
HAL Id: hal-01148501
https://hal.science/hal-01148501v5

Submitted on 13 Jan 2016 (v5), last revised 16 Jan 2017 (v12)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Formalizing common sense reasoning for scalable
inconsistency-robust information coordination using

Direct Logic™ Reasoning and the Actor Model
Carl Hewitt

To cite this version:
Carl Hewitt. Formalizing common sense reasoning for scalable inconsistency-robust information co-
ordination using Direct Logic™ Reasoning and the Actor Model. Inconsistency Robustness, 2015,
978-1-84890-159-9. �hal-01148501v5�

https://hal.science/hal-01148501v5
https://hal.archives-ouvertes.fr

1

Formalizing common sense reasoning for scalable

inconsistency-robust information coordination using

Direct LogicTM Reasoning and the Actor Model

Carl Hewitt

This article is dedicated to Stanisław Jaśkowski,
John McCarthy, Marvin Minsky and Ludwig Wittgenstein.

Abstract
People use common sense in their interactions with large information systems.

This common sense needs to be formalized so that it can be used by computer

systems. Unfortunately, previous formalizations have been inadequate. For

example, classical logic is not safe for use with pervasively inconsistent

information. The goal is to develop a standard foundation for reasoning in

large-scale Internet applications (including sense making for natural

language).

Inconsistency Robust Direct Logic is a minimal fix to Classical Logic without

the rule of Classical Derivation by Contradiction

 (Ψ├ (¬))├ ¬Ψ

Addition of the above transforms Inconsistency Robust Direct Logic into

Classical Logic. Inconsistency Robust Direct Logic makes the following

contributions over previous work:

 Direct Inference1

 Direct Argumentation (argumentation directly expressed)

 Inconsistency-robust Natural Deduction that doesn’t require artifices such

as indices (labels) on propositions or restrictions on reiteration

 Intuitive inferences hold including the following:

 Propositional Equivalences (except absorption) including Double

Negation and inference for De Morgan

 -Elimination (Disjunctive Syllogism), i.e., ¬Φ, (ΦΨ)├
T
 Ψ

 Reasoning by disjunctive cases, i.e.,

(), (├
T
), (├

T
 Ω)├

T
 Ω

 Contrapositive for implication i.e., Ψ⇒
T
 if and only if ¬⇒

T
¬Ψ

 Soundness (a theorem can be used in a derivation), i.e., (├
T
) ├

T

 Inconsistency Robust Derivation by Contradiction, i.e.,
(Ψ⇒

T
 (¬))├

T
¬Ψ

2

A fundamental goal of Inconsistency Robust Direct Logic is to effectively

reason about large amounts of pervasively inconsistent information using

computer information systems.

Jaśkowski [1948] stated the following initial goal:

 To find a system [for inconsistency robust inference] which:

1) when applied to contradictory [information] would not always entail

overcompleteness [i.e. infer every proposition]

2) would be rich enough for practical inference

3) would have an intuitive justification

According to Feferman [2008]: So far as I know, it has not been determined

whether such [inconsistency robust] logics account for “sustained ordinary

reasoning”, not only in everyday discourse but also in mathematics and the

sciences. Direct Logic is put forward as an improvement over classical logic

with respect to Feferman’s desideratum above using the following:

 Inconsistency Robust Direct Logic for pervasively inconsistent theories

of practicei

 Classical Direct Logic for use of consistent mathematical theories in

inconsistency robust theories

Direct Logic is an improvement over classical logic with respect to

Feferman’s desideratum above for today's information systems that are

perpetually, pervasively inconsistent. Information technology needs an all-

embracing system of inconsistency-robust reasoning to support practical

information coordination. Having such a system is important in computer

science because computers must be able to carry out all inferences (including

inferences about their own inference processes) without relying on humans

Consequently, Direct Logic is proposed as a standard to replace classical

logic as a mathematical foundation for Computer Science.

Since the global state space model of computation (first formalized by Turing)

is inadequate to the needs of modern large-scale Internet applications the

Actor Model was developed to meet this need.

Hypothesis:ii All physically possible computation can be directly

implemented using Actors.

i e.g., theories for climate modeling and for modeling the human brain
ii This hypothesis is an update to [Church 1936] that all physically computable

functions can be implemented using the lambda calculus. It is a consequence of

the Actor Model that there are some computations that cannot be implemented in

the lambda calculus.

3

Using, the Actor Model, this paper proves that Logic Programs are not

computationally universal in that there are computations that cannot be

implemented using logical inference. Consequently the Logic Program

paradigm is strictly less general than the Embedding of Knowledge paradigm.

Introduction
Beneath the surface of the world are the rules of science. But beneath

them there is a far deeper set of rules: a matrix of pure mathematics,

which explains the nature of the rules of science and how it is that we

can understand them in the first place.

Malone [2007]

Our lives are changing: soon we will always be online. People use their
common sense interacting with large information systems. This common
sense needs to be formalized.i

Large-scale Internet software systems present the following challenges:
1. Pervasive inconsistency is the norm and consequently classical logic

infers too much, i.e., anything and everything. Inconsistencies (e.g. that

can be derived from implementations, documentation, and use cases) in

large software systems are pervasive and despite enormous expense have

not been eliminated.

2. Concurrency is the norm. Logic Programs based on the inference rules

of mathematical logic are not computationally universal because the

message order reception indeterminate computations of concurrent

programs in open systems cannot be deduced using mathematical logic

from propositions about pre-existing conditions. The fact that

computation is not reducible to logical inference has important practical

consequences. For example, reasoning used in information coordination

cannot be implemented using logical inference [Hewitt 2008a].

This paper suggests some principles and practices formalizing common

sense approaches to addressing the above issues.

Interaction creates Reality2

[We] cannot think of any object apart from the possibility of its

connection with other things.

Wittgenstein, Tractatus

i Eventually, computer systems need to be able to address issues like the following:

 What will be the effects of increasing greenhouse gasses?

 What is the future of mass cyber surveillance?

 What can done about the increasing prevalence of metabolic syndrome?

4

According to [Rovelli 2008]:

a pen on my table has information because it points in this or that direction.

We do not need a human being, a cat, or a computer, to make use of this

notion of information.i

Relational physics takes the following view [Laudisa and Rovelli 2008]:

• Relational physics discards the notions of absolute state of a system

and absolute properties and values of its physical quantities.

• State and physical quantities refer always to the interaction, or the

relation, among multiple systems.ii

• Nevertheless, relational physics is a complete description of reality.iii

According to this view, Interaction creates reality.3

Information is a generalization of physical information in Relational

Physics

Information, as used in this article, is a generalization of the physical

information of Relational Physics.iv Information systems participate in reality

and thus are both consequence and cause. Science is a large information

system that investigates and theorizes about interactions. So how does Science

work?

i Rovelli added: This [concept of information] is very weak; it does not require

[consideration of] information storage, thermodynamics, complex systems,

meaning, or anything of the sort. In particular:

i. Information can be lost dynamically ([correlated systems can become

uncorrelated]);

ii. [It does] not distinguish between correlation obtained on purpose and

accidental correlation;

iii. Most important: any physical system may contain information about another

physical system.

Also, Information is exchanged via physical interactions. and furthermore, It is

always possible to acquire new information about a system.
ii In place of the notion of state, which refers solely to the system, [use] the notion of

the information that a system has about another system.
iii Furthermore, according to [Rovelli 2008], quantum mechanics indicates that the

notion of a universal description of the state of the world, shared by all observers,

is a concept which is physically untenable, on experimental grounds. In this regard,

[Feynman 1965] offered the following advice: Do not keep saying to yourself, if

you can possibly avoid it, “But how can it be like that?" because you will go “down

the drain," into a blind alley from which nobody has yet escaped.
iv Unlike physical information in Relational Physics [Rovelli 2008, page 10], this

paper does not make the assumption that information is necessarily a discrete

quantity or that it must be consistent.

5

According to [Law 2004, emphasis added]:

 … scientific routinisation, produced with immense difficulty and at

immense cost, that secures the general continued stability of natural (and

social) scientific reality. Elements within [this routinisation] may be

overturned… But overall and most of the time, … it is the expense [and

other difficulties] of doing otherwise that allows [scientific routinisation]

to achieve relative stability. So it is that a scientific reality is produced

that holds together more or less.4

He added that we can respond as follows:

That we refuse the distinction between the literal and the metaphorical (as

various philosophers of science have noted, the literal is always ‘dead’

metaphor, a metaphor that is no longer seen as such). … That we work

allegorically. That we imagine coherence without consistency. [emphasis

added]

The coherence envisaged by Law (above) is a dynamic interactive ongoing

process among humans and other objects.

Pervasive Inconsistency is the Norm in Large Software Systems

“… find bugs faster than developers can fix them and each fix leads to

another bug”

Cusumano & Selby, 1995, p. 40

The development of large software systems and the extreme dependence of

our society on these systems have introduced new phenomena. These systems

have pervasive inconsistencies among and within the following:5

 Use cases that express how systems can be used and tested in practice.6

 Documentation that expresses over-arching justification for systems and

their technologies.7

 Code that expresses implementations of systems

Adapting a metaphor used by Popper8 for science, the bold structure of a large

software system rises, as it were, above a swamp. It is like a building erected

on piles. The piles are driven down from above into the swamp, but not down

to any natural or given base; and when we cease our attempts to drive our piles

into a deeper layer, it is not because we have reached bedrock. We simply

pause when we are satisfied that they are firm enough to carry the structure,

at least for the time being. Or perhaps we do something else more pressing.

Under some piles there is no rock. Also some rock does not hold.

Different communities are responsible for constructing, evolving, justifying

and maintaining documentation, use cases, and code for large, software

systems. In specific cases any one consideration can trump the others.

6

Sometimes debates over inconsistencies among the parts can become quite

heated, e.g., between vendors. In the long run, after difficult negotiations, in

large software systems, use cases, documentation, and code all change to

produce systems with new inconsistencies. However, no one knows what

they are or where they are located!

A large software system is never done [Rosenberg 2007].9

With respect to detected contradictions in large information systems,

according to [Russo, Nuseibeh, and Easterbrook 2000]:

The choice of an inconsistency handling strategy depends on the context and

the impact it has on other aspects of the development process. Resolving the

inconsistency may be as simple as adding or deleting information from a

software description. However, it often relies on resolving fundamental

conflicts, or taking important design decisions. In such cases, immediate

resolution is not the best option, and a number of choices are available:
 Ignore - it is sometimes the case that the effort of fixing an inconsistency is too

great relative to the (low) risk that the inconsistency will have any adverse

consequences. In such cases, developers may choose to ignore the existence of

the inconsistency in their descriptions. Good practice dictates that such

decisions should be revisited as a project progresses or as a system evolves.

 Defer - this may provide developers with more time to elicit further information

to facilitate resolution or to render the inconsistency unimportant. In such

cases, it is important to flag the parts of the descriptions that are affected, as

development will continue while the inconsistency is tolerated.

 Circumvent - in some cases, what appears to be an inconsistency according to

the consistency rules is not regarded as such by the software developers. This

may be because the rule is wrong, or because the inconsistency represents an

exception to the rule that had not been captured. In these cases, the

inconsistency can be circumvented by modifying the rule, or by disabling it for

a specific context.

 Ameliorate - it may be more cost-effective to ‘improve’ a description

containing inconsistencies without necessarily resolving them all. This may

include adding information to the description that alleviates some adverse

effects of an inconsistency and/or resolves other inconsistencies as a side effect.

In such cases, amelioration can be a useful inconsistency handling strategy in

that it moves the development process in a ‘desirable’ direction in which

inconsistencies and their adverse impact are reduced.

7

Inconsistency Robustness

You cannot be confident about applying your calculus until you know

that there are no hidden contradictions in it.i

Turing circa 1930. [Wittgenstein 1933-1935]

Indeed, even at this stage, I predict a time when there will be

mathematical investigations of calculi containing contradictions, and

people will actually be proud of having emancipated themselves from

consistency.

Wittgenstein circa 1930. [Wittgenstein 1933-1935]10

Inconsistency robustness is information system performance in the face of

continually pervasive inconsistencies--- a shift from the previously dominant

paradigms of inconsistency denial and inconsistency elimination attempting

to sweep them under the rug.ii

In fact, inconsistencies are pervasive throughout our information

infrastructure and they affect one another. Consequently, an interdisciplinary

approach is needed.

Inconsistency robustness differs from previous paradigms based on belief

revision, probability, and uncertainty as follows:

• Belief revision: Large information systems are continually, pervasively

inconsistent and there is no way to revise them to attain consistency.

• Probability and fuzzy logic: In large information systems, there are

typically several ways to calculate probability. Often the result is that the

probability is both close to 0% and close to 100%! Inconsistent

probabilities can result in correct inferences.

• Uncertainty: Resolving uncertainty to determine truth is not realistic in

large information systems.

There are many examples of inconsistency robustness in practice including

the following:

• Our economy relies on large software systems that have tens of

thousands of known inconsistencies (often called “bugs”) along with

tens of thousands more that have yet to be pinned down even though

their symptoms are sometimes obvious.

i Turing was correct that it is unsafe to use classical logic to reason about inconsistent

information. Church and Turing later proved that determining whether there are

hidden inconsistencies in a mathematical theory is computationally undecidable.
ii Inconsistency robustness builds on previous work on inconsistency tolerance, e.g.,

[Bertossi, Hunter and Schaub 2004; Gabbay and Hunter 1991-1992; Bėziau,

Carnielli and Gabbay 2007].

8

• Physics has progressed for centuries in the face of numerous

inconsistencies including the ongoing decades-long inconsistency

between its two most fundamental theories (general relativity and

quantum mechanics).

• Decision makers commonly ask for the case against as well as the case

for proposed findings and action plans in corporations, governments,

and judicial systems.

Inconsistency robustness stands to become a more central theme for

computation. The basic argument is that because inconsistency is continually

pervasive in large information systems, the issue of inconsistency robustness

must be addressed!

A fundamental goal of Inconsistency Robustness is to effectively reason about

large amounts of information at high degrees of abstraction:

 Inconsistency

 Robustness

I
n

f
o

r
m

a
t
i
o

n

Large

Small

Low
High

 Classical Logic

First-order Logic

Correlations

Classical logic is safe only for theories for which there is strong evidence

of consistency.

A little inaccuracy sometimes saves tons of explanation.

Saki in “The Square Egg”

Inconsistency robust theories can be easier to develop than classical theories

because perfect absence of inconsistency is not required. In case of

inconsistency, there will be some propositions that can be both proved and

disproved, i.e., there will be arguments both for and against the propositions.

A classic case of inconsistency occurs in the novel Catch-22 [Heller 1961]

which states that a person “would be crazy to fly more missions and sane if he

didn't, but if he was sane he had to fly them. If he flew them he was crazy and

didn't have to; but if he didn't want to he was sane and had to. Yossarian was

9

moved very deeply by the absolute simplicity of this clause of Catch-22 and

let out a respectful whistle. ‘That's some catch, that Catch-22,’ he observed.”

Consider the follow formalization of the above in classical logic:i

Policy1[x] ≡ Sane[x] ⇒ Obligated[x, Fly]
Policy2[x] ≡ Obligated[x, Fly] ⇒ Fly[x]
Policy3[x] ≡ Crazy[x] ⇒ Obligated[x, Fly]

Observe1[x] ≡ Obligated[x, Fly] Fly[x] ⇒ Sane[x]
Observe2[x] ≡ Fly[x] ⇒ Crazy[x]
Observe3[x] ≡ Sane[x] Obligated[x, Fly] ⇒ Fly[x]]
Observe4 ≡ Sane[Yossarian]

In addition, there is the following background material:

Background2 ≡ Obligated[Moon, Fly]

Using classical logic, the following rather surprising conclusion can be

inferred:

 Fly[Moon]
i.e., the moon flies an aircraft!

Classical logic is not safe for theories not know to be consistent.ii

Inconsistency robustness facilitates formalization
Inconsistency Robust Direct logic facilitates common sense reasoning by

formalizing inconsistency robust inference.iii

i This is a very simple example of how classical logic can infer absurd conclusions

from inconsistent information. More generally, classical inferences using

inconsistent information can be arbitrarily convoluted and there is no practical way

to test if inconsistent information has been used in a derivation.

ii It turns out that there is a hidden inconsistency in the theory Catch22:

Inference1 ≡ ├Catch22
 Fly[Yossarian]

Inference2 ≡ ├Catch22
 Fly[Yossarian]

Thus there is an inconsistency in the theory Catch22 concerning whether

Yossarian flies.
iii According to [Minsky 1974]:

The consistency that [classical] logic absolutely demands is not otherwise usually

available – and probably not even desirable! – because consistent systems are

likely to be too “weak”.

10

In Direct Logic, the above can be formulated using a very strong form of

implication in Inconsistency Robust Direct Logic as follows in the theory

Catch22:11

Policy1[x] ≡ Sane[x] ├
Catch22

 Obligated[x, Fly]

Policy2[x] ≡ Obligated[x, Fly] ├
Catch22

 Fly[x]

Policy3[x] ≡ Crazy[x] ├
Catch22

 Obligated[x, Fly]

Observe1[x] ≡ Obligated[x, Fly] Fly[x] ├
Catch22

 Sane[x]

Observe2[x] ≡ Fly[x] ├
Catch22

 Crazy[x]

Observe3[x] ≡ Sane[x] Obligated[x, Fly] ├
Catch22

 Fly[x]]

Observe4 ≡ ├
Catch22

 Sane[Yossarian]

Background2 ≡ ├
Catch22

 Obligated[Moon, Fly]

Unlike Classical Logic, in Direct Logic:
 ⊬

Catch22
 Fly[Moon]

It turns out that the following can be inferred:12

 ├
Catch22

 Fly[Yossarian]

 ├
Catch22

 Fly[Yossarian]

However, instead of being able to infer everythingi, once the above

contradiction been noticed, question answering can be improved using the

“but” construct of Inconsistency Robust Direct Logic as follows:

 ├
Catch22

 Fly[Yossarian] but ├
Catch22

 Fly[Yossarian]

 ├
Catch22

Fly[Yossarian] but ├
Catch22

 Fly[Yossarian]

Contradictions can facilitate Argumentation

[I] emphasize that contradictions are not always an entirely bad thing. I

think we have all found in our googling that it is often better to find

contradictory information on a search topic rather than finding no

information at all. I explore some of the various reasons this may arise,

which include finding that there is at least active interest in the topic,

appraising the credentials of the informants, counting their relative number,

assessing their arguments, trying to reproduce their experimental results,

discovering their authoritative sources, etc.

[Dunn 2014]

i which is the case in classical logic from a contradiction

11

Using Direct Logic, various arguments can be made in Catch22. For

example:

 Sane[x]├
Argument1

𝐶𝑎𝑡𝑐ℎ22
 Crazy[x]

 i.e. “The sane ones are thereby crazy because they fly.”

 Crazy[x], Fly[x]├
Argument2

𝐶𝑎𝑡𝑐ℎ22
 Sane[x]

 i.e. “The crazy ones who don’t fly are thereby sane.”

However, neither of the above arguments is absolute because there might be

arguments against the above arguments. Also, the following axiom can be

added to the mix:

 Observe5[x] ≡ Crazy[x] ├
Catch22

 Sane[x]]

Once, the above axiom is added we have:

 ├
Catch22

 Fly[Yossarian] but ├
Catch22

 Sane[Yossarian]

although Sane[Yossarian] is used in the argument for Fly[Yossarian].

The theory Catch22 illustrates the following points:

 Inconsistency robustness facilitates theory development because a single

inconsistency is not disastrous.

 Even though the theory Catch22 is inconsistent, it is not meaningless.

 Queries can be given sensible answers in the presence of inconsistent

information.

Inconsistent probabilities

You can use all the quantitative data you can get, but you still

have to distrust it and use your own intelligence and judgment.

Alvin Toffler

it would be better to … eschew all talk of probability in favor of

talk about correlation.

N. David Mermin [1998]

Inconsistency is built into the very foundations of probability theory:13

 ℙPresentMoment ≅ 0
Because of cumulative contingencies to get here.i

 ℙPresentMoment ≅ 1
Because it's reality.

i For example, suppose that we have just flipped a coin a large number of times

producing a long sequence of heads and tails. The exact sequence that has been

produced is extremely unlikely.

12

The above problem is not easily fixed because of the following:

 Indeterminacies are omnipresent/

 Interdependencies14 are pervasive thereby calling to question

probabilistic calculations that assume independence.

IGORi for Probabilities

Probabilistic reasoning can make incorrect inferences using inconsistent

information.

Theorem. ℙ≅1, ℙ≅0├ ℙ≅1
 i.e., If probabilities are inconsistent, then every proposition has high

probability

Proof:

1) ℙ≅1 // hypothesis
2) ℙ≅0 // hypothesis
3) ℙ ≅ 1 // using 1)
4) ℙ ≅ 0 // using 2)
5) ℙ = ℙ + ℙ - ℙ // using probability
6) 1 ≅ 0 + ℙ - 0 // using 3), 2), and 4)
7) ℙ ≅ 1 // using 6)

The point is that probabilistic inference (like classical logic) can be safely used

only for consistent information. Consequently, probabilistic inference (like

classical logic) does not scale up for use with large real-world applications.

Consequently, safely using probabilistic inference requires working within a

micro theory (model) that is consistent.

The above points were largely missed in [Anderson 2008]. which stated: ii

“Correlation is enough.” We can stop looking for models. We can

analyze the data without hypotheses about what it might show. We can

throw the numbers into the biggest computing clusters the world has ever

seen and let statistical algorithms find patterns where science cannot.

(emphasis added)

Of course, Anderson missed the whole point that causality is about affecting

correlations through interaction. Statistical algorithms can always find

meaningless correlations. Models (i.e. theories) are used to create

interventions to test which correlations are causal.

i Inconsistency in Garbage Out Redux.
ii Anderson is recommending a passive very conservative Bayesian approach instead

of the scientific approach of active theorizing and intervening.

13

Theorem. (├) ⇒ ℙ ≤ ℙ

 Derivation: Suppose ├ .

1 ≅i ℙ| ≡
ℙ

ℙ

ℙ ≅ ℙ ≤ ℙ

Thus probabilities for the theory Catch22 obey the following:

P1. ├ Catch22
 ℙSane[x] ≤ ℙObligated[x, Fly]

P2. ├ Catch22
 ℙObligated[x, Fly] ≤ ℙFly[x]

P3. ├ Catch22
 ℙCrazy[x] ≤ ℙObligated[x, Fly]]

S1. ├ Catch22
 ℙObligated[x, Fly] Fly[x] ≤ ℙSane[x]

S2. ├ Catch22
 ℙFly[x] ≤ ℙCrazy[x]

S3. ├ Catch22
 ℙSane[x]Obligated[x, Fly] ≤ ℙFly[x]

S4. ├ Catch22
 ℙSane[Yossarian] ≅ 1

Consequently, the following inferences hold

I1. ├ Catch22
 1 ≅ ℙObligated[Yossarian, Fly] using P1 and S4

I2. ├ Catch22
 1 ≅ ℙFly[Yossarian] using P2 and I1

I3. ├ Catch22
 1 ≅ ℙCrazy[Yossarian] using S2 and I2

I4. ├ Catch22
 1 ≲ ℙObligated[Yossarian, Fly] using P3 and I3

I5. ├ Catch22
 ℙFly[Yossarian] ≅ 0 using I4 and S3

I6. ├ Catch22
 ℙFly[Yossarian] ≅ 1 reformulation of I5

Thus there is an inconsistency in Catch22 in that both of the following hold in
the above:

I2. ├ Catch22
 ℙFly[Yossarian] ≅ 1

I6. ├ Catch22
 ℙFly[Yossarian] ≅ 0

Inconsistent probabilities are potentially a much more serious problem than

logical inconsistencies because they have unfortunate consequences like the

following:├
Catch22

 1≅0.15

Using Bayes rule does not offer a way out of the above inconsistency.

i This conclusion is not accepted by all. See [Lewis 1976].

14

In addition to inconsistency non-robustness, probability models are limited by

the following:

 Limited expressiveness (avoidance of non-numerical reasoning)

 Limited scalability

 Fragile independence assumptions

 Markovian ahistoricity

 Bayes rule (very conservative) versus general reasoning

 Contrafactuals (contra scientific knowledge)

Nevertheless, probabilities have important uses in physics, e.g. quantum

systems.

However, statistical reasoning is enormously important in practice including

the following:

• Aggregation and Correlation

• Interpolation and Extrapolation

• Classification and Simulation

Circular information

How can inconsistencies such as the one above be understood?

Assigning truth values to propositions is an attempt to characterize whether or

not a proposition holds in a theory. Of course, this cannot be done consistently

if the theory is inconsistent. Likewise, assigning probabilities to propositions

is an attempt to characterize the likelihood that a proposition holds in a theory.

Similar to assigning truth values, assigning probabilities cannot be done

consistently if the theory is inconsistent.

The process of theory development can generate circularities that are an

underlying source of inconsistency:

Mol shows that clinical diagnoses often depend on collective and

statistically generated norms. What counts as a ‘normal’ haemoglobin

level in blood is a function of measurements of a whole population. She is

saying, then, that individual diagnoses include collective norms though

they cannot be reduced to these (Mol and Berg 1994). At the same time,

however, the collective norms depend on a sample of clinical

measurements which may be influenced by assumptions about the

distribution of anaemia—though it is not, of course, reducible to any

individual measurement. The lesson is that the individual is included in

the collective, and the collective is included in the individual—but neither

is reducible to the other.16

15

Classical logic is unsafe for use with potentially inconsistent

information
Irony is about contradictions that do not resolve into larger wholes even

dialectically, about the tension of holding incompatible things together

because all are necessary and true.

Haraway [1991]

An important limitation of classical logici for inconsistent information is that

it supports the principle that from an inconsistency anything and everything

can be inferred, e.g. “The moon is made of green cheese.”

For convenience, I have given the above principle the name IGOR17 for
Inconsistency in Garbage Out Redux. IGOR can be formalized as follows in
which a contradiction about a proposition Ω infers any proposition ,ii i.e.,
 Ω, ¬ Ω├ .

Of course, IGOR cannot be part of Inconsistency Robust Direct Logic
because it allows every proposition to be inferred from a contradiction.

The IGOR principle of classical logic may not seem very intuitive! So why is

it included in classical logic?

