figure 12. 

	Algorithm	Harmonic Search
	Harmony Memory Size	30
	Number Harmonic variables	5
	Harmony Memory Considering Rate	0.95
	Pitch Ajusting Rate	0.30
	Maximum improvisation	0.10
	Individual reprentation	64 (bits)
	Temporised variables	Yes
	Dynamic parameters	No
	Table 4 Optimization parameters
	Take hour	Posologie (Ml)
	8	7.2331207207
	12	3.86462400667
	12	2.99889054458
	14	2.69528913484
	21	19.8222566741
	Over-medication and under-medication sum
	= 4.5695910537 (in 200 seconds)
	Table	

Table 6 Hybrid optimization parameters

 6 The dynamic parameters are bounded randomized. They are different for each componement and are given in Table7.

	HS & GAs

Table 7 Random parameters boundaries
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	Take hour	Posologie (Ml)
	7	9.99999849359
	14	4.84251826298
	16	9.89742219448
	21	4.92126271098
	22	9.76543395717
	Over-medication and under-medication sum
		= 3.70336268693 (in 200 seconds)

Table 8 Hybrid optimization results
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