 Classical Derivation by Contradiction: (├ ,) ⇒ (├),

which can be justified in classical logic on the grounds that if infers a

contradiction in a consistent theory then must be false. In an

inconsistent theory. Classical Derivation by Contradiction leads to

explosion by the following derivation in classical logic by a which a

contradiction about P infers any proposition :

 P, ¬P ├ ¬ ├ P, ¬P ├ () ├

 Classical Contrapositive for Inference: (├) ⇒ (├), which

can be justified in classical logic on the grounds that if ├ , then if

is false then must be false. In an inconsistent theory. Classical

Contrapositive for Inference leads to explosion by the following

derivation in classical logic by a which a contradiction about P (i.e.,

├ P, P) infers any proposition by the following derivation:

Since├ P, ├ P by monotonicity. Therefore P├ by Classical

Contrapositive for Inference. Consequently P, P├ .

 Classical Extraneous Introduction:18 Ψ├ (ΨΦ), which in classical

logic says that if Ψ is true then ΨΦ is true regardless of whether Φ is

i A very similar limitation holds for intuitionistic logic.
ii Using the symbol ├ to mean “infers in classical mathematical logic.” The symbol

was first published in [Frege 1879].

16

true.19 In an inconsistent theory, Extraneous introduction leads to

explosion via the following derivation in classical logic in which a

contraction about P infers any proposition :

 P,¬P ├ (P),¬P ├

 Classical Excluded Middle: ├ (ΨΨ), which in classical logic says

that ΨΨ is true regardless of whether Ψ is true. Excluded Middle is

the principle of Classical Logic that for every proposition the

following holds: ExcludedMiddle[] ≡

However, Excluded Middle is not suitable for inconsistency-robust logic

because it is equivalenti to saying that there are no inconsistencies, i.e.,

for every proposition ,

 Noncontradiction[] ≡ ()
Using propositional equivalences, note that

 ExcludedMiddle[ΦΨ] ⇔ (ΨΨΦ)(ΦΦΨ)

Consequently, ExcludedMiddle[ΦΨ]⇒(ΨΨΦ), which means

that the principle of Excluded Middle implies ΨΨΦ for all

propositions Ψ and Φ. Thus the principle of Excluded Middle is not

inconsistency robust because it implies every proposition Φ can be

provedii given any contradiction Ψ. [Kao 2011]

Classical Logic is unsafe for inference using potentially inconsistent

information.iii

Direct Logic
“But if the general truths of Logic are of such a nature that when

presented to the mind they at once command assent, wherein consists the

difficulty of constructing the Science of Logic?” [Boole, 1853 pg. 3]

Direct Logic20 is a framework: propositions have arguments for and against.

Inference rules provide arguments that let you infer more propositions. Direct

Logic is just a bookkeeping system that helps you keep track. It doesn’t tell

you what to do when an inconsistency is derived. But it does have the great

virtue that it doesn’t make the mistakes of classical logic when reasoning

about inconsistent information.

i using propositional equivalences
ii using -Elimination , i.e., ¬Φ, (ΦΨ)├

T
 Ψ

iii Turing noted that classical logic can be used to make invalid inferences using

inconsistent information “without actually going through [an explicit]

contradiction.” [Diamond 1976] Furthermore, [Church 1935, Turing 1936] proved

that it is computationally undecidable whether a mathematical theory of practice is

inconsistent.

17

The semantics of Direct Logic are based on argumentation. Arguments can be

inferred for and against propositions. Furthermore, additional arguments can

be inferred for and against these arguments, e.g., supporting and counter

arguments.21

Direct Logic must meet the following challenges:

 Consistent to avoid security holes

 Powerful so that computer systems can carry formalize all logical

inferences

 Principled so that it can be easily learned by software engineers

 Coherent so that it hangs together without a lot of edge cases

 Intuitive so that humans can follow computer system reasoning

 Comprehensive to accommodate all forms of logical argumentation

 Inconsistency Robust to be applicable to pervasively inconsistent

theories of practice with

o Inconsistency Robust Direct Logic for logical inference about

inconsistent information

o Classical Direct Logic for mathematics used in inconsistency-

robust theories

Inconsistency Robust Direct Logic is for reasoning about pervasively-

inconsistent large software systems with the following goals:

 Provide a foundation for reasoning about the mutually inconsistent

implementation, specifications, and use cases large software systems.

 Formalize a notion of “direct” inference for reasoning about

inconsistent information

 Support “natural” deduction [Jaśkowski 1934]i inference rulesii

 Support the usual propositional equivalencesiii

 -Elimination , i.e., ¬Φ, (ΦΨ)├
T
 Ψ

 Reasoning by disjunctive cases,

i.e., (), (├
T), (├

T Ω)├
T Ω

 Inconsistency Robust Derivation by Contradiction, i.e.,

(Ψ⇒
T
 (¬ΦΦ)) ├

T
¬Ψ

 Support abstraction among code, documentation, and use cases of

large software systems. (See discussion below.)

i See discussion in [Pelletier 1999].
ii with the exception of the following:

 Classical Derivation by Contradiction i.e., (Ψ├
T
 ¬Φ,Φ)├

T
¬Ψ

 Extraneous Introduction, i.e., Ψ├
T
 (ΦΨ)

 Excluded Middle, i.e., ├
T
 (Φ¬Φ)

iii with exception of absorption, which must be restricted to avoid IGOR

18

 Provide increased safety in reasoning using inconsistent information.i

Consequently, Inconsistency Robust Direct Logic is well suited in practice for

reasoning about large software systems.ii

Adding just Classical Derivation by Contradiction to Inconsistency

Robust Direct Logic transforms it into a classical logic.

The theories of Direct Logic are “open” in the sense of open-ended schematic

axiomatic systems [Feferman 2007b]. The language of a theory can include

any vocabulary in which its axioms may be applied, i.e., it is not restricted to

a specific vocabulary fixed in advance (or at any other time). Indeed a theory

can be an open system can receive new information at any time [Hewitt 1991,

Cellucci 1992].

In the argumentation lies the knowledge

You don't understand anything until you learn it more than one way.

[Minsky 2005]22

Partly in reaction to Popperiii, Lakatos [1967, §2]) calls the view below

Euclidean:23

“Classical epistemology has for two thousand years modeled its ideal of a

theory, whether scientific or mathematical, on its conception of Euclidean

geometry. The ideal theory is a deductive system with an indubitable truth-

injection at the top (a finite conjunction of axioms)—so that truth, flowing

down from the top through the safe truth-preserving channels of valid

inferences, inundates the whole system.”

Since truth is out the window for inconsistent theories, we need a

reformulation in terms of argumentation.

i by comparison with classical logic
ii In this respect, Direct Logic differs from previous inconsistency tolerant logics,

which had inference rules that made them intractable for use with large software

systems.
iii Derivation by contradiction has played an important role in science (emphasized by

Karl Popper [1962]) as formulated in his principle of refutation which in its most

stark form is as follows:

If ├
T Ob for some observation Ob, then it can be concluded that T is refuted (in a

theory called Popper), i.e., ├
Popper

T

See Suppe [1977] for further discussion.

19

Direct Argumentation

Inference in a theory T (├
T) carries chains of argument from antecedents

to consequents.

Direct Argumentation means that ├

T in a proposition actually means
inference in the theory T.24 For example, together ├

T
 and ├

T infer
├

T , which in Inconsistency Robust Direct Logic can be expressed as
follows by Direct Argumentation: , (├

T)├
T

Theory Dependence

Inference in Inconsistency Robust Direct Logic is theory dependent. For

example [Latour 2010]:

“Are these stone, clay, and wood idols true divinitiesi?” [The Africans]

answered “Yes!” with utmost innocence: yes, of course, otherwise we

would not have made them with our own handsii! The Portuguese, shocked

but scrupulous, not want to condemn without proof, gave the Africans one

last chance: “You can’t say both that you’ve made your own [idols] and

that they are true divinitiesiii; you have to choose: it’s either one or the

other. Unless,” they went on indignantly, “you really have no brains, and

you’re as oblivious to the principle of contractioniv as you are to the sin of

idolatry.” Stunned silence from the [Africans] who failed to see any

contradiction.v

As stated, there is no inconsistency in either the theory Africans or the theory

Portuguese. But there is an inconsistency in the join of these theories, namely,

Africans+Portuguese.

In general, the theories of Inconsistency Robust Direct Logic are inconsistent

and therefore propositions cannot be consistently labeled with truth values.

Information Invariance

Become a student of change. It is the only thing that will remain constant.

Anthony D'Angelo, The College Blue Book

Invariancevi is a fundamental technical goal of Direct Logic.

i ├

Africans
Divine[idols]

ii ├
Africans

Fabricated[idols]

iii ├
Portuguese

(Fabricated[idols] Divine[idols])
iv in Africans+Portuguese
v in Africans

vi Closely related to conservation laws in physics

20

Invariance: Principles of Direct Logic are invariant as follows:

1. Soundness of inference: information is not increased by

inference

2. Completeness of inference: all information that necessarily

holds can be inferred

Semantics of Direct Logic

The semantics of Direct Logic is the semantics of argumentation. Arguments

can be made in favor of against propositions. And, in turn, arguments can be

made in favor and against arguments. The notation├
A

T
 is used to express that

A is an argument for in T.

The semantics of Direct Logic are grounded in the principle that every

proposition that holds in a theory must have argument in its favor which can

be expressed as follows:

The principle Inferences have Arguments says that ├ T if and only if

there is an argument A for in T, i.e., ├
A

T
 i

For example, there is a controversy in biochemistry as to whether or not it has

been shown that arsenic can support life with published arguments by

Redfield25 and NASA26 to the following effect:

├
Redfield

𝐵𝑖𝑜𝑐ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦 (⊬
NASA

𝐵𝑖𝑜𝑐ℎ𝑒𝑚𝑖𝑠𝑡𝑟𝑦
 SupportsLife[Arsenic])

 [Rovelli 2011] has commented on this general situation:

There is a widely used notion that does plenty of damage: the notion of

"scientifically proven". Nearly an oxymoron. The very foundation of

science is to keep the door open to doubt. Precisely because we keep

questioning everything, especially our own premises, we are always ready

to improve our knowledge. Therefore a good scientist is never 'certain'.

Lack of certainty is precisely what makes conclusions more reliable than

the conclusions of those who are certain: because the good scientist will

be ready to shift to a different point of view if better elements of evidence,

or novel arguments emerge. Therefore certainty is not only something of

no use, but is in fact damaging, if we value reliability.

i There is a computational decision deterministic procedure CheckerT running in linear

time such that:

∀[a:Argument, s:Sentence]→ CheckerT [a, s]=True ⇔ ├
a

T
 s T)

21

A fanciful example of argumentation comes from the famous story “What the

Tortoise Said to Achilles” [Carroll 1895].

Applied to example of the Tortoise in the stony, we have

 ├DerivationOfZ(Axiom1, Axiom2)

𝐴𝑐ℎ𝑖𝑙𝑙𝑒𝑠
 Z27

where

A ≡ “Things that are equal to the same are equal to each other.”

B ≡ “The two sides of this Triangle are things that are equal to the same.”

Z ≡ “The two sides of this Triangle are equal to each other.”

 Axiom1 ≡ ├ A, B

 Axiom2 ≡ A, B ├ Z

The above proposition fulfills the demand of the Tortoise that

Whatever Logic is good enough to tell me is worth writing down.

Inference in Argumentation

Scientist and engineers speak in the name of new allies that they have

shaped and enrolled; representatives among other representatives, they

add these unexpected resources to tip the balance of force in their favor.

Latour [1987] Second Principle

“├ Elimination” (Chaining) is a fundamental principle of inference: 28

├ Elimination (Chaining): , (├
T) ├

T

 inferred in T from ├
T
 and ├

T

SubArguments is another fundamental principle of inference:

├ Introduction (SubArguments): (├
TΨ) ├

T (├
T)

 In T, infers when is inferred in TΨ

Please see the appendix “Detail of Direct Logic” for more information.

Mathematics Self Proves that it is Open

Mathematics proves that it is open in the sense that it can prove that its

theorems cannot be provably computationally enumerated:29

Theorem ⊢Mathematics is Open

22

Derivation.i Suppose to obtain a contradiction that it is possible to prove
closure, i.e., there is a provably computable total deterministic procedure
Theorem such that it is provable that

∀[Ψ:Proposition]→ (├ Ψ) ⇔ ∃[i:ℕ]→ Theorem.[i]=p
As a consequence of the above, there is a provably total procedure

ProvableComputableTotal that enumerates the provably total computable

procedures that can be used in the implementation of the following

procedure: Diagonal[i] ≡ (ProvableComputableTotal[i])[i]+1

 However,
• ProvableComputableTotal[Diagonal] because Diagonal is

implemented using provably computable total procedures.
• ProvableComputableTotal[Diagonal] because Diagonal is a

provably computable total procedure that differs from every other
provably computable total procedure.

[Franzén 2004] argued that mathematics is inexhaustible because of

inferential undecidabilityii of closed mathematical theories. The above

theorem that mathematics is open provides another independent argument for

the inexhaustibility of mathematics.

i This argument appeared in [Church 1934] expressing concern that the argument

meant that there is “no sound basis for supposing that there is such a thing as logic.”
ii See section immediately below.

23

Contributions of Direct Logic
Inconsistency Robust Direct Logic aims to be a minimal fix to classical logic

to meet the needs of information coordination. (Addition of just the rule of

Classical Derivation by Contradiction by Inference, transforms Direct Logic

into Classical Logic.) Direct Logic makes the following contributions over

previous work:

• Direct Inference30

• Direct Argumentation (inference directly expressed)

• Inconsistency Robustness

• Inconsistency-robust Natural Deduction31

• Intuitive inferences hold including the following:

o Propositional equivalencesi

o Reasoning by disjunctive cases, i.e.,

 (), (├
T
), (├

T Ω) ├
T
 Ω

o -Elimination, i.e., ¬Φ, (ΦΨ)├
T
 Ψ

o Contrapositive for implication: A proposition implies another if

an only if negation of the latter implies negation of the former, i.e.,

Ψ⇒
T

 if and only if ¬⇒
T

¬Ψ

o Soundness: A theorem can be used in a derivation, i.e.,

(├
T
)├

T
)

o Inconsistency Robust Derivation by Contradiction: A hypothesis

can be refuted by showing that it implies a contradiction, i.e.,

 (⇒
T

 (¬))├
T
 ¬

Actor Model of Computation32

The distinction between past, present and future is only a

stubbornly persistent illusion.

 Einstein

Concurrency has now become the norm. However nondeterminism came first.

See [Hewitt 2010b] for a history of models of nondeterministic computation.

What is Computation?

Any problem in computer science can be solved by introducing another

level of abstraction.

 paraphrase of Alan Perlis

Turing’s model of computation was intensely psychological.33 He proposed

the thesis that it included all of purely mechanical computation.34

i except absorption

24

Gödel declared that

It is “absolutely impossible that anybody who understands the question

[What is computation?] and knows Turing’s definition should decide for a

different concept.”35

By contrast, in the Actor model [Hewitt, Bishop and Steiger 1973; Hewitt

2010b], computation is conceived as distributed in space where computational

devices called Actors communicate asynchronously using addresses of Actors

and the entire computation is not in any well-defined state. The behavior of an

Actor is defined when it receives a message and at other times may be

indeterminate.

Axioms of locality including Organizational and Operational hold as follows:

 Organization: The local storage of an Actor can include addresses only

1. that were provided when it was created or of Actors that it has created

2. that have been received in messages

 Operation: In response to a message received, an Actor can

1 create more Actors

2 send messagesi to addresses in the following:

 the message it has just received

 its local storage

3 for an exclusiveii Actor, designate how to process the next message

receivediii

The Actor Model differs from its predecessors and most current models of

computation in that the Actor model assumes the following:

 Concurrent execution in processing a message.

 The following are not required by an Actor: a thread, a mailbox, a

message queue, its own operating system process, etc.

 Message passing has the same overhead as looping and procedure

calling.

Configurations versus Global State Spaces

Computations are represented differently in Turing Machines and Actors:
1. Turing Machine: a computation can be represented as a global state

that determines all information about the computation. It can be
nondeterministic as to which will be the next global state, e.g., in

i Likewise the messages sent can contain addresses only

1. that were provided when the Actor was created

2. that have been received in messagesthat are for Actors created here
ii An exclusive Actor can perform at most one activity at a time.
iii An Actor that will never update its local storage can be freely replicated and cached.

25

simulations where the global state can transition nondeterministically
to the next state as a global clock advances in time, e.g., Simula [Dahl
and Nygaard 1967].36

1. Actors: a computation can be represented as a configuration.
Information about a configuration can be indeterminate.i

Functions defined by lambda expressions [Church 1941] are special case

Actors that never change.

That Actors which behave like mathematical functions exactly correspond

with those definable in the lambda calculus provides an intuitive justification

for the rules of the lambda calculus:

 Lambda identifiers: each identifier is bound to the address of an Actor.

The rules for free and bound identifiers correspond to the Actor rules

for addresses.

 Beta reduction: each beta reduction corresponds to an Actor receiving

a message. Instead of performing substitution, an Actor receives

addresses of its arguments.

i For example, there can be messages in transit that will be delivered at some time or

the infrastructure will throw an exception.

26

The lambda calculus can be implemented in ActorScript as follows:

Actor IdentifieraType[aString:String]
 implements ExpressionaType using
 eval[e:Environment]:aType → e∎lookup[⍠IdentifieraType]
 // lookup this identifier in anEnvironment

Actor ProcedureCallaType, AnotherType

 [operator:([aType]↦ anotherType), operand:aType]
 implements ExpressionanotherType using
 eval[e:Environment]:anotherType →
 (operator.eval[e])∎[operand∎eval[e]]

Actor LambdaaType, anotherType
 [id:IdentifieraType, body:anotherType]

 implements Expression[aType]↦ anotherType using
 eval[e:Environment]:anotherType →
 [anArgument:aType]→ body∎eval[e ∎bind[id, anArgument]]
 // create a new environment with anIdentifier bound to

 // anArgument in anEnvironment

Note that in the above:

 All operations are local.

 The definition is modular in that each lambda calculus programming

language construct is an Actor.

 The definition is easily extensible since it is easy to add additional

programming language constructs.

 The definition is easily operationalized into efficient concurrent

implementations.

 The definition easily fits into more general concurrent computational

frameworks for many-core and distributed computation.

However, there are nondeterministic computable functions on integers that
cannot be implemented using the nondeterministic lambda calculus.
Furthermore, the lambda calculus can be very inefficient as illustrate by the
theorem below:

Theorem: In systems of practicei, simulating an Actor system using a the

parallel lambda calculus (i.e. using purely functional

programming) can be exponentially slower.

i Examples include climate models and medical diagnosis and treatment systems for

cancer. A software system of practice typically has tens of millions of lines of code.

27

The lambda calculus can express parallelism but not general concurrency (see

discussion below).

Actors generalize Turing Machines

Actor systems can perform computations that are impossible by Turing

Machines as illustrated by the following example:

There is a bound on the size of integer that can be computed by an always

halting nondeterministic Turing Machine starting on a blank tape.37

Plotkin [1976] gave an informal derivation as follows:38

Now the set of initial segments of execution sequences of a given

nondeterministic program P, starting from a given state, will form a tree.

The branching points will correspond to the choice points in the program.

Since there are always only finitely many alternatives at each choice point,

the branching factor of the tree is always finite.39 That is, the tree is finitary.

Now König's lemma says that if every branch of a finitary tree is finite, then

so is the tree itself. In the present case this means that if every execution

sequence of P terminates, then there are only finitely many execution

sequences. So if an output set of P is infinite, it must contain a

nonterminating computation.40

By contrast, the following Actor system can compute an integer of unbounded

size:

The above Actor system can be implemented as follows using ActorScript™:
Unbounded∎[]:Integer ≡
 // Unbounded is a procedure that returns Integer
 Let aCounter ← Counter[]｡ // let aCounter be a new Counter

 Prep ⦷aCounter∎go[],
 // send aCounter a go message concurrently with
 ⦷aCounter∎stop[]
 // returning the value of sending aCounter a stop message

28

 Actor Counter[]
 count ≔ 0 // the variable count is initially 0
 continue ≔ True // the variable continue is initially True
 stop[]:Integer → count // return count
 afterward continue ≔ false
 // continue is false for the next message received
 go[]:Void → continue �
 True⦂ // if continue is True,
 Hole ∎∎go[] // send go[] to this counter after
 after count ≔ count+1 // incrementing count
 False⦂ Void // if continue is False, return Void

By the semantics of the Actor model of computation [Clinger 1981; Hewitt

2006], executing Unbounded∎[] returns an integer of unbounded size.

The nondeterministic procedure Unbounded above can be axiomatized as

follows:
∀[n :Integer]→
 ∃[aRequest:Request, anInteger:Integer]→
 Unbounded sentaRequest []

 ⇒ 𝐒𝐞𝐧𝐭𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡
returned[anInteger] anInteger>n

go[]

stop[]

∎∎go[]

continue=True
 also

 count := count +1

continue := False

count

continue=False

initially: continue=True, count=0

29

However, the above axiom does not compute any actual output! Instead the

above axiom simply asserts the existence of unbounded outputs for

Unbounded∎[].

Theorem. There are nondeterministic computable functions on integers that

cannot be implemented by a nondeterministic Turing machine.
Derivation. The above Actor system implements a nondeterministic functioni that

cannot be implemented by a nondeterministic Turing machine.

The following arguments support unbounded nondeterminism in the Actor

model [Hewitt 1985, 2006]:

 There is no bound that can be placed on how long it takes a

computational circuit called an arbiter to settle. Arbiters are used in

computers to deal with the circumstance that computer clocks operate

asynchronously with input from outside, e.g., keyboard input, disk

access, network input, etc. So it could take an unbounded time for a

message sent to a computer to be received and in the meantime the

computer could traverse an unbounded number of states.

 Electronic mail enables unbounded nondeterminism since mail can be

stored on servers indefinitely before being delivered.

 Communication links to servers on the Internet can be out of service

indefinitely.

Reception order indeterminacy

Hewitt and Agha [1991] and other published work argued that mathematical

models of concurrency did not determine particular concurrent computations

as follows: The Actor Modelii makes use of arbitration for implementing the

order in which Actors process message. Since these orders are in general

indeterminate, they cannot be deduced from prior information by

mathematical logic alone. Therefore mathematical logic cannot implement

concurrent computation in open systems.

In concrete terms for Actor systems, typically we cannot observe the details

by which the order in which an Actor processes messages has been

determined. Attempting to do so affects the results. Instead of observing the

internals of arbitration processes of Actor computations, we await outcomes.41

Indeterminacy in arbiters produces indeterminacy in Actors.iii

i with graph {[] ⇝ 0, [] ⇝ 1, [] ⇝ 2, … }
ii Actors are the universal conceptual primitives of concurrent computation.
iii dashes are used solely to delineate crossing wires

http://en.wikipedia.org/wiki/Actor_model_theory#Arrival_orderings

30

Nand

Nor

Nand
Nor

Inverter

Inverter

Nxor

`

Output1

Input1

Input2

Output2

Arbiter Concurrency Primitive42

The reason that we await outcomes is that we have no realistic alternative.

Actor Physics

The Actor model makes use of two fundamental orders on events [Baker and

Hewitt 1977; Clinger 1981, Hewitt 2006]:

1. The activation order (⇝) is a fundamental order that models one event

activating another (there is energy flow from an event to an event which

it activates). The activation order is discrete:

 ∀[e1,e2Events]→ Finite[{eEvents | e1 ⇝e ⇝e2}]

There are two kinds of events involved in the activation order: reception

and transmission. Reception events can activate transmission events and

transmission events can activate reception events.

2. The reception order of an exclusive Actor x (
𝐱

⇒) models the (total)

order of events in which a message is received at x. The reception order

of each x is discrete:

 ∀[r1,r2ReceptionEventsx]→ Finite[{rReceptionEventsx | r1

𝐱
⇒ r

𝐱
⇒ r2}]

The combined order (denoted by ↷) is defined to be the transitive closure of

the activation order and the reception orders of all Actors. So the following

question arose in the early history of the Actor model: “Is the combined order

discrete?” Discreteness of the combined order captures an important intuition

about computation because it rules out counterintuitive computations in which

an infinite number of computational events occur between two events (à la

Zeno).

Hewitt conjectured that the discreteness of the activation order together with

the discreteness of all reception orders implies that the combined order is

discrete. Surprisingly [Clinger 1981; later generalized in Hewitt 2006]

answered the question in the negative by giving a counterexample.

31

The counterexample is remarkable in that it violates the compactness theorem

for 1st order logic:

Any finite set of propositions is consistent (the activation order and all

reception orders are discrete) and represents a potentially physically

realizable situation. But there is an infinite set of propositions that is

inconsistent with the discreteness of the combined order and does not

represent a physically realizable situation.

The counterexample is not a problem for Direct Logic because the

compactness theorem does not hold.

 The resolution of the problem is to take discreteness of the combined order

as an axiom of the Actor model:

 ∀[e1,e2Events]→ Finite[{eEvents | e1↷e ↷e2}]

Computational Representation Theorem

a philosophical shift in which knowledge is no longer treated primarily

as referential, as a set of statements about reality, but as a practice that

interferes with other practices. It therefore participates in reality.

 Annemarie Mol [2002]

What does the mathematical theory of Actors have to say about the

relationship between logic and computation? A closed system is defined to be

one which does not communicate with the outside. Actor model theory

provides the means to characterize all the possible computations of a closed

system in terms of the Computational Representation Theorem [Clinger 1982;

Hewitt 2006]:43

The denotation DenoteS of a closed system S represents all the possible
behaviors of S as DenoteS = limit

i→∞
ProgressionS

i where ProgressionS takes
a set of partial behaviors to their next stage, i.e., Progression Si⇾i
Progression Si+1
In this way, S can be mathematically characterized in terms of all its

possible behaviors (including those involving unbounded

nondeterminism).ii

The denotations form the basis of constructively checking programs
against all their possible executions,iii

i read as “can evolve to”
ii There are no messages in transit in DenoteS
iii a restricted form of this can be done via Model Checking in which the properties

checked are limited to those that can be expressed in Linear-time Temporal Logic

[Clarke, Emerson, Sifakis, etc. ACM 2007 Turing Award]

http://en.wikipedia.org/wiki/Actor_model_theory

32

A consequence of the Computational Representation system is that there are

uncountably many different Actors.

For example, CreateReal∎[] can produce any real numberi between 0 and 1

where

 CreateReal∎[] ≡ [(0 either 1), ⩛Postpone CreateReal∎[]]
where

• CreateReal∎[] is the result of sending the actor CreateReal the message
[]

• (0 either 1) is the nondeterministic choice of 0 or 1

• [first, ⩛rest] is the sequence that begins with first and whose remainder

is rest

• Postpone expression delays execution of expression until the value is

needed.

The upshot is that concurrent systems can be represented and

characterized by logical deduction but cannot be implemented.

Thus, the following problem arose:

How can programming languages be rigorously defined since the

proposal by Scott and Strachey [1971] to define them in terms lambda

calculus failed because the lambda calculus cannot implement

concurrency?

One solution is to develop a concurrent interpreter using eval messages in

which eval[anEnvironment] is a message that can be sent to an expression to

cause it be evaluated using the environment anEnvironment. Using such

messages, modular meta-circular definitions can be concisely expressed in the

Actor model for universal concurrent programming languages [Hewitt 2010a].

Computation is not subsumed by logical deduction

The gauntlet was officially thrown in The Challenge of Open Systems [Hewitt

1985] to which [Kowalski 1988b] replied in Logic-Based Open Systems.

[Hewitt and Agha 1988] followed up in the context of the Japanese Fifth

Generation Project.

Kowalski claims that “computation could be subsumed by deduction” ii His
claim has been valuable in that it has motivated further research to characterize

i using binary representation. See [Feferman 2012] for more on computation over the

reals.
ii In fact, [Kowalski 1980] forcefully stated:

There is only one language suitable for representing information -- whether

declarative or procedural -- and that is first-order predicate logic. There is

33

exactly which computations could be performed by Logic Programs.
However, contrary to Kowalski, computation in general is not subsumed by
deduction.

Bounded Nondeterminism of Direct Logic

Since it includes the nondeterministic λ calculus, direct inference, and
categorical induction in addition to its other inference capabilities, Direct
Logic is a very powerful foundation for Logic Program languages.

But there is no Direct Logic expression that is equivalent to Unbounded∎[]
for the following reason:

An expression will be said to always converge (written as

AlwaysConverges[]) if and only if every reduction path terminates. I.e.,

there is no function f such that f[0]= and ∀[i:ℕ]→ f[i] ⇾ f[i+1]

where the symbol ⇾ is used for reduction (see the appendix of this paper

on classical mathematics in Direct Logic). For example,

AlwaysConverges[([x]→ (0 either x∎[x])) ∎[[x]→ (0 either x∎[x])]]i
because there is a nonterminating path.

Theorem: Bounded Nondeterminism of Direct Logic. If an expression in

Direct Logic always converges, then there is a bound Bound on the number

to which it can converge. I.e.,

 ∀[i:ℕ]→ (AlwaysConvergesTo n) ⇒ i≤Bound

Consequently there is no Direct Logic program equivalent to Unbounded∎[]
because it has unbounded nondeterminism whereas every Direct Logic
program has bounded nondeterminism.

In this way, we have proved that the Procedural Embedding of Knowledge

paradigm is strictly more general than the Logic Program paradigm.

Computational Undecidability

Some questions cannot be uniformly answered computationally.

only one intelligent way to process information -- and that is by applying

deductive inference methods.
i Note that there are two expressions (separated by “either”) in the bodies which

provides for nondeterminism.

34

The halting problem is to computationally decide whether a program halts on

a given inputi i.e., there is a total computational deterministic predicate Halt

such that the following 3 properties hold for any program p and input x:

1. Halt∎[p, x] ⇾1
 True ⇔ Converges[⦅ p∎[x]⦆]

2. Halt∎[p, x] ⇾1 False ⇔ Converges[⦅ p∎[x]⦆]
3. Halt∎[p, x] ⇾1 True Halt∎[p, x] ⇾1 False

[Church 1935 and later Turing 1936] published derivations that the halting

problem is computationally undecidable for computable deterministic

procedures.44 In other words, there is no such procedure Halt for computable

procedures.

Theorem: ⊢ ComputationallyDecidable[Halt]ii

Classical mathematics self proves its own consistency (contra Gödel et.

al.)

The following rules are fundamental to classical mathematics:

 Derivation by Contradiction, i.e. (¬Φ⇒(Θ¬Θ))├ Φ, which says that

a proposition can be proved showing that its negation implies a

contradiction.

 Soundness, i.e. (├ Φ)⇒Φ, which says that a theorem can be used in a

derivation.

Theorem: 45 Mathematics self proves its own consistency.

Formal Derivation. By definition,

¬Consistent ⇔ ∃[Ψ:Proposition]→├(Ψ¬Ψ). By the rule of

Existential Elimination, there is some proposition Ψ0 such that

¬Consistent⇒├ (Ψ0 ¬Ψ0) which by the rule of Soundness and

transitivity of implication means ¬Consistent⇒(Ψ0 ¬Ψ0).
Substituting for Φ and Θ, in the rule for Derivation by Contradiction, we

have (¬Consistent⇒(Ψ0 ¬Ψ0))├ Consistent. Thus,├ Consistent.

i Adapted from [Church 1936]. Normal forms were discovered for the lambda

calculus, which is the way that they “halt.” [Church 1936] proved the halting

problem computationally undecidable. Having done considerable work, Turing was

disappointed to learn of Church’s publication. The month after Church’s article was

published, [Turing 1936] was hurriedly submitted for publication.
ii The fact that the halting problem is computationally undecidable does not mean that

proving that programs halt cannot be done in practice [Cook, Podelski, and

Rybalchenko 2006].

35

1) Consistent // hypothesis to derive a contradiction just in this subargument

├ Consistent // rule of Proof by Contradiction using 1) and 4)

2) ∃[Ψ:Proposition]→├(ΨΨ) // definition of inconsistency using 1)

3)├(Ψ0Ψ0) // rule of Existential Elimination using 2)

4) Ψ0Ψ0 // rule of Soundness using 3)

Natural Deduction
i Derivation of Consistency of Mathematics

Please note the following points:

 The above argument formally mathematically proves that

mathematics is consistent and that it is not a premise of the theorem

that mathematics is consistent.46

 Classical mathematics was designed for consistent axioms and

consequently the rules of classical mathematics can be used to prove

consistency regardless of other axioms.47

The above derivation means that “Mathematics is consistent” is a theorem in

Classical Direct Logic. This means that the usefulness of Classical Direct

Logic depends crucially on the consistency of Mathematics.48 Good evidence

for the consistency of Mathematics comes from the way that Classical Direct

Logic avoids the known paradoxes. Humans have spent millennia devising

paradoxes.

The above recently developed self-proof of consistency shows that the

current common understanding that Gödel proved “Mathematics cannot

prove its own consistency, if it is consistent” is inaccurate.

Long ago, Wittgenstein showed that contradiction in mathematics results from

the kind of “self-referential”i sentence that Gödel used in his derivation.

However, using a typed notation for mathematical sentences, it can be proved

that the kind “self-referential” sentence that Gödel used in his derivation

cannot be constructed because required Y fixed points do not exist. In this way,

consistency of mathematics is preserved without giving up power.

i [Jaśkowski 1934] developed Natural Deduction cf. [Barker-Plummer, Barwise, and

Etchemendy 2011]

36

Completeness versus Inferential Undecidability
“In mathematics, there is no ignorabimus.”

 Hilbert, 1902

A mathematical theory is an extension of mathematics whose proofs are

computationally enumerable. For example, group theory is obtained by adding

the axioms of groups along with the provision that theorems are

computationally enumerable.

By definition, if T is a mathematical theory, there is a total deterministic
procedure ProofT such that:

 ∀[p:Proof, T:Theory, Ψ:Proposition]→ ├
p

𝐓
 Ψ ⇔ ∃[i:ℕ]→ ProofT [i]=p

Theorem: If T is a consistent mathematical theory, there is a proposition

ChurchTuring, such that both of the following hold:i

• ⊢⊬
T
 Ψ

ChurchTuring

• ⊢⊬
T
 Ψ

ChurchTuring

Note the following important ingredients for the proof of inferential

undecidabilityii of mathematical theories:

 Closure (computational enumerability) of the theorems of a mathematical

theory to carry through the proof.

 Consistency (nontriviality) to prevent everything from being provable.

Information Invarianceiii is a fundamental technical goal of logic consisting of

the following:

1. Soundness of inference: information is not increased by inferenceiv

2. Completeness of inference: all information that necessarily holds

can be inferred

i Otherwise, provability in classical logic would be computationally decidable because

 ∀[p:Expression[ℕ]↦ℕ, x:ℕ]→ (Halt[p, x]⇔⊢
T
 Halt[p, x])

where Halt[p, x] if and only if program p halts on input x. If such a
ChurchTuring

did not exist, then provability could be decided by a computable procedure

Decide
T
:[Sentence]↦Boolean enumerating theorems of T until the proposition in

question or its negation is encountered:

 Decide
T∎[s] ⇾ True ⇔ (⊢

T
 s) ⊢

T
 s

Of course, Decide
T
 is a partial procedure and does not always converge.

ii sometimes called “incompleteness”
iii related to conservation laws in physics
iv E.g. inconsistent information does not infer nonsense.

37

Note that that a closed mathematical theory T is inferentially undecidable with

respect to
ChurchTuring

 does not mean “incompleteness” with respect to the

information that can be inferred because

 ⊢(⊬
T ChurchTuring

), (⊬
T

ChurchTuring
).i

Information Coordination

Technology now at hand can coordinate all kinds of digital information for

individuals, groups, and organizations so their information usefully links

together.49 Information coordination needs to make use of the following

information system principles:

 Persistence. Information is collected and indexed.

 Concurrency: Work proceeds interactively and concurrently,

overlapping in time.

 Quasi-commutativity: Information can be used regardless of whether it

initiates new work or become relevant to ongoing work.

 Sponsorship: Sponsors provide resources for computation, i.e.,

processing, storage, and communications.

 Pluralism: Information is heterogeneous, overlapping and often

inconsistent.

 Provenance: The provenance of information is carefully tracked and

recorded.

 Lossless : Once a system has some information, then it has it thereafter.

Opposition of Philosophers

By this it appears how necessary it is for nay man that aspires to true

knowledge to examine the definitions of former authors; and either to

correct them, where they are negligently set down, or to make them

himself. For the errors of definitions multiply themselves, according as

the reckoning proceeds, and lead men into absurdities, which at last

they see, but cannot avoid, without reckoning anew from the beginning;

in which lies the foundation of their errors...
[Hobbes Leviathan, Chapter 4]

Faced with the choice between changing one’s mind and proving that
there is no need to do so, almost everyone gets busy on the proof.
John Kenneth Galbraith [1971 pg. 50]

i by construction

38

A number of philosophers have opposed the results in this paper:

 Some would like to stick with just classical logic and not consider

inconsistency robustness.50

 Some would like to stick with the first-order theories and not consider

direct inference.

 Some would like to stick with just Logic Programs (e.g. nondeterministic

Turing Machines, λ-calculus, etc.) and not consider concurrency.

And some would like to have nothing to do with any of the above!51 However,

the results in this paper (and the driving technological and economic forces

behind them) tend to push towards inconsistency robustness, direct inference,

and concurrency. [Hewitt 2008a]

Philosophers are now challenged as to whether they agree that

 Inconsistency is the norm.

 Direct inference is the norm.

 Logic Programs are not computationally universal.

Scalable Information Coordination

Information coordination works by making connections including examples

like the following:

 A statistical connection between “being in a traffic jam” and “driving in

downtown Trenton between 5PM and 6PM on a weekday.”

 A terminological connection between “MSR” and “Microsoft Research.”

 A causal connection between “joining a group” and “being a member of

the group.”

 A syntactic connection between “a pin dropped” and “a dropped pin.”

 A biological connection between “a dolphin” and “a mammal”.

 A demographic connection between “undocumented residents of

California” and “7% of the population of California.”

 A geographical connection between “Leeds” and “England.”

 A temporal connection between “turning on a computer” and “joining an

on-line discussion.”

By making these connections, iInfoTM information coordination offers

tremendous value for individuals, families, groups, and organizations in

making more effective use of information technology.

In practice coordinated information is invariably inconsistent.52 Therefore

iInfo must be able to make connections even in the face of inconsistency.53

The business of iInfo is not to make difficult decisions like deciding the

ultimate truth or probability of propositions. Instead it provides means for

39

processing information and carefully recording its provenance including

arguments (including arguments about arguments) for and against

propositions.

Work to be done

The best way to predict the future is to invent it. Alan Kay

There is much work to be done including the following:

Invariance

Invariance should be precisely formulated and proved. This bears on the issue

of how it can be known that all the principles of Direct Logic have been

discovered.

Consistency

The following conjectures for Direct Logic need to be convincingly proved:

 Consistency of Inconsistency Robust Direct Logici relative to the

consistency of classical mathematics. In this regard Direct Logic is

consonant with Bourbaki:

Absence of contradiction, in mathematics as a whole or in any given

branch of it, … appears as an empirical fact, rather than as a

metaphysical principle. The more a given branch has been developed,

the less likely it becomes that contradictions may be met with in its

farther development.ii

 Thus the long historical failure to find an explosion in the methods used

by Direct Logic can be considered to be strong evidence of its

nontriviality.

 Constructive proof of consistency of Classical Direct Logic

Inconsistency Robustness

Inconsistency robustness of theories of Direct Logic needs to be formally

defined and proved. Church remarked as follows concerning a Foundation of

Logic that he was developing:

Our present project is to develop the consequences of the foregoing set

of postulates until a contradiction is obtained from them, or until the

development has been carried so far consistently as to make it

empirically probable that no contradiction can be obtained from them.

And in this connection it is to be remembered that just such empirical

evidence, although admittedly inconclusive, is the only existing evidence

i i.e. consistency of ├
ii [André Weil 1949] speaking as a representative of Bourbaki

40

of the freedom from contradiction of any system of mathematical logic

which has a claim to adequacy. [Church 1933]i

Direct Logic is in a similar position except that the task is to demonstrate

inconsistency robustness of inconsistent theories. This means that the exact

boundaries of Inconsistency Robust Direct Logic as a minimal fix to classical

logic need to be established.

Argumentation

Argumentation is fundamental to inconsistency robustness.

 Further work is need on fundamental principles of argumentation for

large-scale information coordination. See [Hewitt 2008a, 2008b].

 Tooling for Direct Logic needs to be developed to support large

software systems. See [Hewitt 2008a].

Inferential Explosion

Inconsistencies such as the one about whether Yossarian flies are relatively

benign in the sense that they lack significant consequences to software

engineering. Other propositions (such as ├
T 1=0 in a theory T) are more

malignant because they can be used to infer that all integers are equal to 0

using mathematical induction. To address malignant propositions, deeper

investigations of argumentation using must be undertaken in which the

provenance of information will play a central role. See [Hewitt 2008a].

Robustness, Soundness, and Coherence

Fundamental concepts such as robustness, soundness, and coherence need to

be rigorously characterized and further developed. Inconsistency-robust

reasoning beyond the inference that can be accomplished in Direct Logic

needs to be developed, e.g., analogy, metaphor, discourse, debate, and

collaboration.

Evolution of Mathematics

In the relation between mathematics and computing science, the latter

has been far many years at the receiving end, and I have often asked

myself if, when, and how computing would ever be able to repay the debt.

[Dijkstra 1986]

We argue that mathematics will become more like programming.

[Asperti, Geuvers and Natrajan 2009]

i The difference between the time that Church wrote the above and today is that the

standards for adequacy have gone up dramatically. Direct Logic must be adequate

to the needs of reasoning about large software systems.

41

Mathematical foundations are thought to be consistent by an overwhelming

consensus of working professional mathematicians, e.g., mathematical

theories of real numbers, integers, etc.

In practice, mathematical theories that are thought to be consistency by an

overwhelming consensus of working mathematicians play an important

supporting role for inconsistency-robust theories, e.g., theories of the Liver,

Diabetes, Human Behavior, etc.

Conclusion

“The problem is that today some knowledge still feels too dangerous

because our times are not so different to Cantor or Boltzmann or

Gödel's time. We too feel things we thought were solid being

challenged; feel our certainties slipping away. And so, as then, we still

desperately want to cling to a belief in certainty. It makes us feel safe.

... Are we grown up enough to live with uncertainties or will we repeat

the mistakes of the twentieth century and pledge blind allegiance to

another certainty?”

Malone [2007]

Inconsistency robustness builds on the following principles:

 We know only a little, but it affects us enormously
i

 At any point in time, much is wrongii with the consensus of leading

scientists but it is not known how or which parts.

 Science is never certain; it is continually (re-)made

Software engineers for large software systems often have good arguments for

some proposition P and also good arguments for its negation of P. So what do

large software manufacturers do? If the problem is serious, they bring it before

a committee of stakeholders to try and sort it out. In many particularly difficult

cases the resulting decision has been to simply live with the problem for an

indefinite period. Consequently, large software systems are shipped to

customers with thousands of known inconsistencies of varying severity where

 Even relatively simple subsystems can be subtly inconsistent.

 There is no practical way to test for inconsistency.

 Even though a system is inconsistent, it is not meaningless.

Inconsistency Robust Direct Logic is a minimal fix to Classical Logic without

the rule of Classical Derivation by Contradictioniii, the addition of which

i for better or worse
ii e.g., misleading, inconsistent, wrong-headed, ambiguous, contra best-practices, etc.
iii i.e., (Ψ├ (¬))├¬Ψ

42

transforms Inconsistency Robust Direct Logic into Classical Logic. A big

advantage of inconsistency robust logic is that it makes it practical for

computer systems to reason about theories of practice (e.g. for

macroeconomics, human history, etc.) that are pervasively inconsistent. Since

software engineers have to deal with theories chock full of inconsistencies,

Inconsistency Robust Direct Logic should be attractive. However, to make it

relevant we need to provide them with tools that are cost effective.

Our everyday life is becoming increasingly dependent on large software

systems. And these systems are becoming increasingly permeated with

inconsistency and concurrency.

As pervasively inconsistent concurrent systems become a major part of

the environment in which we live, it becomes an issue of common sense to

use them effectively. We will need sophisticated software systems that

formalize this common sense to help people understand and apply the

principles and practices suggested in this paper.

Creating this software is not a trivial undertaking!

There is much work to be done!

Acknowledgements

Science and politics and aesthetics, these do not inhabit different

domains. Instead they interweave. Their relations intersect and

resonate together in unexpected ways.

Law [2004 pg. 156]

Sol Feferman, Mike Genesereth, David Israel, Bill Jarrold, Ben Kuipers, Pat

Langley, Vladimir Lifschitz, Frank McCabe, John McCarthy, Fanya S.

Montalvo, Peter Neumann, Ray Perrault, Natarajan Shankar, Mark Stickel,

Richard Waldinger, and others provided valuable feedback at seminars at

Stanford, SRI, and UT Austin to an earlier version of the material in this paper.

For the AAAI Spring Symposium’06, Ed Feigenbaum, Mehmet Göker, David

Lavery, Doug Lenat, Dan Shapiro, and others provided valuable feedback. At

MIT Henry Lieberman, Ted Selker, Gerry Sussman and the members of

Common Sense Research Group made valuable comments. Reviewers for

AAMAS ’06 and ‘07, KR’06, COIN@AAMAS’06 and IJCAR’06 made

suggestions for improvement.

In the logic community, Mike Dunn, Sol Feferman, Mike Genesereth, Tim

Hinrichs, Mike Kassoff, John McCarthy, Chris Mortensen, Graham Priest,

Dana Scott, Richard Weyhrauch and Ed Zalta provided valuable feedback

http://www.csl.sri.com/shankar/shankar.html

43

Dana Scott made helpful suggestions concerning inferential undecidability.

Richard Waldinger provided extensive suggestions that resulted in better

focusing a previous version of this paper and increasing its readability.

Discussion with Pat Hayes and Bob Kowalski provided insight into the early

history of Prolog. Communications from John McCarthy and Marvin Minsky

suggested making common sense a focus. Mike Dunn collaborated on looking

at the relationship of the Boolean Fragment of Inconsistency Robust Direct

Logic to R-Mingle. Greg Restall pointed out that Inconsistency Robust Direct

Logic does not satisfy some Relevantist principles. Gerry Allwein and Jeremy

Forth made detailed comments and suggestions for improvement. Bob

Kowalski and Erik Sandewall provided helpful pointers and discussion of the

relationship with their work. Discussions with Ian Mason and Tim Hinrichs

helped me develop Löb’s theorem for Direct Logic. Scott Fahlman suggested

introducing the roadmap in the introduction of the paper. At CMU, Wilfried

Sieg introduced me to his very interesting work with Clinton Field on

automating the search for proofs of the Gödel/Rosser inferential

undecidability theorems. Also at CMU, I had productive discussions with

Jeremy Avigad, Randy Bryant, John Reynolds, Katia Sycara, and Jeannette

Wing. At my MIT seminar and afterwards, Marvin Minsky, Ted Selker, Gerry

Sussman, and Pete Szolovits made helpful comments. Les Gasser, Mike

Huhns, Victor Lesser, Pablo Noriega, Sascha Ossowski, Jaime Sichman,

Munindar Singh, etc. provided valuable suggestions at AAMAS’07. I had a

very pleasant dinner with Harvey Friedman at Chez Panisse after his 2nd Tarski

lecture.

Jeremy Forth, Tim Hinrichs, Fanya S. Montalvo, and Richard Waldinger

provided helpful comments and suggestions on the logically necessary

inconsistencies in theories of Direct Logic. Rineke Verbrugge provided

valuable comments and suggestions at MALLOW’07. Mike Genesereth and

Gordon Plotkin kindly hosted my lectures at Stanford and Edinburgh,

respectively, on “The Logical Necessity of Inconsistency”. Inclusion of

Cantor’s diagonal argument as motivation was suggested by Jeremy Forth.

John McCarthy pointed to the distinction between Logic Programs and the

Logicist Programme for Artificial Intelligence. Reviewers at JAIR made

useful suggestions. Mark S. Miller made important suggestions for improving

the meta-circular definition of ActorScript. Comments by Michael Beeson

helped make the presentation of Direct Logic more rigorous. Conversations

with Jim Larson helped clarify the relationship between classical logic and the

inconsistency robust logic. An anonymous referee of the Journal of Logic and

Computation made a useful comment. John-Jules Meyer and Albert Visser

provided helpful advice and suggestions. Comments by Mike Genesereth,

Eric Kao, and Mary-Anne Williams at my Stanford Logic Group seminar

“Inference in Boolean Direct Logic is Computationally Decidable” on 18

44

November 2009 greatly improved the explanation of direct inference.

Discussions at my seminar “Direct Inference for Direct LogicTM Reasoning”

at SRI hosted by Richard Waldinger on 7 January 2010 helped improve the

presentation of Direct Logic. Helpful comments by Emily Bender, Richard

Waldinger and Jeannette Wing improved the section on Inconsistency

Robustness.

Eric Kao provided numerous helpful comments and discovered bugs in the

principles of Self-refutation and Excluded Middle that were part of a previous

version of Inconsistency Robust Direct Logic [Kao 2011]. Self-refutation has

been replaced by Self-annihilation in the current version. Stuart Shapiro

provided helpful information on why SNePS [Shapiro 2000] was based on

Relevance Logic. Discussions with Dennis Allison, Eugene Miya, Vaughan

Pratt and others were helpful in improving this article.

Make Travers made suggestions and comments that greatly improved the

overall organization of the paper. Richard Waldinger provided guidance on

classical automatic theorem provers. Illuminating conversations with Patrick

Suppes provided additional ideas for improvement.

Bibliography

Hal Abelson and Gerry Sussman Structure and Interpretation of Computer

Programs 1984.

Luca Aceto and Andrew D. Gordon (editors). Algebraic Process Calculi: The

First Twenty Five Years and Beyond Bertinoro, Italy, August, 2005.

Sanjaya Addanki, Roberto Cremonini, and J. Scott Penberthy. “Reasoning

about assumptions in graphs of models” Readings in Qualitative Reasoning

about Physical Systems. Kaufman. 1989.

Gul Agha. Actors: A Model of Concurrent Computation in Distributed

Systems Doctoral Dissertation. 1986.

Gul Agha, Ian Mason, Scott Smith, and Carolyn Talcott. “A foundation for

Actor computation.” Journal of Functional Programming. 1997.

Allen, L. E., and Saxon, C. S. “More is needed in AI: Interpretation assistance

for coping with the problem of multiple structural interpretations” ICAIL

1991.

Bruce Anderson. “Documentation for LIB PICO-PLANNER” School of

Artificial Intelligence, Edinburgh University. 1972.

Chris Anderson. “The End of Theory: The Data Deluge Makes the Scientific

Method Obsolete” Wired. June 23, 2009.

Alan Anderson and Nuel Belnap, Jr. (1975) Entailment: The Logic of

Relevance and Necessity Princeton University Press.

45

Robert Anderson and Woody Bledsoe (1970) “A Linear Format for Resolution

with Merging and a New Technique for Establishing Completeness” JACM

17.

Aldo Antonelli (2006). “Non-monotonic Logic” Stanford Encyclopedia of

Philosophy. March 2006.

A. I. Arruda. “Aspects of the historical development of paraconsistent logic”

In Paraconsistent Logic: Essays on the Inconsistent Philosophia Verlag.

1989

William Aspray “Interview with J. Barkley Rosser and Stephen C. Kleene”

The Princeton Mathematics Community in the 1930s Transcript PMC23

1985.

William Athas and Nanette Boden “Cantor: An Actor Programming System

for Scientific Computing” Proceedings of the NSF Workshop on Object-

Based Concurrent Programming. 1988. Special Issue of SIGPLAN Notices.

Henry Baker. Actor Systems for Real-Time Computation MIT EECS Doctoral

Dissertation. January 1978.

Henry Baker and Carl Hewitt: Laws for Communicating Parallel Processes

IFIP. August 1977.

Henry Baker and Carl Hewitt “The Incremental Garbage Collection of

Processes.” Symposium on Artificial Intelligence Programming Languages.

SIGPLAN Notices. August 1977. “

Bob Balzer. “Tolerating Inconsistency” 13th International Conference on

Software Engineering. 1991.

Marcel Barzin 1940.

Bruce Baumgart. “Micro-Planner Alternate Reference Manual” Stanford AI

Lab Operating Note No. 67, April 1972.

JC Beall and Greg Restall. Logical Pluralism Oxford University Press. 2006.

Michael Beeson. “Lambda Logic” Lecture Notes in Artificial Intelligence

3097. Springer. 2004.

Nuel Belnap. “A useful four-valued logic” in Modern uses of multiple valued

logics. D. Reidel, Dordrecht, 1977.

Francesco Berto The Gödel Paradox and Wittgenstein’s Reasons Philosophia

Mathematica (III) 17. 2009.

Francesco Berto. There's Something about Gödel: The Complete Guide to the

Incompleteness Theorem John Wiley and Sons. 2010.

Francesco Berto. “Representing Inconsistency” Inconsistency Robustness

2011.

Leopoldo Bertossi, Anthony Hunter, and Torsten Schaub eds. Inconsistency

Tolerance Springer. 2004.

Philippe Besnard and Anthony Hunter. “Quasi-classical Logic: Non-

trivializable classical reasoning from inconsistent information” Symbolic and

Quantitative Approaches to Reasoning and Uncertainty Springer LNCS

1995.

http://en.wikipedia.org/w/index.php?title=Henry_Baker_and_Carl_Hewitt&action=edit

46

Philippe Besnard and Torsten Schaub. “Significant Inferences: Preliminary

Report. 2000.

Jean-Yves Bėziau. “The future of paraconsistent logic” Logical Studies 2.

1999.

Jean-Yves Bėziau, Walter Carnielli, and Dov Gabbay. Ed. Handbook of

Paraconsistency College Publications Kings College London. 2007

S. V. Bhave. “Situations in Which Disjunctive Syllogism Can Lead from True

Premises to a False Conclusion” Notre Dame Journal of Formal Logic Vol.

38, No. 3. 1997.

Fisher Black. A deductive question answering system, Harvard University

Thesis. 1964.

Simon Blackburn and Keith Simmons (1999) Truth Oxford University Press.

H. Blair and V. S. Subrahmanian. “Paraconsistent Logic Programming”.

Theoretical Computer Science, 68(2) 1989.

Patricia Blanchette “The Frege-Hilbert Controversy” The Stanford

Encyclopedia of Philosophy December 7, 2007.

Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman

(2007a) Interactive small-step algorithms I: Axiomatization Logical Methods

in Computer Science. 2007.

Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman

(2007b) Interactive small-step algorithms II: Abstract state machines and the

characterization theorem. Logical Methods in Computer Science. 2007.

George Boole. An Investigation of the Laws of Thought 1853.

http://www.gutenberg.org/etext/15114

Geof Bowker, Susan L. Star, W. Turner, and Les Gasser, (Eds.) Social

Science Research, Technical Systems and Cooperative Work Lawrence

Earlbaum. 1997.

Robert Boyer (1971) Locking: A Restriction of Resolution Ph. D. University

of Texas at Austin.

Fisher Black. A Deductive Question Answering System Harvard University.

Thesis. 1964.

Daniel Bobrow and Bertram Raphael. “New programming languages for

Artificial Intelligence research” ACM Computing Surveys. 1974.

Jean-Pierre Briot. From objects to actors: Study of a limited symbiosis in

Smalltalk-80 Rapport de Recherche 88-58, RXF-LITP. Paris, France.

September 1988.

Stephen Brookes, Tony Hoare, and Bill Roscoe. A theory of communicating

sequential processes JACM. July 1984.

Maurice Bruynooghe, Luís Moniz Pereira, Jörg Siekmann, Maarten van

Emden. “A Portrait of a Scientist as a Computational Logician”

Computational Logic: Logic Programming and Beyond: Essays in Honour

of Robert A. Kowalski, Part I Springer. 2004.

Martin Caminda. “On the Issue of Contraposition of Defeasible Rules”

COMMA’08.

47

Andrea Cantini “Paradoxes and Contemporary Logic” The Stanford

Encyclopedia of Philosophy October 16, 2007.

George Cantor. “Diagonal Argument” German Mathematical Union

(Deutsche Mathematiker-Vereinigung) (Bd. I, S. 75-78) 1890-1.

Rudolph Carnap. Logische Syntax der Sprache. (The Logical Syntax of

Language Open Court Publishing 2003) 1934.

Luca Cardelli and Andrew Gordon. “Mobile Ambients” Foundations of

Software Science and Computational Structures Springer, 1998.

Lewis Carroll “What the Tortoise Said to Achilles” Mind 4. No. 14. 1895.

Lewis Carroll. Through the Looking-Glass Macmillan. 1871.

Carlo Cellucci “Gödel's Incompleteness Theorem and the Philosophy of

Open Systems” Kurt Gödel: Actes du Colloque, Neuchâtel 13-14 juin 1991,

Travaux de logique N. 7, Centre de Recherches Sémiologiques, University

de Neuchâtel. http://w3.uniroma1.it/cellucci/documents/Goedel.pdf

Carlo Cellucci “The Growth of Mathematical Knowledge: An Open World

View” The growth of mathematical knowledge Kluwer. 2000.

Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and Hongseok

Yang Ranking Abstractions ESOP’08.

Alonzo Church “A Set of postulates for the foundation of logic (1)” Annals of

Mathematics. Vol. 33, 1932.

Alonzo Church “A Set of postulates for the foundation of logic (2)” Annals of

Mathematics. Vol. 34, 1933.

Alonzo Church. An unsolvable problem of elementary number theory Bulletin

of the American Mathematical Society 19, May, 1935. American Journal of

Mathematics, 58 (1936),

Alonzo Church The Calculi of Lambda-Conversion Princeton University

Press. 1941.

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral

Dissertation. June 1981.

Paul Cohen “My Interaction with Kurt Gödel; the man and his work” Gödel

Centenary: An International Symposium Celebrating the 100th Birthday of

Kurt Gödel April 27–29, 2006.

Alain Colmerauer and Philippe Roussel. “The birth of Prolog” History of

Programming Languages ACM Press. 1996

Melvin Conway. Design of a separable transition-diagram compiler CACM.

1963.

F. S. Correa da Silva, J. M. Abe, and M. Rillo. “Modeling Paraconsistent

Knowledge in Distributed Systems”. Technical Report RT-MAC-9414,

Instituto de Matematica e Estatistica, Universidade de Sao Paulo, 1994.

James Crawford and Ben Kuipers. “Negation and proof by contradiction in

access-limited logic.” AAAI-91.

Haskell Curry “Some Aspects of the Problem of Mathematical Rigor” Bulletin

of the American Mathematical Society Vol. 4. 1941.

ftp://ftp.cs.utexas.edu/pub/qsim/papers/Crawford+Kuipers-AAAI91.ps.gz
ftp://ftp.cs.utexas.edu/pub/qsim/papers/Crawford+Kuipers-AAAI91.ps.gz

48

Haskell Curry. “The combinatory foundations of mathematics” Journal of

Symbolic Logic. 1942.

Haskell Curry. Foundations of Mathematical Logic. McGraw-Hill. 1963.

Michael Cusumano and Richard Selby, R. Microsoft Secrets: How the World’s

Most Powerful Software Company Creates Technology, Shapes Markets, and

Manages People. Free Press. 1995

Newton da Costa Inconsistent Formal Systems (Sistemas Formais

Inconsistentes in Portuguese) Doctoral dissertation. University of Paraná.

1963.

Newton da Costa. “On the Theory of Inconsistent Formal Systems” Notre

Dame Journal of Formal Logic October 1974.

Ole-Johan Dahl and Kristen Nygaard. “Class and subclass declarations” IFIP

TC2 Conference on Simulation Programming Languages. May 1967.

Ole-Johan Dahl and Tony Hoare. Hierarchical Program Structures in

“Structured Programming” Prentice Hall. 1972.

Carlos Damásio and Luís Pereira. “A Model Theory for Paraconsistent Logic

Programming” Portuguese Conference on Artificial Intelligence 1995.

Giacomo Mauro D’Ariano and Alessandro Tosini. “Space-time and special

relativity from causal networks” ArXiv. 1008.4805. August 2010.

Julian Davies. “Popler 1.5 Reference Manual” University of Edinburgh, TPU

Report No. 1, May 1973.

Ernest Davis. “The Naïve Physics Perplex” AI Magazine. Winter 1998.

Ernest Davis and Leora Morgenstern. “A First-Order Theory of

Communication and Multi-Agent Plans” Journal of Logic and Computation,

Vol. 15, No. 5, 2005.

John Dawson Logical Dilemmas. The Life and Work of Kurt Gödel AK Peters.

1997

John Dawson. “What Hath Gödel Wrought?” Synthese. Jan. 1998.

John Dawson. “Shaken Foundations or Groundbreaking Realignment? A

Centennial Assessment of Kurt Gödel's Impact on Logic, Mathematics, and

Computer Science” FLOC’06.

Walter Dean and Hdenori Kurokawa. “Knowledge, proof, and the Knower”

TARK’09,

Richard Dedekind (1888) “What are and what should the numbers be?”

(Translation in From Kant to Hilbert: A Source Book in the Foundations of

Mathematics. Oxford University Press. 1996) Braunschweig.

Hendrik Decker. A Case for Paraconsistent Logic as a Foundation of Future

Information Systems. CAiSE’05 Workshop PHISE’05. 2005.

Hendrik Decker. Historical and Computational Aspects of Paraconsistency in

View of the Logic Foundation of Databases. Semantics in Databases.

Springer. 2003.

David Deutsch. “Quantum theory, the Church-Turing principle and the

universal quantum computer” Proceedings of the Royal Society of London.

1985.

http://logcom.oxfordjournals.org/cgi/reprint/15/5/701?ijkey=AjZZc1bAQvn5azt&keytype=ref
http://logcom.oxfordjournals.org/cgi/reprint/15/5/701?ijkey=AjZZc1bAQvn5azt&keytype=ref

49

Richard De Millo, Richard Lipton and Alan Perlis “Social Processes and

Proofs of Theorems and Programs” CACM. May 1979.

René Descartes. Principles of Philosophy (English translation in The

Philosophical Writings of Descartes Cambridge University Press 1985).

1644.

Harry Deutsch “A Note on the Decidability of a Strong Relevant Logic”

Studia Logica Vol. 44. No. 2. 1985.

Cora Diamond. Wittgenstein's Lectures on the Foundations of Mathematics,

Cambridge, 1939 Cornell University Press. 1976.

Edsger Dijkstra. A Discipline of Programming. Prentice Hall. 1976.

Edsger Dijkstra and A.J.M. Gasteren. “A Simple Fixpoint Argument Without

the Restriction of Continuity” Acta Informatica. Vol. 23. 1986.

Kosta Dōzen. “Logical Constants as Punctuation Marks” Notre Dame Journal

of Formal Logic. Summer 1989.

Paul du Bois-Reymond-1880 “Der Beweis des Fundamentalsatzes der

Integralrechnung” Mathematische Annalen Vol. 16. 1880.

Michael Dummett (1973). “The Justification of Deduction” in Truth and other

Enigmas Duckworth. 1978.

Michael Dunn and Greg Restall. “Relevance Logic” in The Handbook of

Philosophical Logic, second edition. Dov Gabbay and Franz Guenther

(editors), Kluwer. 2002.

Michael Dunn. Contradictory Information: Better than the Nothing CMU

Philosophy Colloquium. April 10, 2014.

T. S. Eliot. Four Quartets. Harcourt. 1943.

Ralph Waldo Emerson. “Self Reliance “ Essays—First Series. 1841.

Pascal Engel. “Dummett, Achilles and the Tortoise” The philosophy of

Michael Dummett Open Court. 2007.

Euclid. The Thirteen Books of Euclid's Elements. (3 Vol. translated by Thomas

Heath. Cambridge University Press. 1925). Circa 300BC.

Scott Fahlman. A Planning System for Robot Construction Tasks MIT AI TR-

283. June 1973.

Adam Farquhar, Anglela Dappert, Richard Fikes, and Wanda Pratt.

“Integrating Information Sources Using Context” Logic Knowledge Systems

Laboratory. KSL-95-12. January, 1995.

Anita Feferman and Solomon Feferman Alfred Tarski: Life and Logic.

Cambridge University Press. 2004.

Solomon Feferman (1984a) “Toward Useful Type-Free Theories, I” in Recent

Essays on Truth and the Liar Paradox. Ed. Robert Martin (1991) Claraendon

Press.

Solomon Feferman (1984b) “Kurt Gödel: Conviction and Caution”

Philosophia Naturalis Vol. 21.

Solomon Feferman. “Reflecting on incompleteness” Journal of Symbolic

Logic 1991

Solomon Feferman In the Light of Logic Oxford University Press. 1998.

50

Solomon Feferman. “Logic, Logics, and Logicism” Notre Dame Journal of

Formal Logic. V 40. 1999.

Solomon Feferman “Does reductive proof theory have a viable rationale?”

Erkenntnis 53. 2000.

Solomon Feferman “Tarski’s Conceptual Analysis for Semantical Notions”

Sémantique et Épistémologie 2004.

Solomon Feferman “Predicativity” in The Oxford Handbook of Philosophy of

Mathematics and Logic Oxford University Press. 2005.

Solomon Feferman (2006a) “The nature and significance of Gödel's

incompleteness theorems” lecture for the Princeton Institute for Advanced

Study Gödel Centenary Program, Nov. 17, 2006.

Solomon Feferman (2006b) “Lieber Herr Bernays! Lieber Herr Gödel! Gödel

on finitism, constructivity and Hilbert's program” submitted version of

lecture for the Gödel centenary conference, Horizons of Truth, Vienna, 27-

29 April 2006.

Solomon Feferman (2006c) “Are there absolutely unsolvable problems?

Gödel's dichotomy” Philosophia Mathematica Series III vol. 14.

Solomon Feferman (2007a) “Axioms for determinateness and truth”

Solomon Feferman (2007b) “Gödel, Nagel, minds and machines” October 25,

2007.

Solomon Feferman “Axioms for determinateness and truth” Review of

Symbolic Logic. 2008.

Solomon Feferman. “About and around computing over the reals”

Computability: Gödel, Church, Turing and Beyond MIT Press. forthcoming

2012.

Dieter Fensel and Frank van Harmelen. “Unifying Reasoning and Search to

Web Scale” IEEE Internet Computing. March/April 2007.

James Fetzer. “Program Verification: The Very Idea” CACM September 1988.

Paul Feyerabend. Killing Time: The Autobiography of Paul Feyerabend.

University Of Chicago Press. 1995.

Richard Feynman. “Lecture 6: Probability and Uncertainty — the Quantum

Mechanical view of Nature” The Character of Physical Law. MIT Press.

1965.

Hartry Field. “A Revenge-Immune Solution to the Semantic Paradoxes.”

Journal of Philosophical Logic, April 2003

Kit Fine. “Analytic Implication” Notre Dame Journal of Formal Logic. April

1986.

A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,

“Inconsistency Handling in Multi-Perspective Specifications” Transactions

on Software Engineering, August 1994.

Frederic Fitch. Symbolic Logic: an Introduction. Ronald Press. 1952.

Juliet Floyd and Hilary Putnam. “Wittgenstein’s ‘Notorious’ Paragraph About

the Gödel Theorem: Recent Discussions” (“Wittgenstein's ‚berüchtigter’

Paragraph über das Gödel-Theorem: Neuere Diskussionen”) in Prosa oder

http://math.stanford.edu/~feferman/papers/dettruth.pdf

51

Besweis? Wittgenstein's ›berüchtigte‹ Bemerkungen zu Gödel, Texte und

Dokumente Parerga Verlag. 2008.

J.M. Foster and E.W. Elcock. (1969) “ABSYS: An Incremental Compiler for

Assertions” Machine Intelligence 4. Edinburgh University Press.

Nissim Francez, Tony Hoare, Daniel Lehmann, and Willem-Paul de Roever.

“Semantics of nondeterminism, concurrency, and communication” Journal

of Computer and System Sciences. December 1979.

Torkel Franzén. Inexhaustibility AK Peters. 2004

Torkel Franzén. Gödel’s Theorem: an incomplete guide to its use and abuse.

A K Peters. 2005.

Gottlob Frege. Begriffsschrift: eine der arithmetischen nachgebildete

Formelsprache des reinen Denkens Halle, 1879.

Gottlob Frege (1915) “My Basic Logical Insights” Posthumous Writings

University of Chicago Press. 1979.

Kazuhiro Fuchi, Robert Kowalski, Kazunori Ueda, Ken Kahn, Takashi

Chikayama, and Evan Tick. “Launching the new era”. CACM. 1993.

Dov Gabbay (ed.) What is a Logical System? Oxford. 1994.

Dov Gabbay and Anthony Hunter. “Making inconsistency respectable: A

logical framework for inconsistency in reasoning (Part 1). Fundamentals of

Artificial Intelligence Research '91, Springer-Verlag.. 1991.

Dov Gabbay and Anthony Hunter. “Making inconsistency respectable: A

logical framework of r inconsistency in reasoning (Part 2). Symbolic and

Quantitative Approaches to Reasoning and Uncertainty LNCS, Springer-

Verlag, 1992.

John Kenneth Galbraith. Economics, Peace and Laughter. New American

Library. 1971.

Robin Gandy. “Church’s Thesis and Principles of Mechanisms” The Kleene

Symposium North–Holland. 1980.

John Gay. “The Elephant and the Bookseller” Fifty-one Fables in Verse 1727

Michael Gelfond and Vladimir Lifschitz. “Logic programs with classical

negation” International Conference on Logic Programming. MIT Press.

1990.

Gerhard Gentzen. “Provability and nonprovability of restricted transfinite

induction in elementary number theory” (Collected Papers of Gerhard

Gentzen. North-Holland. 1969) Habilitation thesis. Göttingen. 1942.

Gerhard Gentzen (1935) “Investigations into Logical Deduction.” (Collected

Papers of Gerhard Gentzen. North-Holland. 1969)

Steve Gerrard “Wittgenstein's Philosophies of Mathematics” Synthese 87.

1991.

Matt Ginsberg. “AI and nonmonotonic reasoning” in Handbook of Logic in

Artificial Intelligence and Logic Programming Clarendon Press. 1994.

Jean-Yves Girard. The Blind Spot: Lectures on proof-theory Roma Tre. 2004.

http://en.wikipedia.org/wiki/C.A.R._Hoare
http://www-history.mcs.st-andrews.ac.uk/~history/Glossary/habilitation

52

Andreas Glausch and Wolfgang Reisig. Distributed Abstract State Machines

and Their Expressive Power Informatik-Berichete 196. Humboldt University

of Berlin. January 2006.

Kurt Gödel (1930) “The completeness of the axioms of the functional calculus

of logic” (translated in A Source Book in Mathematical Logic, 1879-1931.

Harvard Univ. Press. 1967)

Kurt Gödel (1931) “On formally undecidable propositions of Principia

Mathematica” in A Source Book in Mathematical Logic, 1879-1931.

Translated by Jean van Heijenoort. Harvard Univ. Press. 1967.

Kurt Gödel (1933) “An Interpretation of the Intuitionistic Propositional

Calculus,” in Collected Works of Kurt Gödel, Oxford University Press,

Volume 3, 1995, pp. 296-302.

Kurt Gödel (1944) “Russell’s Mathematical Logic” in Philosophy of

Mathematics(2nd ed.) Cambridge University Press.

Kurt Gödel (1951) “Some basic theorems on the foundations of mathematics

and their implications” in Collected Works of Kurt Gödel, Oxford University

Press, Volume 3, 1995.

Kurt Gödel (1965) “On Undecidable Propositions of Formal Mathematical

Systems” (a copy of Gödel’s 1931 paper with his corrections of errata and

added notes) in The Undecidable: Basic Papers on Undecidable

Propositions, Unsolvable problems and Computable Functions Martin Davis

editor. Raven Press 1965.

Kurt Gödel (1972), “Some Remarks on the Undecidability Results” in Kurt

Gödel Collected Works, II. Oxford University Press. 2001.

Dina Goldin and Peter Wegner. “The Interactive Nature of Computing:

Refuting the Strong Church-Turing Thesis” Minds and Machines March

2008.

Solomon Golomb and Leonard Baumert. (1965) “Backtrack Programming”

JACM. Vol. 12 No. 4.

Thomas Gordon. Foundations of Argumentation Technology: Summary of

Habilitation Thesis Technische Universität Berlin. 2009.

C. Cordell Green: “Application of Theorem Proving to Problem Solving”

IJCAI 1969.

Steve Gregory. “Concurrent Logic Programming Before ICOT: A Personal

Perspective” August 15, 2007.

 http://www.cs.bris.ac.uk/~steve/papers/ALP/CLPbeforeICOT.pdf

Irene Greif. Semantics of Communicating Parallel Processes MIT EECS

Doctoral Dissertation. August 1975

Ramanathan Guha. Contexts: Formalization and Some Applications PhD

thesis. Stanford University. 1991.

Robert Hadley. “Consistency, Turing Computablity and Gödel's First

Incompleteness Theorem” Minds and Machines 18. 2008.

Volker Halbach “Axiomatic theories of truth” Stanford Encyclopedia of

Philosophy. 2007.

53

Ronald Harrop. “Some structure results for propositional calculi” Journal of

Symbolic Logic, 30. 1965.

W. D. Hart. “Skolem Redux” Notre Dame Journal of. Formal Logic. 41, no.

4. 2000.

Donna Haraway. “Situated Knowledge: the Science Question in Feminism

and the Privilege of Partial Perspective” in Simians, Cyborgs, and Women:

the Reinvention of Nature. Free Association Books. 1991.

Pat Hayes. “Computation and Deduction” Mathematical Foundations of

Computer Science: Proceedings of Symposium and Summer School, Štrbské

Pleso, High Tatras, Czechoslovakia. September 1973.

Pat Hayes “Some Problems and Non-Problems in Representation Theory”

AISB. Sussex. July, 1974.

Pat Hayes. “The Naïve Physics Manifesto”. Expert Systems in the

Microelectronic Age. Edinburgh University Pres. 1979.

Pat Hayes. 1985a. “The Second Naïve Physics Manifesto” Formal Theories

of the Commonsense World. Ablex. 1985.

Pat Hayes. 1985b. “Naïve Physics 1: Ontology for Liquids” Formal Theories

of the Commonsense World. Ablex. 1985.

Pat Hayes. “Contexts in context.” Contexts in Knowledge Representation and

Natural Language. AAAI. 1997.

Pat Hayes. “Context Mereology.” Commonsense 2007.

Jean van Heijenoort (1967) From Frege to Gödel. A Source Book in

Mathematical Logic, 1897-1931, Harvard University Press.

Joseph Heller. Catch-22. Simon & Schuster.1961.

Leon Henkin “A Problem Concerning Provability” Journal of Symbolic Logic,

Vol. 17 (1952).

Carl Hewitt. “Planner: A Language for Proving Theorems in Robots” IJCAI

1969.

Carl Hewitt. “Procedural Embedding of Knowledge In Planner” IJCAI 1971.

Carl Hewitt, Peter Bishop and Richard Steiger. “A Universal Modular Actor

Formalism for Artificial Intelligence” IJCAI 1973.

Carl Hewitt and Henry Baker Laws for Communicating Parallel Processes

IFIP. August 1977.

Carl Hewitt. “Viewing Control Structures as Patterns of Passing Messages”

Journal of Artificial Intelligence. June 1977.

Carl Hewitt and Peter de Jong. “Open Systems”' Perspectives on Conceptual

Modeling, Brodie, Mylopoulos, and Schmidt (eds.), Springer-Verlag, 1983.

Carl Hewitt. “The Challenge of Open Systems” Byte Magazine. April 1985.

Carl Hewitt (1986). “Offices Are Open Systems” ACM Transactions on

Information Systems 4(3)

Carl Hewitt (1990). “Towards Open Information Systems Semantics”

International Workshop on Distributed Artificial Intelligence

Carl Hewitt (1991). “Open Information Systems Semantics” Journal of

Artificial Intelligence. January 1991.

http://projecteuclid.org/Dienst/UI/1.0/Journal?authority=euclid.ndjfl&issue=1163775435

54

Carl Hewitt and Jeff Inman. “DAI Betwixt and Between: From ‘Intelligent

Agents’ to Open Systems Science” IEEE Transactions on Systems, Man, and

Cybernetics. Nov. /Dec. 1991.

Carl Hewitt and Gul Agha. “Guarded Horn clause languages: are they

deductive and Logical?” International Conference on Fifth Generation

Computer Systems. Ohmsha 1988.

Carl Hewitt. (2006). “What is Commitment? Physical, Organizational, and

Social” COIN@AAMAS’06. (Revised version to be published in Springer

Verlag Lecture Notes in Artificial Intelligence. Edited by Javier Vázquez-

Salceda and Pablo Noriega. 2007) April 2006.

Carl Hewitt (2007a). “Organizational Computing Requires Unstratified

Paraconsistency and Reflection” COIN@AAMAS. 2007.

Carl Hewitt (2008a) “A historical perspective on developing foundations for

privacy-friendly client cloud computing: iConsultTM & iEntertainTM Apps

using iInfoTM Information Integration for iOrgsTM Information Systems”

(Revised version of “Development of Logic Programming: What went

wrong, What was done about it, and What it might mean for the future” in

Proceedings of What Went Wrong and Why edited by Mehmet Gőker and

Daniel Shapiro, AAAI Press. 2008 pp. 1-11) ArXiv. 0901.4934

Carl Hewitt (2008b). “Norms and Commitment for iOrgsTM Information

Systems: Direct LogicTM and Participatory Grounding Checking” ArXiv

0906.2756

Carl Hewitt (2008c) “Large-scale Organizational Computing requires

Unstratified Reflection and Strong Paraconsistency” Coordination,

Organizations, Institutions, and Norms in Agent Systems III Jaime Sichman,

Pablo Noriega, Julian Padget and Sascha Ossowski (ed.). Springer-Verlag.

http://organizational.carlhewitt.info/

Carl Hewitt (2008d) “Middle History of Logic Programming: Resolution,

Planner, Edinburgh Logic for Computable Functions, Prolog and the

Japanese Fifth Generation Project” ArXiv 0904.3036

Carl Hewitt (2008e). ORGs for Scalable, Robust, Privacy-Friendly Client

Cloud Computing IEEE Internet Computing September/October 2008.

Carl Hewitt (2009a) Perfect Disruption: The Paradigm Shift from Mental

Agents to ORGs IEEE Internet Computing. Jan/Feb 2009.

Carl Hewitt (2010a) ActorScript™ extension of C#®, Java®, and Objective

C®: iAdaptiveTM concurrency for antiCloudTM privacy-friendly computing in

Inconsistency Robustness. College Publications. 2015.

Carl Hewitt (2010b) “Actor Model of Computation: Scalable Robust Information

Systems” in Inconsistency Robustness. College Publications. 2015.

Carl Hewitt (2010c) Wittgenstein versus Gödel on the Foundations of Logic

Stanford Media X Logic Colloquium video recording. April 23, 2010.

Carl Hewitt. Looming private information fiasco versus the new cloud

business model: The next generation will ask, “Where were you when this

was going down?” Risks Digest. Vol. 26: Issue 37. March 9. 2011.

http://arxiv.org/abs/0904.3036
http://arxiv.org/abs/0904.3036
http://arxiv.org/abs/0904.3036

55

Carl Hewitt (editor). Inconsistency Robustness 1011 Stanford University.

2011.

Carl Hewitt. What is computation? Actor Model versus Turing's Model in “A

Computable Universe: Understanding Computation & Exploring Nature as

Computation” Edited by Hector Zenil. World Scientific Publishing

Company. 2012.

David Hilbert. 1900. in “Mathematical Developments Arising From Hilbert

Problems” Proceedings of Symposia in Pure Mathematics, Vol. 28.

American Mathematical Society. 1976

David Hilbert (1926) “Über das Unendliche” Mathematische Annalen, 95:

161-90. (“On the Infinite” English translation in van Heijenoort. 1967).

David Hilbert and Paul Bernays. Grundlagen der Mathematik I. (L'Harmattan

edition 2001) 1934.

David Hilbert and Paul Bernays. Grundlagen der Mathematik II. (L'Harmattan

edition 2001) 1939.

Tony Hoare. “Communicating Sequential Processes” CACM August, 1978.

Tony Hoare. Communicating Sequential Processes. Prentice Hall. 1985.

Tony Hoare. “The verifying compiler: A grand challenge for computing

research” JACM. January 2003.

Tony Hoare. Retrospective: An Axiomatic Basis for Computer Programming

CACM 2009.

Wilfrid Hodges (2006) “Tarski’s Truth Definitions” Stanford Encyclopedia of

Philosophy.

Douglas Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid. Random

House. 1980.

Douglas Hofstadter. I am a Strange Loop Basic Books. 2007.

Jim Holt. “Code-Breaker” The New Yorker February 6, 2006.

Leon Horsten “Philosophy of Mathematics” The Stanford Encyclopedia of

Philosophy September 27, 2007.

Matthew Huntbach and Graem Ringwood. Agent-Oriented Programming:

From Prolog to Guarded Definite Clauses Sprinter. 1999.

Anthony Hunter. Reasoning with Contradictory Information using Quasi-

classical Logic Journal of Logic and Computation. Vol. 10 No. 5. 2000.

Daniel Ingalls. “The Evolution of the Smalltalk Virtual Machine” Smalltalk-

80: Bits of History, Words of Advice. Addison Wesley. 1983.

Daniel Isaacson. “The reality of mathematics and the case of set theory” Truth,

Reference, and Realism Central European University Press, 2008.

Stanisław Jaśkowski “On the Rules of Suppositions in Formal Logic” Studia

Logica 1, 1934. (reprinted in: Polish logic 1920-1939, Oxford University

Press, 1967.

Stanisław Jaśkowski. Propositional calculus for contradictory deductive

systems Studia Logica. 24 (1969) Rachunek zdań dla systemów

dedukcyjnych sprzecznych in: Studia Societatis Scientiarum Torunensis,

Sectio A, Vol. I, No. 5, Toruń 1948.

56

Eric Kao. “Proof by self-refutation and excluded middle lead to explosion”

Inconsistency Robustness 2011 Stanford. August 16-18, 2011.

Michael Kassoff, Lee-Ming Zen, Ankit Garg, and Michael Genesereth.

PrediCalc: A Logical Spreadsheet Management System 31st International

Conference on Very Large Databases (VLDB). 2005.

Alan Kay. “Personal Computing” in Meeting on 20 Years of Computing

Science Instituto di Elaborazione della Informazione, Pisa, Italy. 1975.

http://www.mprove.de/diplom/gui/Kay75.pdf

Jussi Ketonen and Richard Weyhrauch. “A decidable fragment of Predicate

Calculus” Theoretical Computer Science. 1984.

Thomas Kida. Don’t Believe Everything You Think: The 6 Basic Mistakes We

Make in Thinking Prometheus Books. 2006.

Stephen Kleene and John Barkley Rosser “The inconsistency of certain formal

logics” Annals of Mathematics Vol. 36. 1935.

Stephen Kleene General recursive functions and natural numbers

Mathematical Annuals. 1936.

Stephen Kleene Recursive Predicates and Quantifiers American

Mathematical Society Transactions. 1943

Stephen Kleene “Reflections on Church's Thesis” Notre Dame Journal of

Formal Logic 1987.

Morris Kline. Mathematical thought from ancient to modern times Oxford

University Press. 1972.

Frederick Knabe. “A Distributed Protocol for Channel-Based Communication

with Choice” PARLE 1992.

Bill Kornfeld and Carl Hewitt. “The Scientific Community Metaphor” IEEE

Transactions on Systems, Man, and Cybernetics. January 1981.

Bill Kornfeld. Parallelism in Problem Solving MIT EECS Doctoral

Dissertation. August 1981.

Robert Kowalski “Predicate Logic as Programming Language” Memo 70,

Department of Artificial Intelligence, Edinburgh University. 1973

Robert Kowalski. “A proof procedure using connection graphs” JACM.

October 1975.

Robert Kowalski (1979) “Algorithm = Logic + Control” CACM. July 1979.

Robert Kowalski (1986). “The limitation of logic” ACM Annual Conference

on Computer Science.

Robert Kowalski 1988a. “The Early Years of Logic Programming” CACM.

January 1988.

Robert Kowalski (1988b). “Logic-based Open Systems” Representation and

Reasoning. Stuttgart Conference Workshop on Discourse Representation,

Dialogue tableaux and Logic Programming. 1988.

Robert. Kowalski and Francesca Toni. “Abstract Argumentation” Artificial

Intelligence and Law. 1996

Robert Kowalski (2006) “The Logical Way to be Artificially Intelligent.”

CLIMA VI. Springer Verlag.

http://www.doc.ic.ac.uk/~rak/papers/new-book-summary.pdf
http://www.doc.ic.ac.uk/~rak/papers/new-book-summary.pdf

57

Robert Kowalski (2007) “What is Logic Programming?”
http://en.wikipedia.org/wiki/Talk:Logic_programming#What_is_Logic_Programming.3F

S. Kraus, D. Lehmann and M. Magidor. “Non-monotonic reasoning,
preferential models and cumulative logics” Artificial Intelligence 44:167–
207. 1990.

Richard Kraut. “Plato” Stanford Encyclopedia of Philosophy. 2004.
Georg Kreisel. “Wittgenstein's Remarks on the Foundations of Mathematics”

British Journal for the Philosophy of Science 1958.

Thomas Kuhn. The Structure of Scientific Revolutions University of Chicago

Press. 1962.

Ernest Kurtz and Katherine Ketcham. The Spirituality of Imperfection:

Storytelling and the Search for Meaning Bantam 1993.

Henry Kyburg and Choh Teng) Uncertain Inference, Cambridge University

Press. 2001

Imre Lakatos. “A renaissance of empiricism in the recent philosophy of

mathematics?” Mathematics, Science and Epistemology. 1978.

Imre Lakatos. Proofs and Refutations Cambridge University Press. 1976

Imre Lakatos. Mathematics, Science and Epistemology edited by J. Worrall

and G. Currie. Cambridge University Press. 1978.

Hélène Landemore. “ ‘Talking it Out’: Deliberation with Others Versus

Deliberation Within” Political Psychology. forthcoming 2011.

Peter Landin. “A Generalization of Jumps and Labels” UNIVAC Systems

Programming Research Report. August 1965. (Reprinted in Higher Order

and Symbolic Computation. 1998)

Bruno Latour Science in Action: How to Follow Scientists and Engineers

Through Society Harvard University Press. 1987.

Bruno Latour. The Making of Law Polity Press. 2010.

Bruno Latour. On the Modern Cult of the Factish Gods Duke University Press.

2010.

John Law. After Method: mess in social science research Routledge. 2004.

Federico Laudisa and Carlo Rovelli. “Relational Quantum Mechanics”

Stanford Encyclopedia of Philosophy 2008.

Hannes Leitgeb. “What theories of truth should be like (but cannot be)”

Philosophy Compass 2 (2). 2007.

Doug Lenat “CYC: Lessons Learned in Large-Scale Ontological

Engineering” November 17, 2005.

Isaac Levi. Direct Inference Journal of Philosophy. Jan. 1977.

Steven Levy Hackers: Heroes of the Computer Revolution Doubleday. 1984.

Clarence Lewis and Cooper Langford. Symbolic Logic Century-Croft, 1932.

David Lewis. "Probabilities of Conditionals, and Conditional Probabilities"

Philosophical Review.1976.

Philip Lewis. “Jonathon von Neumann and EDVAC” Nov. 8. 2004.

www.cs.berkeley.edu/~christos/classics/paper.pdf

Henry Lieberman. “A Preview of Act 1” MIT AI memo 625. June 1981.

http://en.wikipedia.org/wiki/Peter_Landin

58

James Lighthill. "Artificial Intelligence: A General Survey" Artificial

Intelligence: a paper symposium. UK Science Research Council. 1973

Martin Löb. “Solution of a problem of Leon Henkin.” Journal of Symbolic

Logic. Vol. 20. 1955.

Per Martin-Löf “Verificationism then and now” The Foundational Debate.

Kluwer. 1995.

Van McGee “Counterexample to Modus Ponens” The Journal of Philosophy

82. 1985.

Eckart Menzler-Trott. Logic’s Lost Genius: The Life of Gerhard Gentzen

American Mathematical Society. 2007.

Donald Loveland. Report of a Workshop on the Future Directions of

Automated Deduction NSF 1997.

http://www.cs.duke.edu/AutoDedFD/report/

Leopold Löwenheim (1915) “Über Möglichkeiten im Relativkalkül”

Mathematische Annalen 76. (Translated as “On possibilities in the calculus

of relatives" in Jean van Heijenoort, 1967. From Frege to Gödel: A Source

Book in Mathematical Logic, 1879-1931. Harvard Univ. Press)

Michael Lynch The Nature of Truth MIT Press. 2001.

Donald MacKenzie. Mechanizing Proof. MIT Press. 2001.

Edwin Mares. “Relevance Logic” Stanford Encyclopedia of Philosophy. Jan.

2006.

Roger Maddux Relevance Logic and the calculus of relations International

Conference on. Order, Algebra and Logics. Vanderbilt. 2007.

Frederick Maier, Yu Ma, and Pascal Hitzler. “Paraconsistent OWL and

Related Logics” Semantic Web Journal. 2011.
David Malone. Dangerous Knowledge BBC4 documentary. 2007.

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-
dangerous-knowledge/1

Edwin Mares. Relevant Logic Cambridge University Press. 2007

Per Martin-Löf. “Verificationism then and now” in W. De Pauli-

Schimanovich, et al., eds. The Foundational Debate Kluwer. 1995.

John McCarthy. “Programs with common sense” Symposium on

Mechanization of Thought Processes. National Physical Laboratory.

Teddington, England. 1958.

John McCarthy. “Situations, actions and causal laws” Stanford Artificial

Intelligence Project: Memo 2. 1963

John McCarthy and Pat Hayes. “Some Philosophical Problems from the

Standpoint of Artificial Intelligence” Machine Intelligence 4. 1969

John McCarthy, Paul Abrahams, Daniel Edwards, Timothy Hart, and Michael

Levin. Lisp 1.5 Programmer’s Manual MIT Computation Center and

Research Laboratory of Electronics. 1962.

John McCarthy. “Review of ‘Artificial Intelligence: A General Survey”

Artificial Intelligence: a paper symposium. UK Science Research Council.

1973.

http://www.cs.duke.edu/AutoDedFD/report/
http://en.wikipedia.org/wiki/Mathematische_Annalen
http://en.wikipedia.org/wiki/Jean_van_Heijenoort
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1

59

John McCarthy. “Circumscription—a form of nonmonotonic reasoning.”

Artificial Intelligence. 1980.

John McCarthy. “Applications of circumscription to formalizing common

sense knowledge” Artificial Intelligence. 1986.

John McCarthy. “Generality in Artificial Intelligence” CACM. December

1987.

John McCarthy. “A logical AI Approach to Context” Technical note, Stanford

Computer Science Department, 1996.

John McCarthy. Sterile Containers September 8, 2000.

http://www.ai.sri.com/~rkf/designdoc/sterile.ps

John McCarthy. “What is Artificial Intelligence” September 1, 2007.

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

L. Thorne McCarty. “Reflections on TAXMAN: An Experiment on Artificial

Intelligence and Legal Reasoning” Harvard Law Review Vol. 90, No. 5,

March 1977.

Drew McDermott and Gerry Sussman. “The Conniver Reference Manual”

MIT AI Memo 259. May 1972.

Drew McDermott. The Prolog Phenomenon ACM SIGART Bulletin. Issue

72. July, 1980.

Vann McGee “In Praise of the Free Lunch: Why Disquotationalists Should

Embrace Compositional Semantics” Self-Reference CSLI Publications.

2006.

Casey McGinnis “Paraconsistency and logical hypocrisy” The Logica

Yearbook Praha. http://www.geocities.com/cnmcginnis/ParaLogHyp.pdf

Hugo Mercier and Dan Sperber. “Why Do Humans Reason? Arguments for

an Argumentative Theory” Behavior al and Brain Sciences. 34. 2011.

Hugo Mercier and Hélène Landemore. “Reasoning is for Arguing:

Understanding the Successes and Failures of Deliberation” Political

Psychology. forthcoming 2011.

N. David Mermin. “What is Quantum Mechanics Trying to Tell us?”

arXiv:quant-ph/9801057. 1998.

John-Jules Meyer. Review of Inconsistency Robustness. Amazon. January,

2016.George Milne and Robin Milner. “Concurrent processes and their

syntax” JACM. April, 1979.

Robert Milne and Christopher Strachey. A Theory of Programming Language

Semantics Chapman and Hall. 1976.

Robin Milner. Logic for Computable Functions: description of a machine

implementation. Stanford AI Memo 169. May 1972

Robin Milner '”Elements of interaction: Turing award lecture'” CACM.

January 1993.

Marvin Minsky (ed.) Semantic Information Processing MIT Press. 1968.

Marvin Minsky and Seymour Papert. “Progress Report on Artificial

Intelligence” MIT AI Memo 252. 1971.

60

Marvin Minsky. A Framework for Representing Knowledge. MIT AI Lab

Memo 306. 1974.

Marvin Minsky, Push Singh, and Aaron Sloman: “The St. Thomas Common

Sense Symposium: Designing Architectures for Human-Level Intelligence”

AI Magazine. Summer 2004.

Annemarie Mol and Marc Berg. “Principles and Practices of Medicine: the

Coexistence of various Anaemias” Culture, Medicine, and Psychiatry 1994.

Annemarie Mol. The Body Multiple: ontology in medical practice Duke

University Press. 2002

Ray Monk. “Bourgeois, Boshevist or anarchist? The Reception of

Wittgenstein’s Philosophy of Mathematics” in Wittgenstein and his

interpreters Blackwell. 2007.

Charles Morgan. “The Nature of Nonmonotonic Reasoning” Minds and

Machines 2000

Chris Mortensen. “The Validity of Disjunctive Syllogism is Not So Easily

Proved.” Notre Dame Journal of Formal Logic January 1983.

Chris Mortensen. Inconsistent Mathematics Kluwer Academic Publishers.

1995.

Alexander Nekham. De Naturis Rerum Thomas Wright, editor. London:

Longman, 1863.

Allen Newell and Herbert Simon. “The logic theory machine: A complex

information processing system” IRE Transactions on Information Theory IT-

2:61-79. 1956.

Bashar Nuseibeh “To Be and Not to Be: On Managing Inconsistency in

Software Development” IWSSD-8. March 1996,

Kristen Nygaard. SIMULA: An Extension of ALGOL to the Description of

Discrete-Event Networks IFIP’62.

David Park. “Concurrency and Automata on Infinite Sequences” Lecture

Notes in Computer Science, Vol 104. Springer. 1980

Peter Patel-Schneider A decidable first-order logic for knowledge

representation IJCAI’85.

Mike Paterson and Carl Hewitt. “Comparative Schematology” MIT AI Memo

201. August 1970.

Giuseppe Peano Arithmetices principia, nova methodo exposita (The

principles of arithmetic, presented by a new method) 1889.

Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference Morgan Kaufmann. 1988

Francis Pelletier “A Brief History of Natural Deduction” History and

Philosophy of Logic Vol. 20, Issue. 1, 1999.

Carl Petri. Kommunikation mit Automate. Ph. D. Thesis. University of Bonn.

1962.

Andrew Pitts. “Categorical Logic” in Algebraic and Logical Structures

Oxford University Press. 2000.

Max Planck Scientific Autobiography and Other Papers 1949.

61

Gordon Plotkin. “A powerdomain construction” SIAM Journal of Computing

September 1976.

Henri Poincaré. “La grandeur mathematiques et l'experience, La Science et

l'Hypothése,” Bibliotµeque de Philosophie Scientique Ernest Flammarion

1902; English translation “Mathematical magnitude and experiment" Science

and Hypothesis Walter Scott Publishing Co, 1905

George Polya (1957) Mathematical Discovery: On Understanding, Learning

and Teaching Problem Solving Combined Edition Wiley. 1981.

Karl Popper(1962). Conjectures and Refutations Basic Books.

Karl Popper. (1934) Logik der Forschung, Springer. (Logic of Scientific

Discovery Routledge 2002).

Howard Pospesel. Propositional Logic Prentice Hall. 2000

H. Prakken “A tool in modeling disagreement in law: Preferring the most

specific argument” ICAIL’91.

H. Prakken and G. Sartor. “A dialectical model of assessing conflicting

arguments in legal reasoning” Artificial Intelligence and Law 1996.

Graham Priest. “Dialetheism” The Stanford Encyclopedia of Philosophy

(Winter 2004 Edition)

Graham Priest, and Richard Routley “The History of Paraconsistent Logic” in

Paraconsistent Logic: Essays on the Inconsistent Philosophia Verlag. 1989.

Graham Priest. “Paraconsistent Logic” Handbook of Philosophical Logic

Volume 6, 2nd ed. Kluwer. 2002

Graham Priest and Koji Tanaka. “Paraconsistent Logic” The Stanford

Encyclopedia of Philosophy. Winter 2004.

Graham Priest. “Wittgenstein’s Remarks on Gödel’s Theorem” in

Wittgenstein’s Lasting Significance Routledge. 2004.

Graham Priest (2006a) “60% Proof: Lakatos, Proof, and Paraconsistency”

2006.

Graham Priest (2006b) In Contradiction 2nd Edition Clarendon Press. 2006.

Michael Rathjen. “The art of ordinal analysis” Proceedings of the

International Congress of Mathematicians 2006

Willard Quine “Review of Charles Parsons’ Mathematics in Philosophy”

Journal of Philosophy 1984.,

Miklós Rédei “John von Neumann 1903-1957” European Mathematical

Society Newsletter March 2004.

Stephen Reed and Doug Lenat. “Mapping Ontologies into Cyc” AAAI 2002

Conference Workshop on Ontologies for the Semantic Web July 2002.

Ray Reiter. “A logic for default reasoning” Artificial Intelligence 13:81. 1980.

Ray Reiter. Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems. MIT Press, 2001.

Greg Restall “Curry’s Revenge: the costs of non-classical solutions to the

paradoxes of self-reference” (to appear in The Revenge of the Liar ed. J.C.

Beall. Oxford University Press. 2007) July 12, 2006.

http://consequently.org/papers/costing.pdf

http://www.csl.sri.com/shankar/shankar.html

62

Greg Restall “Proof Theory and Meaning: on Second Order Logic” Logica

2007 Yearbook, 2007.

Edwina Rissland. “The Ubiquitous Dialectic” ECAI’84.

Abraham Robinson. “Model theory and non-standard arithmetic” in

Infinitistic Methods. Proceedings of the Symposium on Foundations of

Mathematics. September 2-9, 1959. Pergamon Press.

John Alan Robinson, “A Machine-Oriented Logic Based on the Resolution

Principle.” CACM. 1965.

Victor Rodych. “Wittgenstein on Mathematical Meaningfulness, Decidability,

and Application” Notre Dame Journal on Formal Logic Vol. 38. No. 2. 1997.

Victor Rodych. “Wittgenstein's Inversion of Gödel's Theorem” Erkenntnis 51.

1999.

Victor Rodych. “Wittgenstein on Gödel: The Newly Published Remarks”

Erkenntnis 56. 2002.

Victor Rodych. "Misunderstanding Gödel: New Arguments about

Wittgenstein and New Remarks by Wittgenstein" Dialectica Vol. 57. No. 3.

2003.

Bill Roscoe. The Theory and Practice of Concurrency Prentice-Hall. Revised

2005.

Scott Rosenberg. Dreaming in Code. Crown Publishers. 2007.

Marcus Rossberg. “Second-Order Logic” Socrates Teaching Mobility

Intensive Seminar, University of Helsinki, 16-19 May, 2005.

http://www.st-andrews.ac.uk/~mr30/SOL/SOL3.pdf

John Barkley Rosser. “Extensions of Some Theorems of Gödel and Church”

Journal of Symbolic. Logic. 1(3) 1936.

Philippe Rouchy (2006). “Aspects of PROLOG History: Logic Programming

and Professional Dynamics” TeamEthno-Online Issue 2, June 2006.

Richard Routley “Dialectical Logic, Semantics and Metamathematics”

Erkenntnis 14. 1979.

Richard Routley Relevant Logics and Their Rivals 1 Ridgeview. 2003.

Carlo Rovelli “Relational quantum mechanics” International Journal of

Theoretical Physics, 1996.

Carlo Rovelli. “The Uselessness of Certainty” Edge 2011.

Jeff Rulifson, Jan Derksen, and Richard Waldinger. “QA4, A Procedural

Calculus for Intuitive Reasoning” SRI AI Center Technical Note 73.

November 1973.

Bertrand Russell. Principles of Mathematics Norton. 1903.

Bertrand Russell. Principia Mathematica 2nd Edition 1925.

Alessandra Russo, Bashar Nuseibeh, and Steve Easterbrook. “Making

Inconsistency Respectable in Software Development” Journal of Systems

and Software. Vol. 56. No. 58. 2000.

Earl Sacerdoti, et. al., “QLISP A Language for the Interactive Development

of Complex Systems” AFIPS. 1976.

63

Eric Sandewall. “A functional approach to non-monotonic logic”

Computational Intelligence. Vol. 1. 1985.

Eric Sandewall. “From Systems to Logic in the Early Development of

Nonmonotonic Reasoning” CAISOR. July, 2006.

Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile

Processes Cambridge University Press. 2001.

Marek Sergot. “Bob Kowalski: A Portrait” Computational Logic: Logic

Programming and Beyond: Essays in Honour of Robert A. Kowalski, Part I

Springer. 2004.

R. W. Schwanke and G. E. Kaiser, “Living With Inconsistency in Large

Systems” International Workshop on Software Version and Configuration

Control. January 1988.

Dana Scott “Data Types as Lattices”. SIAM Journal on computing. 1976.

Dana Scott. “The Future of Proof” LICS 2006.

Dana Scott and Christopher Strachey. Toward a mathematical semantics for

computer languages Oxford Programming Research Group Technical

Monograph. PRG-6. 1971

Thoralf Skolem (1920) “Logico-combinatorial investigations on the

satisfiability or provability of mathematical propositions: A simplified proof

of a theorem by Löwenheim” (English translation in Jean van Heijenoort,

1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-

1931. Harvard Univ. Press)

Oron Shagrir “Gödel on Turing on Computability” Church's Thesis after 70

years Ontos-Verlag. 2006.

Natarajan Shankar. Metamathematics, Machines, and Gödel’s Proof

Cambridge University Press. 1994.

Ehud Shapiro. “The family of concurrent logic programming languages” ACM

Computing Surveys. September 1989

Stewart Shapiro. Thinking About Mathematics. Oxford University Press.

2000.

Stewart Shapiro. “Lakatos and logic Comments on Graham Priest’s ‘60%

proof: Lakatos, proof, and paraconsistency’” Preprint 2006

Stewart Shapiro Foundations without Foundationalism: A Case for Second-

Order Logic Oxford. 2002.

Stewart Shapiro. “Do Not Claim Too Much: Second-order Logic and First-

order Logic” Philosophia Mathematica (3) Vol. 7. 1999.

Stuart. Shapiro. “Relevance logic in computer science” in Entailment, Volume

II pg. 553-563. Princeton University Press. 1992.

Stuart Shapiro. “SNePS: A Logic for Natural Language Understanding and

Commonsense Reasoning” in Natural Language Processing and Knowledge

Representation: Language for Knowledge and Knowledge for Language,

AAAI Press. 2000.

Wilfried Sieg and Clinton Field. “Automated search for Gödel proofs.”

Annals of Pure and Applied Logic. 2005.

http://en.wikipedia.org/wiki/Jean_van_Heijenoort
http://www.csl.sri.com/shankar/shankar.html
http://www.cup.cam.ac.uk/

64

Wilfried Sieg and J. Byrnes “An Abstract Model for Parallel Computations:

Gandy’s Thesis” Monist 1999.

Wilfried Sieg. “Gödel on Computability” Philosophia Mathematica 2006.

Wilfried Sieg “Church Without Dogma – axioms for computability” New

Computational Paradigms Springer Verlag. 2008.

G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning

and its implementation. Artificial Intelligence Vol. 53 No. 2-3 1992.

John Slaney. “Relevant Logic and Paraconsistency” in Inconsistency

Tolerance Springer 2004.

Aaron Sloman. “Must Intelligent Systems Be Scruffy?” Evolving Knowledge

in Natural Science and Artificial Intelligence. Pitman. 1990.

Timothy Smiley. “The Logical Basis of Ethics,” Acta Philosophica Fennica,

16: 1963.

Peter Smith. An Introduction to Gödel’s Theorems. Draft. 2006.

http://www.godelbook.net/

Lee Smolin. The Trouble with Physics: The Rise of String Theory, the Fall of

a Science, and What Comes Next Houghton Mifflin. 2006

Craig Smorynski. “The Incompleteness Theorems” Handbook of

Mathematical Logic. North Holland. 1977.

Raymond Smullyan Gödel’s Incompleteness Theorems Oxford Univ. Press.

1991.

Michael Smyth. Power domains Journal of Computer and System Sciences.

1978.

Gerry Sussman, Terry Winograd and Eugene Charniak. “Micro-Planner

Reference Manual (Update)” AI Memo 203A, MIT AI Lab, December 1971.

Gerry Sussman and Guy Steele Scheme: An Interpreter for Extended Lambda

Calculus AI Memo 349. December, 1975. University of Illinois Press. 1977.

Frederick Suppe, ed. “The Structure of Scientific Theories” University of

Illinois Press. 1977.

Alfred Tarski Introduction to Logic Oxford University Press. 1940 (and many

subsequent editions).

Alfred Tarski (1944) “The semantic conception of truth and the foundations

of semantics” Philosophy and Phenomenological Research 4 (Reprinted in

Readings in Philosophical Analysis, Appleton-1944)

Alfred Tarski and Robert Vaught (1957). “Arithmetical extensions of

relational systems” Compositio Mathematica 13.

Paul Tillich. “Courage to be” Yale University Press. 2000.

Stephen Toulmin The Uses of Argument Cambridge University Press. 1958.

Alan Turing. “On computable numbers, with an application to the

Entscheidungsproblem.” Proceedings London Math Society. 1936.

Alan Turing. “Intelligent Machinery”. National Physical Laboratory Report.

1948. Also in Machine Intelligence 5. Edinburgh: Edinburgh University

Press. (Digital facsimile viewable at

http://www.AlanTuring.net/intelligent_machinery)

65

Shunichi Uchida and Kazuhiro Fuchi (1992). Proceedings of the FGCS

Project Evaluation Workshop Institute for New Generation Computer

Technology (ICOT)

Moshe Vardi “More Debate, Please!” CACM. Jan. 2010.

Rineke Verbrugge “Provability Logic” The Stanford Encyclopedia of

Philosophy 2010.

John von Neumann. “The role of mathematics in the sciences and in society”

John von Neumann Collected Works Vol.VI. Pergamon. 1961.

John von Neumann. “The Mathematician” John von Neumann Collected

Works Vol. I. Pergamon. 1962.

Richard Waldinger and R. Lee (1969) “PROW: a step toward automatic

program writing” IJCAI’69.

Douglas Walton Fundamentals of Critical Argumentation Cambridge

University Press. 2006.

Hao Wang A Logical Journey, From Gödel to Philosophy MIT Press. 1974.

André Weil, In letter to Fréchet, January 31, 1927..

Peter Whalley. “Modifying the metaphor in order to improve understanding

of control languages—the little-person becomes a cast of actors.” British

Journal of Educational Technology. 2006.

John Wheeler. “It from Bit” in Complexity, Entropy, and the Physics of

Information Addison-Wesley. 1990

Eugene Wigner. “The Unreasonable Effectiveness of Mathematics in the

Natural Sciences” Communications in Pure and Applied Mathematics

February 1960.

Bill Wilson. Twelve Steps and Twelve Traditions Alcoholics Anonymous.

1952

Terry Winograd. Procedures as a Representation for Data in a Computer

Program for Understanding Natural Language. MIT AI TR-235. January

1971.

Ludwig Wittgenstein. 1956. Bemerkungen ¨uber die Grundlagen der

Mathematik/Remarks on the Foundations of Mathematics, Revised Edition

Basil Blackwell. 1978

Ludwig Wittgenstein. Philosophische Grammatik Basil Blackwell. 1969.

Ludwig Wittgenstein. (1933-1935) Blue and Brown Books. Harper. 1965.

Ludwig Wittgenstein Philosophical Investigations Blackwell. 1953/2001.

John Woods, Paradox and Paraconsistency Cambridge University Press.

2003

Larry Wos, George Robinson, Daniel Carson (1965) “Efficiency and

Completeness of the Set of Support Strategy in Theorem Proving” JACM

12(4).

Noson Yanofsky. “A universal approach to self-referential paradoxes,

incompleteness and fixed points” Bulletin of Symbolic Logic 9 No. 3. 2003.

Noson Yanofsky. The Outer Limits of Reason: What Science, Mathematics,

and Logic Cannot Tell Us MIT Press. 2013.

66

Aki Yonezawa. Specification and Verification Techniques for Parallel

Programs Based on Message Passing Semantics MIT EECS Ph. D.

December 1977.

Ernst Zermelo. “Investigations in the foundations of set theory” (English

translation in From Frege to Gödel: A Source Book in Mathematical Logic,

1879-1931 Ed. Jean van Heijenoort 1967). 1908.

Ernst Zermelo, “Uber Grenzzahlen und Mengenbereiche: Neue

Untersuchungen Äuber die Grundlagen der Mengenlehre", Fundamenta

mathematicae, 1930; English translation by Michael Hallett, “On boundary

numbers and domains of sets: new investigations in the foundations of set

theory" From Kant to Hilbert: a Source Book in the Foundations of

Mathematics, Oxford University Press, 1996

67

APPENDIX 1: DETAILS OF DIRECT LOGIC

Notation of Direct Logic

The aims of logic should be the creation of “a unified conceptual

apparatus which would supply a common basis for the whole of human

knowledge.”

[Tarski 1940]

In Direct Logic, unrestricted recursion is allowed in programs. For example,
 There are uncountably many Actors.54 For example, Real∎[] can

output any real numberi between 0 and 1 where
 Real∎[] ≡ [(0 either 1), ⩛Postpone Real∎[]]
 where

o (0 either 1) is the nondeterministic choice of 0 or 1,
o [first, ⩛rest] is the list that begins with first and

whose remainder is rest, and
o Postpone expression delays execution of expression

until the value is needed.

 There are uncountably many propositions (because there is a different

proposition for every real number). Consequently, there are

propositions that are not the abstraction of any element of a

denumerable set of sentences. For example,

 p ≡ [xℝ]→([yℝ]→(y=x))

defines a different predicate p[x] for each real number x, which holds

for only one real number, namely x.ii

Sentencesiii can be abstracted into propositions that can be asserted.

Furthermore, expressionsiv can be abstracted into Actors (e.g., objects in

mathematics).

i using binary representation.
ii For example (p[3])[y] holds if and only if y=3.
iii which are grammar tree structures
iv which are grammar tree structures

68

Abstraction and parsing are becoming increasingly important in software

engineering. e.g.,

 The execution of code can be dynamically checked against its

documentation. Also Web Services can be dynamically searched for

and invoked on the basis of their documentation.

 Use cases can be inferred by specialization of documentation and from

code by automatic test generators and by model checking.
 Code can be generated by inference from documentation and by generalization

from use cases.

Abstraction and parsing are needed for large software systems so that that

documentation, use cases, and code can mutually speak about what has been said

and their relationships.

For example:

In Direct Logic, a sentence is a grammar tree (analogous to the ones used by linguists).

Such a grammar tree has terminals that can be constants. And there are uncountably

many constants, e.g., the real numbers:

Note: type theory of Classical Direct Logic is much stronger than constructive

type theory with constructive logic55 because Classical Direct Logic has all of

the power of Classical Mathematics.

Propositionℕ
e.g. ∀[n:ℕ]→ ∃[m:ℕ]→ m>n
i.e., for every ℕ there is a larger ℕ

intuitively : For every number, there is a
larger number.
Sentenceℕ
 e.g. ⦅∀[n:ℕ]→ ⦅∃[m:ℕ]→ ⦅m>n⦆⦆⦆

i.e., the sentence that for every ℕ there is a larger ℕ

69

Notation of Direct Logic

 Type i.e., a Type is a discrimination of the following:
 Boolean:TypeBoolean56 and ℕ57:Typeℕ

 Propositionσ,Sentenceσ,Proofσ,Setsσ:Typeσ

 Typeσ:Type2
σi

 σ1⦶σ2ii,[σ1, σ2]58:Typeσ1⦶σ2
 [σ1]↦σ2iii:Type[σ1]↦σ2

iv and 𝛔𝟐
𝛔𝟏

v:Type𝛔𝟐

𝛔𝟏

vi

 True,False:Boolean and 0,1:ℕ

 Propositions, i.e., a Proposition is a discrimination of the following:
• If :Propositionσ, then :Propositionσ.

• If ,:Propositionσ, then , , ⇨, ⇔:Propositionσ.
• If p:Boolean and ,:Propositionσ, then

(p � True⦂ 1⍌ False⦂ 2):Propositionσ.59
• If x1,x2:σ, then x1=x2,x1⊑x2,x1x2:Propositionσ.

• If x1:σ1 and x2:σ2, then x1x2,x1:?x2:Propositionσ1⦶σ2.

• If x:σ1, and p:Proposition𝛔2
𝛔1, then p[x]:Proposition2

σ2.vii

• If p:Proofσ, T:Theory, and 1 to n:Propositionσ,

then (1, …, k├
𝐩

𝐓
 k+1, …, n):Propositionσ.60

• If s:Sentenceσ with no free variables, then s :Propositionσ.

i Type2

σ ≡ TypeTypeσ

 τ:Typeσ ⇨ τ⊑σ
ii For i=1,2

 If x:σi, then ((σ1⦶σ2)[x]):?(σ1⦶σ2) and x=((σ1⦶σ2)[x])↓σi.

 ∀[z:τ]→ z:?σ1⦶σ2 ⇔ ∃[x:σi]→ z=(σ1⦶σ2)[x]
iii Type of computable procedures from σ1 into σ2.

If f:([σ1]↦σ2) and x:σ1, then f ∎[x]:σ2.

iv The type of [σ1]↦σ2 means that “self-referential” types for procedures cannot be

constructed in Direct Logic.
v If f:σ2

𝛔1 and x:σ1, then f[x]:σ2.
vi The type of 𝛔𝟐

𝛔𝟏 means that “self-referential” types for functions cannot be

constructed in Direct Logic.
vii Proposition2

σ2 ≡ PropositionPropositionσ2

 The type of p[x] means that “self-referential” propositions cannot be constructed in

Direct Logic.

70

Grammar trees (i.e. expressions and sentences) are defined as follows :

 Expressions, i.e., an Expressionσ is a discrimination of the following:
• ⦅Boolean⦆:ConstantTypeBoolean, ⦅ℕ⦆:ConstantTypeℕ and

⦅Theory⦆:ConstantTypeTheory
• ⦅True⦆,⦅False⦆:ConstantBoolean and ⦅0⦆,⦅1⦆:Constantℕ
• If x:Constantσ, then x:Expressionσ.
• If e:Expressionσ, then ⦅Sentencee⦆,⦅Propositione⦆,

⦅Proofe⦆,⦅Setse⦆:ExpressionTypeσ.
• If x:Variableσ, then x:Expressionσ.
• If x1 to n:Expressionσ1 to n, y:Expressionσ and

v1 to n:Variableσ1 to n in y and in each x1 to n
61, then

⦅Let v1τ1 ≡ x1 , ... , vnτn ≡ xn
62｡y⦆:Expressionσ.

• If e1:Expressionσ1 and e2:Expressionσ1 , then
⦅e1⦶e2⦆,⦅[e1, e2]⦆:Expressione1⦶e2

• If e1:ExpressionTypeσ1 and e2:ExpressionTypeσ2, then
⦅[e1]↦e2⦆:ExpressionType[σ1]↦σ2 and
⦅e2

𝐞1⦆:ExpressionType𝛔𝟐
𝛔𝟏
.

• If t1:ExpressionBoolean, t2, t3:Expressionσ, then
 ⦅t1 � True⦂ t2 ⍌ False⦂ t3⦆:Expressionσ.63

• If t:Expressionσ2 and x:Variableσ1 in t64, then
 ⦅[x:σ1]:σ2 → t⦆:Expression𝛔𝟐

𝛔𝟏.
• If e:Expression𝛔𝟐

𝛔𝟏 and x:Expressionσ1, then
⦅e[x]⦆:Expressionσ2.

• If e:Expression[σ1]↦σ2 and x:Expressionσ1, then
⦅e∎[x]⦆:Expressionσ2.

• If e:Expression𝛔𝟐
𝛔𝟏 and x:Expressionσ1, then

⦅e[x]⦆:Expressionσ2.
• If e:Expressionσ with no free variables, then e:σ.

71

 Sentences, i.e., a Sentence is a discrimination of the following:
 If s1:Sentenceσ then, ⦅s1⦆:Sentenceσ.
 If s1:Sentenceσ and s2:Sentenceσ then

⦅s1s2⦆,⦅s1s2⦆,⦅s1⇨s2⦆,⦅s1⇔s2⦆:Sentenceσ.
 If t:ExpressionBoolean, s1,s2:Sentenceσ, then

⦅t � True⦂ s1⍌ False⦂ s2⦆:Sentenceσ.65
 If t1:Expressionσ and t2:Expressionσ, then

⦅t1=t2⦆,⦅t1⊑t2⦆,⦅t1t2⦆:Sentenceσ.
 If t1:Expressionσ1 and t2:Expressionσ2, then

⦅t1t2⦆,⦅t1:?t2⦆:Sentenceσ1⦶σ2.
• If x:Variableσ1 in s66 and s:Sentenceσ2, then

⦅∀[x:σ1]→ s⦆,⦅∃[x:σ1]→ s⦆:Sentenceσ1⦶σ2.
• If x:Expressionσ1, and p:Sentence𝛔2

𝛔1, then

⦅p[x]⦆:Sentence2
σ2.i

• If T:ExpressionTheory, s1 to n:Sentenceσ and
p:ExpressionProofσ , then

⦅s1, …, sk ├
𝐩

𝐓
 sk+1, …, sn⦆:Sentenceσ.

i Sentence2

σ2 ≡ SentenceSentenceσ2

The type of ⦅p[x]⦆ means that “self-referential” sentences cannot be constructed

in Direct Logic.

72

Inconsistency Robust Implication

Whether a deductive system is Euclidean or quasi-empirical is decided

by the pattern of truth value flow in the system. The system is Euclidean

if the characteristic flow is the transmission of truth from the set of

axioms ‘downwards’ to the rest of the system—logic here is an organon

of proof; it is quasi-empirical if the characteristic flow is retransmission

of falsity from the false basic statements ‘upwards’ towards the

‘hypothesis’—logic here is an organon of criticism. [Lakatos 1967]

Inconsistency-robust bi-implication is denoted by ⇔
T
.

Logical Equivalence: ∀[T:Theory, ,Ψ:Proposition]→

 (⇔
T

) = (⇒
T

) (⇒
T
)

73

Direct Logic has the following rules for inconsistency robust implicationi in

theory T:ii

i denoted by ⇒

T
. Inconsistency-robust implication is different from the much

weaker concept of non-monotonic consequence [e.g. Kraus, et. al. 1990] which

has axioms that are not valid for inconsistency-robust implication.
ii Inconsistency-robust implication is a very strong relationship. For example,

monotonicity does not hold for implication although it does hold for inference. See

section on Inconsistency Robust Inference below.

 The -rule for Accumulation is due to Eric Kao [private communication].

Reiteration: ∀[T:Theory, Ψ:Proposition]→⇒
T

Exchange: ∀[T:Theory, Ψ,,:Proposition]→
 (⇒

T
) ⇔ (⇒

T
)

 ∀[T:Theory, Ψ,,:Proposition]→

 (⇒
T

) ⇔ (⇒
T

)

Dropping: ∀[T:Theory, Ψ,,:Proposition]→
 (⇒

T
) ⇒ (⇒

T
)

 an implication holds if extra conclusions are dropped

Accumulation:
 ∀[T:Theory, Ψ,,:Proposition]→ (⇒

T
) (⇒

T
) ⇒ (⇒

T
)

 ∀[T:Theory, Ψ,,:Proposition]→ (⇒
 T

) (⇒
 T

) ⇒ (⇒
T
)

Implication implies inference:

 ∀[T:Theory, Ψ,:Proposition]→ (⇒
T
) ⇒ ⊢

T

Transitivity:

 ∀[T:Theory, Ψ,,:Proposition]→ (⇒
T
 ⇒

T
) ⇒ ⇒

T

 implication in a theory is transitive

Contrapositive: ∀[T:Theory, Ψ,:Proposition]→ (⇒
T
) ⇔ ⇒

T

 contrapositive holds for implication

Implication infers disjunction:

 ∀[T:Theory, Ψ,:Proposition]→ (⇒
T
) ⊢

T

74

Propositional Substitutions

Logical equivalence is defined for propositions for which the usual

substitution (denoted by ≐) rules apply:i

Double Negation: ≐
Idempotence of : ≐
Commutativity of : ≐
Associativity of : (()) ≐ ()
Distributivity of over : (()) ≐ () ()
Idempotence of : ≐
Commutativity of : ≐
Associativity of : (()) ≐ ()
Distributivity of over : (()) ≐ () ()

i Classical implication (denoted by ⇒) is logical implication for classical mathematics.

(See the appendix on classical mathematics in Direct Logic.) Likewise classical bi-
implication is denoted by ⇔.

 Direct Logic has the following usual principles for equality:

1=1

1=2 ⇒ 2=1

(1=2 2=3) ⇒ 1=3

Substitution of equivalent propositions:
(=) ⇒ ≐
(≐) ⇒ ()≐()
(≐) ⇒ ()≐()
(≐) ⇒ ()≐ ()
(≐) ⇒ ()≐ ()
(≐) ⇒ ()≐()
(≐) ⇒ (├

T
)≐(├

T
)

(≐) ⇒ (├
T
)≐ (├

T
)

(≐) ⇒ (⇒)≐ (⇒)
(≐) ⇒ (⇒)≐ (⇒)
(≐) ⇒ (⇔)≐ (⇔)
(≐) ⇒ (⇔)≐ (⇔)
(F≐G) ⇒ ∀F≐∀G

75

Also, the following usual propositional inferences hold:

De Morgan for : ∀[T:Theory, Ψ,:Proposition]→
 () ┤├

T

De Morgan for : ∀[T:Theory, Ψ,:Proposition]→
 () ┤├

T

Absorption of : ∀[T:Theory, Ψ,:Proposition]→ () ├
T

Absorption of : ∀[T:Theory, Ψ,:Proposition]→ () ├
T

67

Conjunction, i.e., comma

 -Elimination: ∀[T:Theory, Ψ,:Proposition]→ (⊢
T
) ⇒ ⊢T

 ,

 -Introduction: ∀[T:Theory, Ψ,:Proposition]→ (⊢
T
 ,) ⇒ ⊢T

Disjunction

-Definition: ∀[T:Theory, Ψ,:Proposition]→ ⇔
T ()

-Elimination:i ∀[T:Theory, Ψ,:Proposition]→ () ⇒
T

Disjunctive Cases:
 ∀[T:Theory, Ψ,,,Ω:Proposition]→
 () (⇒) (⇒ Ω) ⇒

T Ω

Theorem: Inconsistency Robust Resolutionii

 ∀[T:Theory, Ψ,,,Ω:Proposition]→

 () () (Ω) ⇒
 T
 Ω

Derivation: Immediate from Disjunctive Cases and -Elimination.

Inconsistency Robust Inference

Logic merely sanctions the conquests of the intuition.

Jacques Hadamard (quoted in Kline [1972])

i i.e. Disjunctive Syllogism
ii Joint work with Eric Kao

76

Inference in theory T (denoted by ├
T
) is characterized by the following

additional axioms:i

Soundness

Soundness: ∀[T:Theory, Ψ:Proposition]→ (⊢
T
) ⊢

T

 a proposition inferred in a theory implies the proposition in the

theory

Inconsistency Robust Derivation by Contradiction

Inconsistency Robust Derivation by Contradiction:

 ∀[T:Theory, Ψ,:Proposition]→ (⇒
T (¬)) ⊢

T ¬

Quantifiers

Direct Logic makes use of functions for quantification.68 For example

following expresses commutativity for natural numbers:

 ∀[x,y:ℕ]→ x+y=y+x

Appendix 2. Foundations of Classical Mathematics beyond

Logicism

Mathematicians do not study objects, but the relations between objects;

to them it is a matter of indifference if these objects are replaced by

others, provided that the relations do not change. Matter does not

engage their attention, they are interested by form alone.

Poincaré [1902]

i Half of the Classical Deduction Theorem holds for Inconsistency Direct Logic. That

one proposition infers another in a theory does not in general imply that the first

proposition implies the second because Inconsistency Robust Implication is a very

strong relationship.

Variable Elimination: ∀F ⇒ F[E]
 a universally quantified variable of a statement can be instantiated
with any expression E (taking care that none of the variables in E are
captured).

Variable Introduction: Let Z be a new constant, F[Z] ⇔ ∀F
 inferring a statement with a universally quantified variable is
equivalent to inferring the statement with a newly introduced constant
substituted for the variable
Existential quantification: ∃F = ∀F

77

This appendix presents foundations for mathematics that goes beyond

logicism in that it does not attempt to reduce mathematics solely to logic,

solely to types, or solely to sets in a way that encompasses all of standard

mathematics including the integers, reals, analysis, geometry, etc.69

Consistency has been the bedrock of classical mathematics.

Platonic Ideals were to be perfect, unchanging, and eternal.70 Beginning with

the Hellenistic mathematician Euclid [circa 300BC] in Alexandria, theories

were intuitively supposed to be consistent.71 Wilhelm Leibniz, Giuseppe

Peano, George Boole, Augustus De Morgan, Richard Dedekind, Gottlob

Frege, Charles Peirce, David Hilbert, etc. developed mathematical logic.

However, a crisis occurred with the discovery of the logical paradoxes based

on self-reference by Burali-Forti [1897], Cantor [1899], Russell [1903], etc.

In response Russell [1925] stratified types, [Zermelo 1905, Fränkel 1922,

Skolem 1922] stratified sets and [Tarski and Vaught 1957] stratified logical

theories to limit self-reference. [Church 1935, Turing 1936] proved that closed

mathematical theories are inferentially undecidablei, i.e., there are

propositions which can neither be proved nor disproved. However, the

bedrock of consistency remained.

This appendix present classical mathematics in Direct Logic using ⊢.ii

The following additional principles are available because ⊢ is thought to be

consistent by an overwhelming consensus of working professional

mathematicians:

i sometimes called “incomplete”
ii with no subscripted inconsistency robust theory, i.e., ⊢ is used for classical

mathematics whereas ⊢
T is used for inconsistency-robust inference in theory T.

Classical Proof by Contradiction:
 ∀[Ψ,:Proposition]→ (⊢,) ⊢
 i.e., the negation of a proposition can be inferred from inferring a
contradiction

Classical Deduction Theorem:
 ∀[Ψ,:Proposition]→ (⊢) ⇔ ⊢ (⇒)
 i.e., an implication can be proved by inference

http://en.wikipedia.org/wiki/Hellenistic

78

Inheritance from classical mathematics

Theorems of mathematics hold in every theory:
 If is a proposition of mathematics,
 ∀[:Proposition]→ (⊢) ⇒ (⊢

T)

Nondeterministic Execution

Direct Logic makes use of the nondeterministic execution as follows:72

o If E1 and E2 are expressions, then E1⇾ E2 (E1 can

nondeterministically evolve to E2) is a proposition.

o If E is an expression, then Converges[E] (E always converges) is a

proposition.

Foundations with both Types and Sets

Everyone is free to elaborate [their] own foundations. All that is required of [a]

Foundation of Mathematics is that its discussion embody absolute rigor,

transparency, philosophical coherence, and addresses fundamental

methodological issues.

[Nielsen 2014]

Classical Direct Logic develops foundations for mathematics by deriving setsi from

typesii and the Peano/Dedekind axioms for the integers to encompass all of standard

mathematics including the reals, analysis, geometry, etc.73

Combining types and sets as the foundation has the advantage of using the strengths

of each without the limitations of trying to use just one because each can be used to

make up for the limitations of the other. The key idea is compositionality, i.e.,

composing new entities from others. Types can be composed from other types and

sets can be composed from other sets.

i According to [Scott 1967]: “As long as an idealistic manner of speaking about

abstract objects is popular in mathematics, people will speak about collections of

objects, and then collections of collections of ... of collections. In other words set

theory is inevitable.” [emphasis in original]
ii According to [Scott 1967]: “there is only one satisfactory way of avoiding the

paradoxes: namely, the use of some form of the theory of types... the best way to

regard Zermelo's theory is as a simplification and extension of Russell's ...simple

theory of types. Now Russell made his types explicit in his notation and Zermelo

left them implicit. It is a mistake to leave something so important invisible...”

Classical Proof by Contradiction:
 ∀[Ψ,:Proposition]→ (⊢,) ⊢
 i.e., the negation of a proposition can be inferred from inferring a
contradiction

79

Sets are fundamental to the mathematical foundations of Computer Science.

SetsOfRankσ can be defined inductively as follows:

 SetsOfRankσ[1] ≡ Booleanσ

 SetsOfRankσ[r+1] ≡ Booleanσ⦶SetsOfRankσ[r]

Furthermore, the process of constructing of SetsOfRankσis exhaustive:

Rank Axiom for Sets
 x:?SetsOfSomeRankσ ⇔ ∃[r:ℕ] → x:?SetsOfRankσ[r]

Sets of a certain stratum can be inductively defined from ranked sets as

follows:

 SetsOfStratumσ[1] ≡ Booleanσ⦶SetsOfSomeRankσ

 SetsOfStratumσ[s+1] ≡ Booleanσ⦶SetsOfStratumσ[s]

Furthermore, the process of constructing SetsOfStratumσis exhaustive:

Stratum Axiom for Sets
 x:?SetsOfSomeStratumσ ⇔ ∃[s:ℕ] → x:?SetsOfStratumσ[s]

Sets can be defined as follows:

 Setsσ ≡ Booleanσ⦶SetsOfSomeStraumσ

Sets provide a convenient way to collect together elements with the following

axiom.74

 ∀[s:Setsσ]→ (∀[e:σ⦶Setsσ]→ es ⇔ s[e]=True)

The above axioms for sets solved the problem with the use of types in analysis

mentioned in [Kleene 1952].

XML

The base domain of Direct Logic is XMLi. In Direct Logic, a dog is an XML

dog, e.g., <Dog><Name>Fido</Name></Dog>DogsXML

Unlike First Order Logic, there is no unrestricted quantification in Direct

Logic. So the proposition dDogs → Mammal[d] is about dogs in XML.

The base equality built into Direct Logic is equality for XML, not equality in

some abstract “domain”. In this way Direct Logic does not have to take a

stand on the various ways that dogs, photons, quarks and everything else can

be considered “equal”!

This axiomization omits certain aspects of standard XML, e.g., attributes,

namespaces, etc.

i Lisp was an important precursor of XML. The Atomics axiomatised below

correspond roughly to atoms and the Elements to lists.

80

Two XML expressions are equal if and only if they are both atomic and are

identical or are both elements and have the same tag and the same number of

children such that the corresponding children are equal.

The following are axioms for XML:
(Atomics Elements) = XML
(Atomics Elements) = { }75
Tags Atomics
∀[x]→ xElements ⇔ x= <Tag(x)> x1…xLength(x) </Tag(x)>
 where xi is the ith subelement of x and
 Tag(x) is the tag of x
 Length(x) is the number of subelements of x

A set pXML is defined to be inductive (written Inductive[p]) if and only it

contains the atomics and for all elements that it contains, it also contains every

element with those sub-elements:
 (∀[pXML; x1…xnp; tTags]→
 Inductive[p] ⇒ (Atomics p <t> x1…xn</t>p)
The Strong Principle of Induction for XML is as follows:
 ∀[pXML]→ Inductive[p] ⇒ p = XML
The reason that induction is called “strong” is that there are no restrictions on

inductive predicates.76

Natural Numbers, Real Numbers, and their Sets are Unique up to

Isomorphism

The following question arises: What mathematics have been captured in the

above foundations?

Theoremi (Categoricity of ℕ):77

∀[M:Modelℕ]→ M≈ℕ, i.e., models of the natural numbers ℕ are

isomorphic by a unique isomorphism.ii

The following strong induction axiom78 can be used to characterize the natural

numbers (ℕ79) up to isomorphism with a unique isomorphism:

 ∀[P:Propositionℕℕ]→ Inductive[P]⇨ ∀[i:ℕ]→ P[i]

 where ∀[P:Propositionℕℕ]→ Inductive[P]

 ⇔ (P[0] ∀[i:ℕ]→ P[i] ⇨P[i+1])80

i [Dedekind 1888, Peano 1889]
ii Consequently, the type of natural numbers ℕ is unique up to isomorphism and the

type of reals ℝ is unique up to isomorphism.

81

Theoremi (Categoricity of ℝ):81

∀[M:Modelℝ]→ M≈ℝ, i.e., models of the real numbers ℝ are

isomorphic by a unique isomorphism.ii

The following can be used to characterize the real numbers (ℝ82) up to

isomorphism with a unique isomorphism:

∀[S:Setℝ]→ S≠{ } Bounded[S] ⇨ HasLeastUpperBound[S]
 where
 Bounded[S:Setℝ] ⇔ ∃[b:ℝ]→ UpperBound[b, S]
 UpperBound[b:ℝ, S:Setℝ] ⇔ bS ∀[xS]→ x≦b
 HasLeastUpperBound[S:Setℝ]] ⇔ ∃[b:ℝ]→ LeastUpperBound[b, S]
 LeastUpperBound[b:ℝ, S:Setℝ]
 ⇔ UpperBound[b,S] ∀[xS]→ UpperBound[x,S] ⇨ x≦b

Theorem (Categoricity of Setsℕ⦶ℝ):83

∀[M:ModelSetsℕ⦶ℝ]→ M≈Setsℕ⦶ℝ, i.e., models of

Setsℕ⦶ℝ are isomorphic by a unique isomorphism.iii

Setsℕ⦶ℝ (which is a fundamental type of mathematics) is exactly

characterized axiomatically, which is what is required for Computer Science.

Classical Direct Logic is much stronger than first-order axiomatizations of set

theory.84

Classical Direct Logic is much stronger than first-order axiomatizations of set

theory.85 Also, the semantics of Classical Direct Logic cannot be characterized

using Tarskian Set Models [Tarski and Vaught 1957].iv

i [Dedekind 1888]
ii Consequently, the type of natural numbers ℕ is unique up to isomorphism and is a

subtype of reals ℝ that is unique up to isomorphism.
iii Consequently, the type of natural numbers ℕ is unique up to isomorphism and the

type of reals ℝ is unique up to isomorphism.
iv See section on “Inadequacy of Tarskian Set Models.”

82

Theorem (Set Theory Model Soundness): (⊢Setsℕ) ⇨ ⊨Setsℕ

Proof: Suppose ⊢Setsℕ. The conclusion immediately follows because the

axioms for the theory Setsℕ hold in the model Setsℕ .

Appendix 3. Historical development of inferential

undecidability (“incompleteness”)

Truth versus Argumentation
[Peano 1889, Dedekind 1888] made fundamental contributions to the

foundations of mathematics with the following theorems:
 Full Peano Integers: Let X be the structure <X, 0X, SX>, then

Peano[X] ⇒ X≈<ℕ, 0, S>86 The theory Peano is the full theory of natural

numbers with categorical induction that is strictly more powerful than cut-down

first-order theory. Perhaps of greater import, there are nondeterministic Turing

machines that Peano proves always halt that cannot be proved to halt in the cut-

down first-order theory.
 Full Dedekind Reals: Let X be the structure <X, ≦X, 0X, 1X, +X, ∗X>, then

Dedekind[X] ⇒ X≈<ℝi, ≦, 0, 1, +, ∗>87
The theory Dedekind is the full theory of real numbers that is strictly
more powerful than cut-down first-order theory.88

The above results categorically characterize the natural numbers (integers)

and the real numbers up to isomorphism based on argumentation. There is no

way to go beyond argumentation to get at some special added insight called

“truth.” Argumentation is all that we have.

i ℝ is the set of real numbers

83

Turing versus Gödel

You shall not cease from exploration

And the end of all our journeying

Will be to arrive where we started

And know the place for the first time.

T.S. Eliot [1942]

Turing recognized that proving that inference in mathematics is

computationally undecidable is quite different than proving that there is a

proposition of mathematics that is inferentially undecidable.i [Turing 1936,

page 259]:
It should perhaps be remarked what I shall prove is quite different from the well-

known results of Gödel [1931]. Gödel has shown that there are propositions U

such that neither U nor U is provable. … On the other hand, I shall show that

there is no general method which tells whether a given formula U is provable.89

Although they share some similar underlying ideas, the method of proving

computational undecidability developed by Church and Turing is much more

robust than the one previously developed by Gödel that relies on “self-

referential” propositions.

The difference can be explicated as follows:

• Actors: an Actor that has an address for itself can be used to generate

infinite computations.

• Propositions: “self-referential” propositions can be used to infer

inconsistencies in mathematics.
As Wittgenstein pointed out, the following “self-referential” proposition leads
an inconsistency in the foundations of mathematics: This proposition is not
provable. If the inconsistencies of “self-referential” propositions stopped with
this example, then it would be somewhat tolerable for an inconsistency-robust
theory. However, other “self-referential” propositions (constructed in a
similar way) can be used to prove every proposition thereby rendering
inference useless.

This is why Direct Logic does not support “self-referential” propositions.ii

i sometimes called “incompleteness.”
ii There It seems that are no practical uses for “self-referential” propositions in the

mathematical foundations of Computer Science.

84

Contra Gödel et. al

The proof of the consistency of mathematics in this article contradicts the

result [Gödel 1931] using “self-referential” propositions that mathematics

cannot prove its own consistency.

One resolution is not to have “self-referential” propositions, which is contra

Gödel et. al. Direct Logic aims to not have “self-referential” propositions by

carefully arranging the rules so that “self-referential” propositions cannot be

constructed. The basic idea is to use typed functions [Russell 1908, Church

1940] to construct propositions so that Y fixed points do not exist and

consequently cannot be used to construct “self-referential” propositions.

How the self-proof of consistency of mathematics was overlooked

and then discovered

Before the paradoxes were discovered, not much attention was paid to proving

consistency. Hilbert et. al. undertook to find a convincing proof of

consistency. Gentzen found a consistency proof for the first-order Peano

theory but many did not find it convincing because the proof was not

elementary. Then following Carnap and Gödel, philosophers blindly accepted

the necessity of “self-referential” prepositions in mathematics. And none of

them seemed to understand Wittgenstein's critique. (Gödel insinuated that

Wittgenstein was “crazy.”) Instead, philosophers turned their attention to

exploring the question of which is the weakest theory in which Gödel's

derivation can be carried out. They were prisoners of the existing paradigm.

Computer scientists brought different concerns and a new perspective. They

wanted foundations with the following characteristics:

 powerful so that arguments (derivations) are short and understandable

and all logical inferences can be formalized

 standard so they can join forces and develop common techniques and

technology

 inconsistency robust because computers deal in pervasively

inconsistent information.

85

The results of [Gödel 1931], [Curry 1941], and [Löb 1055] played an

important role the development of Direct Logic:

 Direct Logic easily formalized Wittgenstein's proof that Gödel's “self-

referential” proposition leads to contradiction. So the consistency of

mathematics had to be rescued against Gödel's “self-referential”

proposition. The “self-referential” propositions used in results of

[Curry 1941] and [Löb 1955] led to inconsistency in mathematics. So

the consistency of mathematics had to be rescued against these “self-

referential” propositions as well.

 Direct Logic easily proves the consistency of mathematics. So the

consistency of mathematics had to be rescued against Gödel's “2nd

incompleteness theorem.”

 Direct Logic easily proves Church's Paradox. So the consistency of

mathematics had to be rescued against the assumption that the

theorems of mathematics can be computationally enumerated.

In summary, computer science advanced to a point where it caused the

development of Direct Logic.

Paraconsistencyi

Inconsistency robust logic is an important conceptual advance in that requires

that nothing “extra” can be inferred just from the presence of a contradiction.

For example, suppose that there is a language with just two propositions,

namely, P and Q. Furthermore, suppose that P and (not P) are axioms. Then,

the only propositions that can be inferred in an inconsistency robust logic are

(P and (not P)), ((not P) and (not P)), (P or (not P)), etc. In particular,

(P or Q) cannot be inferred because otherwise Q could be erroneously inferred

using (not P) by the rule of Disjunctive Syllogism.

An example of a logic (called NanoIntuitionistic) which is not inconsistency

robust has just one rule of inference, namely, classical proof by contradiction.

NanoIntuitionistic is not inconsistency robust because

(not Q), (not (not Q)), (not (P or Q)), etc. can be erroneously inferred from

the contradictory axioms P and (not P). Note that Q cannot be inferred in

NanoIntuitionistic (because there is no rule of double negation elimination).

Consequently, NanoIntuitionistic is a paraconsistent logicii (which was

conceived by Stanisław Jaśkowski [Jaśkowski 1948] and then developed by

many logicians to deal with inconsistencies in mathematical logic [Arruda

1989; Priest, and Routley 1989]) where a logic is by definition paraconsistent

if and only if it is not the case that every proposition can be inferred from an

inconsistency.

i This section builds on [Meyer 2016].
ii that is not inconsistency robust

86

In conclusion, a paraconsistent logic (e.g. NanoIntuitionistic) can allow

erroneous inferences (e.g. (not Q)) from an inconsistency that are not allowed

by inconsistency robustness. Of course, an inconsistency robust logic is also

necessarily paraconsistent.

Inconsistency-robust Logic Programs

Logic Programsi can logically infer computational steps.

Forward Chaining

Forward chaining is performed using ⊢

Illustration of forward chaining:

⊢t Human[Socrates]▮

When ⊢t Human[x] → ⊢t Mortal[x]▮

will result in asserting Mortal[Socrates] for theory t

i [Church 1932; McCarthy 1963; Hewitt 1969, 1971, 2010; Milner 1972, Hayes 1973;

Kowalski 1973]. Note that this definition of Logic Programs does not follow the

proposal in [Kowalski 1973, 2011] that Logic Programs be restricted only to

backward chaining, e.g., to the exclusion of forward chaining, etc.

⦅⊢
aTheory

 PropositionExpression ⦆:Continuation
 Assert PropositionExpression for aTheory.

⦅When ⊢
aTheory

 PropositionPattern →
 Expression ⦆:Continuation

 When PropositionPattern holds for aTheory, evaluate

Expression.

87

Backward Chaining

Backward chaining is performed using ⊩

Illustration of backward chaining:

 ⊢t Human[Socrates]▮

 When ⊩t Mortal[x] → (⊩t Human[x] → ⊢t Mortal[x])▮

 ⊩t Mortal[Socrates]▮

will result in asserting Mortal[Socrates] for theory t.

SubArguments

This section explains how subargumentsi can be implemented in natural

deduction.

When ⊩s (psi ⊢t phi) →
 Let t’ ← extension(t),
 Do ⊢t’ psi,
 ⊩t’ phi → ⊢s (psi ⊢t phi))▮

Note that the following hold for t’ because it is an extension of t:

 When ⊢t theta → ⊢t’ theta▮

 When ⊩t’ theta → ⊩t theta▮

i See appendix on Inconsistency Robust Natural Deduction.

⦅⊩
aTheory

 GoalPattern → Expression ⦆:Continuation
Set GoalPattern for Theory and when established evaluate

Expression.

⦅⊩
aTheory

 GoalPattern ⦆:Expression
Set GoalPattern for Theory and return a list of assertions that satisfy

the goal.

⦅When ⊩
aTheory

 GoalPattern → Expression ⦆:Continuation
 When there is a goal that matches GoalPattern for Theory, evaluate

Expression.

88

Index

⦶, 69
↦, 69
Actor, 27, 28
Actor Model, 3
after, 28
afterward, 28
Anderson, C., 12
argumentation, 10
Arruda, A., 85
Baker, H., 30
Barker-Plummer, D., 35
Barwise, J., 35
belief revision, 7
Bertossi, L., 7
Bėziau, J., 7
Bishop, P., 24
Boole, G., 16
Boolean, 69
bounded nondeterminism, 33
Bourbaki, 39
Carnielli, W., 7
Carroll, L., 21
Catch-22, 8
categoricity

natural numbers, 80
over sets of reals, 81
reals, 81

Church, A., 1, 16, 34, 40, 83
Classical Logic

Soundness, 1
Clinger, W., 30
completeness

logical, 36
Computational Representation

Theorem, 31
concurrency, 3
Consistency of Mathematics, 34
contradictions, 10
Contrapositive for Implication, 1
correlations, 12
Curry, H., 85
Cusumano, M., 5
Dahl, O., 25
D'Angelo, A., 19
Dedekind, R., 82

Diamond, C., 16
Direct Argumentation, 1
Direct Inference, 1
Direct Logic

sentence, 71
Direct Logic, 2, 16

bounded nondeterminism, 33
Classical Direct Logic, 2
expression, 70
Inconsistency Robust Direct

Logic, 2
proposition, 69

Dunn, M., 10
Easterbrook, S., 6
Einstein, A., 23
Eliot, T. S., 83
Etchemendy, J., 35
expression

Direct Logic, 70
Expression, 70
Feferman, S., 2, 42
forward chaining, 86
Franzén, T., 22
fuzzy logic, 7
Gabbay, D., 7
Genesereth, M., 42
Gödel, K., 24
Heller, J., 8
Hewitt, C., 24
Hilbert, D., 36
Hole, 28
Hunter, A., 7
IGOR

Inconsistency in Garbage Out
Redux, 15

Jaśkowski, S., 2
inconsistencies

ameliorate, 6
defer, 6

inconsistencies
ignore, 6

inconsistencies
circumvent, 6

Inconsistencies
bugs, 5

89

inconsistency
probabilities, 11

Inconsistency
pervasive, 5

Inconsistency Robust Derivation by
Contradiction, 1

Inconsistency Robust Direct Logic,
1

Inconsistency Robustness, 8
Inconsistency-robust Natural

Deduction, 1
indeterminacies, 12
information

circular, 14
Direct Logic, 4

information integration
lossless, 37
sponsorship, 37

information integration, 37
concurrency, 37
persistence, 37
quasi-commutativity, 37

information integration
pluralism, 37

information integration
provenance, 37

information integration
scalable, 38

interaction, 3
interdependencies, 12
invariance, 39
Israel, D., 42
Japanese Fifth Generation Project,

32
Jaśkowski, S., 1

IGOR, 2
Natural Deduction, 35

Jaśkowski, S., 2
Kao, E., 16, 75
Kay, A., 39
Kowalski, R., 32
Kuipers, B., 42
Lakatos, I., 18
lambda calculus, 2
Langley, P., 42
Latour, B., 21
Law, J., 5, 42

Lifschitz, V., 42
Löb, M., 85
logic

classical, 8
completeness, 36

Logic
classical, 15

Logic Programs, 86
Malone, D., 3, 41
McCarthy, J., 1, 42
Mermin, N. D., 11
Minsky, M., 9
Minsky, M., 1
Model Checking, 31
Mol, A., 14, 31
Montalvo, F. S., 42
ℕ, 69
Natural Deduction, 35

Jaśkowski, S., 35
Natural Deduction., 87
Neumann, P., 42
Nielsen, 78
Nuseibeh, B., 6
Nygaard, K., 25
paraconsistency, 85
Perlis, A., 23
Perrault, R., 42
pervasive inconsistencies, 5

code, 5
documentation, 5
use cases, 5

pervasive inconsistency, 3
Plotkin, G., 27
Poincaré, H., 76
Popper, K., 5
Priest, G., 85
probabilities

inconsistent, 11
probability, 7
Proof, 69
proposition

Direct Logic, 69
Proposition, 69
reality, 3
Reasoning by disjunctive cases, 1
reception order indeterminacy, 29
Relational Physics, 4

90

Routley, R., 85
Rovelli, C., 4, 20
Russo, A., 6
Saki, 8
Schaub, T., 7
Selby, R., 5
sentence

Direct Logic, 71
Sentence, 69, 71
sets

rank, 79
stratum, 79

Sets, 69, 79
Shankar, N., 42
Soundness

classical, 1
statistical reasoning, 14
Steiger, R., 24

Stickel, M., 42
stratum, 79
Tarski, A., 67
Toffler, A., 11
Turing, A., 2, 7, 16, 23, 34, 83
Type, 69
uncertainty, 7
undecidability

inferential, 36
Undecidability

computational, 33
Waldinger, R., 42
Weil, A., 39
Wittgenstein, L., 1
Wittgenstein, L., 3
Wittgenstein, L., 7
Zermelo, E., 78, 81

91

End Notes

1 Inference is direct when it does not involved unnecessary circumlocutions,

e.g., coding sentences as Gödel numbers. In Direct Logic, it is possible speak

directly about inference relationships.
2 This section shares history with [Hewitt 2010b]

3 D’Ariano and Tosini [2010] showed how the Minkowskian space-time

emerges from a topologically homogeneous causal network, presenting a

simple analytical derivation of the Lorentz transformations, with metric as

pure event-counting.

Do events happen in space-time or is space-time that is made up of events?

This question may be considered a “which came first, the chicken or the

egg?” dilemma, but the answer may contain the solution of the main

problem of contemporary physics: the reconciliation of quantum theory

(QT) with general relativity (GR).Why? Because “events” are central to

QT and “space-time” is central to GR. Therefore, the question practically

means: which comes first, QT or GR? In spite of the evidence of the first

position—“events happen in space-time”—the second standpoint—

“space- time is made up of events”—is more concrete, if we believe à la

Copenhagen that whatever is not “measured” is only in our imagination:

space-time too must be measured, and measurements are always made-up

of events. Thus QT comes first. How? Space-time emerges from the

tapestry of events that are connected by quantum interactions, as in a huge

quantum computer: this is the Wheeler’s “It from bit.” [Wheeler 1990].

4 According to [Law 2006], a classical realism (to which he does

not subscribe) is:

Scientific experiments make no sense if there is no reality independent of

the actions of scientists: an independent reality is one of conditions of

possibility for experimentation. The job of the investigator is to

experiment in order to make and test hypotheses about the mechanisms

that underlie or make up reality. Since science is conducted within

specific social and cultural circumstances, the models and metaphors

used to generate fallible claims are, of course, socially contexted, and

92

always revisable…Different ‘paradigms’ relate to (possibly different

parts of) the same world.

5 Vardi [2010] has defended the traditional paradigm of proving that program

meet specifications and attacked an early critical analysis as follows: “With

hindsight of 30 years, it seems that De Millo, Lipton, and Perlis' [1979]

article has proven to be rather misguided.” However, contrary to Vardi,

limitations of the traditional paradigm of proving that program meet

specifications have become much more apparent in the last 30 years—as

admitted even by some who had been the most prominent proponents, e.g.,

[Hoare 2003, 2009].

6 According to [Hoare 2009]: One thing I got spectacularly wrong. I could see

that programs were getting larger, and I thought that testing would be an

increasingly ineffective way of removing errors from them. I did not realize

that the success of tests is that they test the programmer, not the program.

Rigorous testing regimes rapidly persuade error-prone programmers (like

me) to remove themselves from the profession. Failure in test immediately

punishes any lapse in programming concentration, and (just as important)

the failure count enables implementers to resist management pressure for

premature delivery of unreliable code. The experience, judgment, and

intuition of programmers who have survived the rigors of testing are what

make programs of the present day useful, efficient, and (nearly) correct.

7 According to [Hoare 2009]: Verification [proving that programs meet

specifications] technology can only work against errors that have been

accurately specified, with as much accuracy and attention to detail as all

other aspects of the programming task. There will always be a limit at which

the engineer judges that the cost of such specification is greater than the

benefit that could be obtained from it; and that testing will be adequate for

the purpose, and cheaper. Finally, verification [proving that programs meet

specifications] cannot protect against errors in the specification itself.

8 Popper [1934] section 30.

9 The thinking in almost all scientific and engineering work has been that

models (also called theories or microtheories) should be internally

consistent, although they could be inconsistent with each other.
 Indeed some researchers have even gone so far as to construct

consistency proofs for some small software systems, e.g., [Davis and

Morgenstern 2005] in their system for deriving plausible conclusions using

classical logical inference for Multi-Agent Systems. In order to carry out the

consistency proof of their system, Davis and Morgenstern make some

simplifying assumptions:

 No two agents can simultaneously make a choice (following [Reiter

2001]).

 No two agents can simultaneously send each other inconsistent

information.

93

 Each agent is individually serial, i.e., each agent can execute only one

primitive action at a time.

 There is a global clock time.

 Agents use classical Speech Acts (see [Hewitt 2006b 2007a, 2007c,

2008c]).

 Knowledge is expressed in first-order logic.

The above assumptions are not particularly good ones for modern systems

(e.g., using Web Services and many-core computer architectures). [Hewitt

2007a]

The following conclusions can be drawn for documentation, use cases,

and code of large software systems for human-computer interaction:

 Consistency proofs are impossible for whole systems.

 There are some consistent subtheories but they are typically

mathematical. There are some other consistent microtheories as well,

but they are small, make simplistic assumptions, and typically are

inconsistent with other such microtheories [Addanki, Cremonini and

Penberthy 1989].
 Nevertheless, the Davis and Morgenstern research programme to prove

consistency of microtheories can be valuable for the theories to which it can

be applied. Also some of the techniques that they have developed may be

able to be used to prove the consistency of the mathematical fragment of

Direct Logic and to prove inconsistency robustness (see below in this

article).
10 Turing differed fundamentally on the question of inconsistency from

Wittgenstein when he attended Wittgenstein’s seminar on the Foundations

of Mathematics [Diamond 1976]:
Wittgenstein:... Think of the case of the Liar. It is very queer in a way that

this should have puzzled anyone — much more extraordinary than you

might think... Because the thing works like this: if a man says 'I am lying'

we say that it follows that he is not lying, from which it follows that he

is lying and so on. Well, so what? You can go on like that until you are

black in the face. Why not? It doesn't matter. ...it is just a useless

language-game, and why should anyone be excited?

Turing: What puzzles one is that one usually uses a contradiction as a

criterion for having done something wrong. But in this case one cannot

find anything done wrong.

Wittgenstein: Yes — and more: nothing has been done wrong, ... where

will the harm come?

Turing: The real harm will not come in unless there is an application, in

which a bridge may fall down or something of that sort…. You cannot

be confident about applying your calculus until you know that there are

no hidden contradictions in it…. Although you do not know that the

94

bridge will fall if there are no contradictions, yet it is almost certain

that if there are contradictions it will go wrong somewhere.

Wittgenstein followed this up with [Wittgenstein 1956, pp. 104e–106e]:

Can we say: ‘Contradiction is harmless if it can be sealed off’? But what

prevents us from sealing it off?.

11 A more conservative axiomatization in Direct Logic is the following:

Policy1[x] ≡ Sane[x] ├
Catch22

Obligated[x, Fly]

Policy2[x] ≡ Obligated[x, Fly] ├
Catch22

Fly[x]

Policy3[x] ≡ Crazy[x] ├
Catch22

Obligated[x, Fly]

Observe1[x] ≡ Obligated[x, Fly].Fly[x] ├
Catch22

Sane[x]

Observe2[x] ≡ Fly[x] ├
Catch22

Crazy[x]

Observe3[x] ≡ Sane[x], Obligated[x, Fly] ├
Catch22

Fly[x]]

Observe4 ≡ ├
Catch22

Sane[Yossarian]

Background2 ≡ ├
Catch22

Obligated[Moon, Fly]

 For the more conservative axiomatization above:

 ├
Catch22

Fly[Yossarian] but ├
Catch22

Fly[Yossarian]

 ├
Catch22

Fly[Yossarian] but ├
Catch22

Fly[Yossarian]

 But, unlike for the stronger axiomatization using strong implication:

 ⊬
Catch22

Obligated[Yossarian, Fly]

 ⊬
Catch22

Sane[Yossarian]

12 Because of the use of a very strong form of implication in the

axiomatization, the following can also be inferred:

 ├
Catch22

Obligated[Yossarian, Fly]

 ├
Catch22

Sane[Yossarian]

13 Philosophers have given the name a priori and a posteriori to the

inconsistency

14 including entanglement

95

15 One possible approach towards developing inconsistency robust

probabilities is to attach directionality to the calculations as follows:

P1. ├
Catch22

 ℙSane[x]
≤
→ ℙObligated[x, Fly]

P2. ├
Catch22

 ℙObligated[x, Fly]
≤
→ ℙFly[x]

P3. ├
Catch22

 ℙCrazy[x]
≤
→ ℙObligated[x, Fly]

S1. ├
Catch22

 ℙObligated[x, Fly] Fly[x]
≤
→ ℙSane[x]

S2. ├
Catch22

 ℙFly[x]
≤
→ ℙCrazy[x]

S3. ├
Catch22

 ℙSane[x]Obligated[x, Fly]
≤
→ ℙFly[x]

S4. ├
Catch22

 ℙSane[Yossarian] ⥲ 1

Consequently, the following inferences hold

I1. ├
Catch22

 ℙObligated[Yossarian, Fly] ⥲ 1 P1 and S4

I2. ├
Catch22

 ℙFly[Yossarian] ⥲ 1 using P2 and I1

I3. ├
Catch22

 ℙCrazy[Yossarian] ⥲1 using S2 and I2

I4. ├
Catch22

 ℙObligated[Yossarian, Fly] ⥲ 1 P3 and I3

I5. ├
Catch22

 ℙFly[Yossarian] ⥲ 0 I4 and S3

I6. ├
Catch22

 ℙFly[Yossarian] ⥲ 1 reformulation of I5

Thus there is a contradiction in Catch22 in that both of the following hold

in the above:

I2. ├
Catch22

 ℙFly[Yossarian] ⥲ 1

I6. ├
Catch22

 ℙFly[Yossarian] ⥲ 0

However, it is not possible to immediately conclude that 10 because of

the directionality.

16 In [Law 2006]. Emphases added.

17 In Latin, the principle is called ex falso quodlibet which means that from

falsity anything follows.

18 [Nekham 1200, pp. 288-289]; later rediscovered and published in [Lewis

and Langford 1932]

19 [Pospesel 2000] has discussed extraneous introduction on in terms of

the following principle: Ψ, (ΨΦ├)├

 However, the above principle immediately derives extraneous

introduction when is ΨΦ. In Direct Logic, argumentation of the above

form would often be reformulated as follows to eliminate the spurious Φ

middle proposition: Ψ, (Ψ├)├

20 Direct Logic is distinct from the Direct Predicate Calculus [Ketonen and

Weyhrauch 1984].

96

21 The importance of (counter) examples in reasoning was emphasized in

[Rissland 1984] citing mathematics, law, linguistics and computer science.

According to [Gordon 2009]:
[Toulmin 1958] was one of the first to reflect on the limitations of

mathematical logic as a model of rationality in the context of everyday

discourse and practical problems. By the 1950s, logic had become more

or less synonymous with mathematical logic, as invented by Boole, De

Morgan, Pierce, Frege, Hilbert and others, starting in the middle of the

nineteenth century. Interestingly, Toulmin proposed legal argumentation

as a model for practical reasoning, claiming that normative models of

practical reasoning should be measured by the ideals of jurisprudence.

[Walton 2006] is a good starting point for getting an overview of the

modern philosophy of argumentation.

22 in Rebecca Herold Managing an Information Security and Privacy

Awareness and Training Program 2005. p. 101.
23 although there is no claim concerning Euclid’s own orientation

24 Cf. “on the ordinary notion of proof, it is compelling just because, presented

with it, we cannot resist the passage from premises to conclusion without

being unfaithful to the meanings we have already given to the expressions

employed in it.” [Dummett 1973]

25 Rosemary Redfield. Arsenic associated bacteria (NASA's claims) RR

Research blog. Dec. 6, 2010.

26 Felisa Wolfe-Simon, et. al. A bacterium that can grow by using arsenic

instead of phosphorus Science. Dec. 2, 2010.
27 Consequence1 ≡ NaturalDeduction(Axiom2)

 = ├
Achilles

(A, B├
Achilles

Z)

 Consequence2 ≡ Combination(Axiom1, Consequence1)

 = ├
Achilles

A, B, (A, B├
Achilles

Z)

 Consequence3 ≡ ForwardChaining(Consequence2)

 = ├
Achilles

Z

 DerivationOfZ[a1, a2] ≡
 ForwardChaining[Combination[a1, NaturalDeduction[a2]]]

97

28 McGee [1985] has challenged modus ponens using an example that can be

most simply formalized in Direct Logic as follows:

 RepublicanWillWin ├
McGee

(ReaganWillWin ├
McGee

AndersonWillWin)

 and ├
McGee

 RepublicanWillWin

 From the above, in Direct Logic it follows that:

 ReaganWillWin ├
McGee

AndersonWillWin

 McGee challenged the reasonableness of the above conclusion on the

grounds that. intuitively, the proper inference is that if Reagan will not win,

then AndersonWillWin because Carter (the Democratic candidate) will

win. However, in theory McGee, it is reasonable to infer AndersonWillWin

from ReaganWillWin because RepublicanWillWin holds in McGee.

 McGee phrased his argument in terms of implication which in Direct

Logic (see following discussion in this paper) would be as follows:

RepublicanWillWin⇒
McGee

 (ReaganWillWin⇒
McGee

 AndersonWillWin)

However, this makes no essential difference because, in Direct Logic, it still

follows that ReaganWillWin ⇒
McGee

 AndersonWillWin
29 [cf. Church 1934, Kleene 1936]

30 Direct inference is defined differently in this paper from probability theory

[Levy 1977, Kyburg and Teng 2001], which refers to “direct inference” of

frequency in a reference class (the most specific class with suitable

frequency knowledge) from which other probabilities are derived.

31 [Jaśkowski 1934]31 that doesn’t require artifices such as indices

(labels) on propositions or restrictions on reiteration

32 This section of the paper shares some history with [Hewitt 2010b].

33 Turing [1936] stated:

 the behavior of the computer at any moment is determined by the symbols

which he [the computer] is observing, and his ‘state of mind’ at that

moment

 there is a bound B to the number of symbols or squares which the

computer can observe at one moment. If he wishes to observe more, he

must use successive observations.

98

 Gödel’s conception of computation was formally the same as Turing but

more reductionist in motivation:

There is a major difference between the historical contexts in which

Turing and Gödel worked. Turing tackled the Entscheidungsproblem

[computational decidability of provability] as an interesting mathematical

problem worth solving; he was hardly aware of the fierce foundational

debates. Gödel on the other hand, was passionately interested in the

foundations of mathematics. Though not a student of Hilbert, his work was

nonetheless deeply entrenched in the framework of Hilbert’s finitistic

program, whose main goal was to provide a meta-theoretic finitary proof

of the consistency of a formal system “containing a certain amount of

finitary number theory.” Shagrir [2006]

34 According to [Turing 1948]:

LCMs [Logical Computing Machines: Turing's expression for Turing

machines] can do anything that could be described as … "purely

mechanical"…This is sufficiently well established that it is now agreed

amongst logicians that “calculable by means of an LCM” is the correct

accurate rendering [of phrases like “purely mechanical”]

35 [Wang 1974, p. 84]

36 An example of the global state space model is the Abstract State Machine

(ASM) model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b;

Glausch and Reisig 2006].

37 This result is very old. It was known by Dijkstra motivating his belief that

it is impossible to implement unbounded nondeterminism. Also the result

played a crucial role in the invention of the Actor Model in 1972.

 Consider the following Nondeterministic Turing Machine:
Step 1: Next do either Step 2 or Step 3.
Step 2: Next do Step 1.
Step 3: Halt.

It is possible that the above program does not halt. It is also possible that

the above program halts.

 Note that above program is not equivalent to the one below in which it is

not possible to halt:
Step 1: Next do Step 1.

38 The below derivation is quite general and applies to the Abstract State

Machine (ASM) model [Blass, Gurevich, Rosenzweig, and Rossman 2007a,

2007b;Glausch and Reisig 2006], which consequently are not really models

of concurrency. It also applies to the parallel lambda calculus, which includes

all the capabilities of the nondeterministic lambda calculus. Researchers

(before the Actor Model was invented) hypothesized that the parallel lambda

calculus naturally modeled all of computation and their research programme

was to reduce all computation to the parallel lambda calculus [Scott and

 Strachey 1971, Milne and Strachey 1976].

99

39 This proof does not apply to extensions of Nondeterministic Turing

Machines that are provided with a new primitive instruction NoLargest

which is defined to write an unbounded large number on the tape. Since

executing NoLargest can write an unbounded amount of tape in a single

instruction, executing it can take an unbounded time during which the

machine cannot read input.

 Also, the NoLargest primitive is of limited practical use. Consider a

Nondeterministic Turing Machine with two input-only tapes that can be read

nondeterministically and one standard working tape.

 It is possible for the following program to copy both of its input tapes

onto its working tape:

Step 1: Either

1. copy the current input from the 1st input tape onto the

working tape and next do Step 2,

 or

2. copy the current input from the 2nd input tape onto the

working tape and next do Step 3.

Step 2: Next do Step 1.

Step 3: Next do Step 1.
It is also possible that the above program does not read any input from the

1st input tape (cf. [Knabe 1993]) and the use of NoLargest is of no use in

alleviating this problem. Bounded nondeterminism is a symptom of deeper

underlying issues with Nondeterministic Turing Machines.

40 Consequently,

 The tree has an infinite path. ⇔ The tree is infinite. ⇔ It is possible

that P does not halt. If it is possible that P does not halt, then it is

possible that that the set of outputs with which P halts is infinite.

 The tree does not have an infinite path. ⇔ The tree is finite. ⇔ P

always halts. If P always halts, then the tree is finite and the set of

outputs with which P halts is finite.
41 Arbiters render meaningless the states in the Abstract State Machine (ASM)

model [Blass, Gurevich, Rosenzweig, and Rossman 2007a, 2007b; Glausch

and Reisig 2006].

42 The logic gates require suitable thresholds and other characteristics.
43 cf. denotational semantics of the lambda calculus [Scott 1976]

100

44 Derivation: Suppose to obtain a contraction that

ComputationallyDecidable[HaltingProblem].

 Define the program Diagonal as follows:

Diagonal ≡ [x]→ Halt∎[x, x] � True⦂ InfiniteLoop∎[]⍌ False⦂ True
 where InfiniteLoop ≡ []→ InfiniteLoop∎[]

Poof of inconsistency: By the definition of Diagonal:

 Diagonal∎[Diagonal] ⇾1 Halt∎[Diagonal, Diagonal] �

 True⦂ InfiniteLoop∎[]⍌

 False⦂ True
Consider the following 2 cases:

1. Halt∎[Diagonal, Diagonal] ⇾1 True
Converges[Diagonal∎[Diagonal]] by the axioms for Halt
Converges[Diagonal∎[Diagonal]] by the definition of Diagonal

2. Halt∎[Diagonal, Diagonal] ⇾1 False
Converges[Diagonal∎[Diagonal]] by the axioms for Halt
Converges[Diagonal∎[Diagonal]] by the definition of Diagonal

Consequently, ComputationallyDecidable[HaltingProblem]

45 Note that this theorem is very different from the result [Kleene 1938], that

mathematics can be extended with a proposition asserting its own

consistency.
46 A prominent logician referee of this article suggested that if the proof is

accepted then consistency should be made an explicit premise of every

theorem of classical mathematics!
47 As shown above, there is a simple proof in Classical Direct Logic that

Mathematics (├) is consistent. If Classical Direct Logic has a bug, then there

might also be a proof that Mathematics is inconsistent. Of course, if a such

a bug is found, then it must be repaired.

 Fortunately, Classical Direct Logic is simple in the sense that it has just

one fundamental axiom:

∀[P:Propositionℕℕ]→ Inductive[P]⇨ ∀[i:ℕ]→ P[i]

 where ∀[P:Propositionℕℕ]→

 Inductive[P] ⇔ (P[0] ∀[i:ℕ]→ P[i] ⇨P[i+1])
 Of course, Classical Direct Logic has machinery in addition the above

axiom that could also have bugs.

 The Classical Direct Logic proof that Mathematics (├) is consistent is

very robust. One explanation is that consistency is built in to the very

architecture of classical mathematics because it was designed to be

 consistent. Consequently, it is not absurd that there is a simple proof of the

consistency of Mathematics (├) that does not use all of the machinery of

Classical Direct Logic.

 In reaction to paradoxes, philosophers developed the dogma of the

necessity of strict separation of “object theories” (theories about basic

101

mathematical entities such as numbers) and “meta theories” (theories about

theories). This linguistic separation can be very awkward in Computer

Science. Consequently, Direct Logic does not have the separation in order

that some propositions can be more “directly” expressed. For example,

Direct Logic can use ├├Ψ to express that it is provable that P is provable

in Mathematics. It turns out in Classical Direct Logic that ├├Ψ holds if and

only if ├Ψ holds. By using such expressions, Direct Logic contravenes the

philosophical dogma that the proposition ├├Ψ must be expressed using

Gödel numbers.
48 As shown above, there is a simple proof in Classical Direct Logic that

Mathematics (├) is consistent. If Classical Direct Logic has a bug, then there

might also be a proof that Mathematics is inconsistent. Of course, if a such

a bug is found, then it must be repaired.

 Fortunately, Classical Direct Logic is simple in the sense that it has one

fundamental axiom:

 ∀[P:Propositionℕℕ]→ Inductive[P]⇨ ∀[i:ℕ]→ P[i]

 where ∀[P:Propositionℕℕ]→

 Inductive[P] ⇔ P[0] ∀[i:ℕ]→ P[i] ⇨P[i+1]
 Of course, Classical Direct Logic has machinery in addition the above

axiom that could also have bugs.

 The Classical Direct Logic proof that Mathematics (├) is consistent is

very robust. One explanation is that consistency is built in to the very

architecture of classical mathematics because it was designed to be

consistent. Consequently, it is not absurd that there is a simple proof of the

consistency of Mathematics (├) that does not use all of the machinery of

Classical Direct Logic.

 In reaction to paradoxes, philosophers developed the dogma of the

necessity of strict separation of “object theories” (theories about basic

mathematical entities such as numbers) and “meta theories” (theories about

theories). This linguistic separation can be very awkward in Computer

Science. Consequently, Direct Logic does not have the separation in order

that some propositions can be more “directly” expressed. For example,

Direct Logic can use ├├Ψ to express that it is provable that P is provable in

Mathematics. It turns out in Classical Direct Logic that ├├Ψ holds if and

only if ├Ψ holds. By using such expressions, Direct Logic contravenes the

philosophical dogma that the proposition ├├Ψ must be expressed using

Gödel numbers.

49 This coordination can include calendars and to-do lists, communications

(including email, SMS, Twitter, Facebook), presence information

(including who else is in the neighborhood), physical (including GPS

recordings), psychological (including facial expression, heart rate, voice

102

stress) and social (including family, friends, team mates, and colleagues),

maps (including firms, points of interest, traffic, parking, and weather),

events (including alerts and status), documents (including presentations,

spreadsheets, proposals, job applications, health records, photons, videos,

gift lists, memos, purchasing, contracts, articles), contacts (including social

graphs and reputation), purchasing information (including store purchases,

web purchases, GPS and phone records, and buying and travel habits),

government information (including licenses, taxes, and rulings), and search

results (including rankings and rating).

50 In 1994, Alan Robinson noted that he has “always been a little quick to make

adverse judgments about what I like to call ‘wacko logics’ especially in

Australia…I conduct my affairs as though I believe … that there is only one

logic. All the rest is variation in what you’re reasoning about, not in how

you’re reasoning … [Logic] is immutable.” (quoted in Mackenzie [2001]

page 286)

 On the other hand Richard Routley noted:

… classical logic bears a large measure of responsibility for the growing

separation between philosophy and logic which there is today… If classical

logic is a modern tool inadequate for its job, modern philosophers have

shown a classically stoic resignation in the face of this inadequacy. They

have behaved like people who, faced with a device, designed to lift stream

water, but which is so badly designed that it spills most of its freight, do

not set themselves to the design of a better model, but rather devote much

of their energy to constructing ingenious arguments to convince themselves

that the device is admirable, that they do not need or want the device to

deliver more water; that there is nothing wrong with wasting water and

that it may even be desirable; and that in order to “improve” the device

they would have to change some features of the design, a thing which goes

totally against their engineering intuitions and which they could not

possibly consider doing. [Routley 2003]
51 According to [Kuhn 1962 page 151]

And Max Planck, surveying his own career in his Scientific

Autobiography [Planck 1949], sadly remarked that “a new scientific

truth does not triumph by convincing its opponents and making them

see the light, but rather because its opponents eventually die, and a new

generation grows up that is familiar with it.”

52 It is not possible to guarantee the consistency of information because

consistency testing is computationally undecidable even in logics much

weaker than first order logic. Because of this difficulty, it is impractical to

test whether information is consistent.

103

53 Consequently iDescriber makes use of direct inference in Direct Logic to

reason more safely about inconsistent information because it omits the rules

of classical logic that enable every proposition to be inferred from a single

inconsistency.

54 By the Computational Representation Theorem [Clinger 1981; Hewitt

2006], which can define all the possible executions of a procedure.

55 e.g. [Shulman 2012, nLab 2014]
56 True≠False

 ∀[x:Boolean]→ x=True x=False
57 The natural numbers are axiomatised as follows where Successor is the

successor function:

 0:ℕ

 Successor:ℕℕ
 ∀[i:ℕ]→ Successor[i]≠0
 ∀[i, j:ℕ]→ Successor[i]= Successor[j] ⇒ i=j

 ∀[P:Propositionℕℕ]→ Inductive[P]⇒ ∀[i:ℕ]→ P[i]

 where

 ∀[P:Propositionℕℕ]→

 Inductive[P:Propositionℕℕ]:Proposition2
ℕ ≡

 P[0] ∀[i:ℕ]→ P[i]⇒P[Successor[i]]
58 type of 2-element list with first element of type σ1 and with second

element of type σ2

59 if t then 1 else 2

60 1, … and k infer 1, …, and n

61 if present
62 parameterized mutually recursive definitions of v1 to nτ1 to n
63 if t1 then t2 else t3
64 if present
65 if t then s1 else s1
66 if present

67 Derivation: (()) ⇔ () () ⇔ ()
68 Direct Logic uses the full meaning of quantification as opposed to a cut

down syntactic variant, e.g., [Henken 1950]. Disadvantages of the Henkin

approach are explained in [Restall 2007].
69 [Church 1956; Concoran 1973, 1980; Boulos 1975; Shapiro 2002]

70 “The world that appears to our senses is in some way defective and filled

with error, but there is a more real and perfect realm, populated by entities

[called “ideals” or “forms”] that are eternal, changeless, and in some sense

paradigmatic for the structure and character of our world. Among the most

important of these [ideals] (as they are now called, because they are not

located in space or time) are Goodness, Beauty, Equality, Bigness, Likeness,

104

Unity, Being, Sameness, Difference, Change, and Changelessness. (These

terms — “Goodness”, “Beauty”, and so on — are often capitalized by those

who write about Plato, in order to call attention to their exalted status;…)

The most fundamental distinction in Plato's philosophy is between the many

observable objects that appear beautiful (good, just, unified, equal, big) and

 the one object that is what Beauty (Goodness, Justice, Unity) really is, from

 which those many beautiful (good, just, unified, equal, big) things receive

their names and their corresponding characteristics. Nearly every major

work of Plato is, in some way, devoted to or dependent on this distinction.

 Many of them explore the ethical and practical consequences of

conceiving of reality in this bifurcated way. We are urged to transform our

values by taking to heart the greater reality of the [ideals] and the

defectiveness of the corporeal world.” [Kraut 2004]

71 Structuralism takes a different view of mathematics:

The structuralist vigorously rejects any sort of ontological independence

among the natural numbers. The essence of a natural number is its

relations to other natural numbers. The subject matter of arithmetic is a

single abstract structure, the pattern common to any infinite collection of

objects that has a successor relation, a unique initial object, and satisfies

 the induction principle. The number 2 is no more and no less than the

second position in the natural number structure; and 6 is the sixth position.

Neither of them has any independence from the structure in which they are

positions, and as positions in this structure, neither number is independent

of the other. [Shapiro 2000]

105

72 Basic axioms are as follows:

True � True⦂ E1 ⍌ False⦂ E2 ⇾ E1

False � False⦂ E1 ⍌ True⦂ E2 ⇾ E1

False � True⦂ E1 ⍌ False⦂ E2 ⇾ E2

True � False⦂ E1 ⍌ True⦂ E2 ⇾ E2

(1 ⇾2) (2 ⇾3)) ⇒ (1 ⇾ 3)

([x]→ F[x])[] ⇾F[]

(1 either 2) ⇾ 172

(1 either 2) ⇾ 272

F1 ⇾ F2 ⇒ F1()⇾ F2()
 an application evolves if its operator evolves

1 ⇾ 2 ⇒ F(1) ⇾ F(2)
 an application evolves if its operand evolves

1 ⇾2 ⇒ (2 ⇒ 1)

1 2 ⇔ ((1 ⇾ 2 2) (1 1 =2))

 1 ⇔ ((1 2) ⇒ 1=1)

1 ⇒ (1 ⇾ 2)

73 [Church 1956; Boolos 1975; Corcoran 1973, 1980]. Also, Classical Direct

Logic is not a univalent homotopy type theory [Awodey, Pelayo, and

Warren 2013].
74 Setσ is the type of a set of type σ, Setsσ is the type all sets of sets

over type σ, and Domainσ=σ⦶Setsσ with the following axioms:

{ }:Setσ // the empty set { } is a set

∀[x:σ]→ {x}:Setσ // a singleton set is a set

∀[s:Setsσ]→ ⋃s:Setsσ // all elements of the subsets of a set is a set

∀[x:σ]→ x{ } // the empty set { } has no elements

∀[s:Setσ, f:σσ] → (Elementwise[f])[s]:Setσ
 // the function image of a set is a set

∀[s:Setσ, p:Booleanσ] → s↾p:Setσ
 // a predicate restriction of a set is a set

∀[s:Setσ]→ { }s // { } is a subset of every set

∀[s1,s2:Setσ]→ s1=s2 ⇔(∀[x:σ]→ xs1 ⇔xs2)

∀[x,y:σ]→ x{y} ⇔x=y

∀[s1,s2:Setσ]→ s1s2 ⇔ ∀[x:σ]→ xs1 ⇒ xs2

∀[x:σ; s1,s2:Setσ]→ xs1s2 ⇔ (xs1 xs2)

∀[x:σ; s1,s2:Setσ]→ xs1s2 ⇔ (xs1 xs2)

∀[x:Domainσ; s:Setsσ]→ x⋃s ⇔ ∃[s1:Setsσ]→ xs1 s1s
 // union of a set is a set

106

∀[y:σ; s:Setσ, f:σσ] → y(Elementwise[f])[s] ⇔ ∃[xs] → f[x]=y
 // set image of a set is a set

∀[y:σ; s:Setσ, p:Booleanσ] → ys↾p ⇔ ys p[y]
75 Atomics and Elements are disjoint

76 For example, there is no restriction that an inductive predicate must be

defined by a first order proposition.

77 [Dedekind 1888, Peano 1889]
78 [Dedekind 1888, Peano 1889]
79 ℕ is identified with the type of natural numbers
80 which can be equivalently expressed as:

 ∀[P:Propositionℕℕ]→ Inductive[P]⇨ ∀[i:ℕ]→ P[i]=True

 where

 ∀[P:Propositionℕℕ]→

 Inductive[P] ⇔ (P[0]=True ∀[i:]→ P[i]=True ⇨P[i+1]=True)
81 [Dedekind 1888]
82 ℝ is identified with the type of natural numbers
83 cf. [Zermelo 1930].
84 The Continuum Hypothesis remains an open problem for Direct Logic

because its set theory is very powerful. The forcing technique used to prove

the independence of the Continuum Hypothesis for first-order set theory

[Cohen 1963] does not apply to Direct Logic because of the strong

induction axiom [Dedekind 1888, Peano 1889] used in formalizing the

natural numbers ℕ.
 Of course, trivially,

(⊨DomainℕContinuumHypothesis)(⊨DomainℕContinuumHypothesis)

where Domainσ=σ⦶Setsσ.
85 The Continuum Hypothesis remains an open problem for Direct Logic

because its set theory is very powerful. The forcing technique used to prove

the independence of the Continuum Hypothesis for first-order set theory

[Cohen 1963] does not apply to Direct Logic because of the categorical

 induction axiom [Dedekind 1888, Peano 1889] used in formalizing the natural

numbers ℕ, which is the foundation of set theory. Of course, trivially,

 (⊨DomainℕContinuumHypothesis)(⊨DomainℕContinuumHypothesis)

where Domainσ=σ⊕Setsσ.

107

86 Peano[X], means that X satisfies the full Peano axioms for the non-negative

integers, ℕ is the type of non-negative integers, s is the successor function,

and ≈ means isomorphism.

 The isomorphism is proved by defining a function f from ℕ to X by:

1. f[0]=0X

2. f[S[n]]=SX[f[n]]
Using proof by induction, the following follow:

1. f is defined for every element of ℕ

2. f is one-to-one

Proof:

 First prove ∀[nX]→ f[n]=0X ⇒ n=0
 Base: Trivial.
 Induction: Suppose f[n]=0X ⇒ n=0
 f[S[n]]=SX[f[n]] Therefore if f[S[n]]=0X then 0X=SX[f[n]]
 which is an inconsistency
 Suppose f[n]=f[m]. To prove: n=m
 Proof: By induction on n:
 Base: Suppose f[0]=f[m]. Then f[m]= 0X and m=0 by above
 Induction: Suppose ∀[mN]→ f[n]=f[m]⇒n=m
 Proof: By induction on m:
 Base: Suppose f[n]=f[0]. Then n=m=0
 Induction: Suppose f[n]=f[m]⇒n=m
 f[S[n]]=SX[f[n]] and f[S[m]]=SX[f[m]]
 Therefore f[S[n]]=f[S[m]]⇒S[n]=S[m]

3. the range of f is all of X.

Proof: To show: Inductive[Range[f]]
Base: To show 0XRange[f]. Clearly f[0]=0X

Induction: To show ∀[nRange[f]]→ SX[n]Range[f].
Suppose that nRange[f]. Then there is some m such that f[m]=n.

To prove: ∀[kN]→ f[k]=n ⇒ SX[n]Range[f]
 Proof: By induction on k:

 Base: Suppose f[0]=n. Then n= 0X =f[0] and
SX[n]=f[S[0]]Range[f]

 Induction: Suppose f[k]=n ⇒ SX[n]Range[f]
 Suppose f[S[k]]=n. Then n=SX[f[k]] and
 SX[n]=SX[SX[f[k]]]=SX[f[S[k]]]= f[S[S[k]]]Range[f]

87 Dedekind[X], means that X satisfies the Dedekind axioms for the real

numbers
88 Robinson [1961]

108

89 The inferability problem is to computationally decide whether a proposition

defined by sentence is inferable.

 Theorem [Church 1935 followed by Turing 1936]:

 Consistent
T

⇒ComputationallyDecidable[InferenceProblem
T
]

Proof. Suppose to obtain a contradiction that

ComputationallyDecidable[InferenceProblem
T
].

This means that there is a total computational deterministic predicate

Inferable
T
 such that the following 3 properties hold

1. Inferable
T∎[] ⇾1 True ⇔ ⊢

T

2. Inferable
T∎[] ⇾1 False ⇔ ⊬

T

3. Inferable
T∎[] ⇾1 True Inferable

T∎[]⇾1 False
The proof proceeds by showing that if inference is computationally

decidable, the halting problem is computationally decidable.

Consider proposition of the form Converges[p∎[x]] , which is the

proposition that the program p halts on input x.

Lemma: Consistent
T

⇒ Inferable
T∎[Converges[p∎[x]]]⇾1True

 if and only if Converges[p∎[x]]

Proof of lemma: Suppose Consistent
T

1. Suppose Inferable
T∎[Converges[p∎[x]]⇾1 True. Then

⊢
T
 Converges[p∎[x]] by definition of Inferable

T.

Suppose to obtain a contradiction that

Converges[p∎[x]]. The contradiction ⊬
T
 Converges[

p∎[x]] follows by consistency of T.

2. Suppose Converges[p∎[x]]. Then ⊢
T
 Converges[p∎[x]]

by Adequacy of T. It follows that

Inferable
T∎[Converges[p∎[x])] ⇾1 True.

But this contradicts ComputationallyDecidable[HaltingProblem]

because Halt[p, x] ⇔ Inferable
T∎[Converges[p∎[x]]]

Consequently,

 Consistent
T

⇒ComputationallyDecidable[InferenceProblem
T
]

