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Abstract 

During the warming forming process of aluminum alloys, both temperature and strain rate have significant influences on sheet 
formability. However, current research regarding the effects of temperature and strain rate on the forming limit curves of 
aluminum alloys is still lacking. Due to the difficulty in carrying out the experiments for obtaining forming limit curves under 
dynamic forming conditions at elevated temperature, in this work, the method is proposed to investigate these effects by 
combining a modified Voce constitutive model (Lin-Voce model) with the numerical simulation of Marciniak test. On the basis 
of experimental data obtained by the tensile tests, the material parameters of Lin-Voce model are identified by the inverse 
analysis technique. Then, the proposed Lin-Voce model is verified by comparing numerical and experimental results obtained 
by Marciniak test. Finally, the numerical simulation of Marciniak test is carried out at different temperatures (100, 200 and 
300 °C) and punch speeds (10, 750 and 1000 mm/s), and the effects of temperature and strain rate on the forming limit curves 
of AA5086 are investigated and discussed. 
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1. Introduction 

Due to its good characteristics of small density, high specific strength and good weldability, aluminum alloys 
have become the best lightweight materials. However, compared with conventional steels, the sheet formability of 
aluminum alloys at room temperature is relatively low, which greatly limits their application (Miller et al. 2000). 

In order to improve the sheet formability of aluminium alloys, warm forming process has been developed and 
attracted more and more attention today. Recently, scholars have done much work on sheet warm formability by 
different experimental methods. The formability of AA7075 was studied by WANG et al. (2012) through the 
limiting drawing ratio test and the limiting dome height test. It was found that the sheet formability could be 
significantly improved when the blank was heated to 140-220 °C. Mahabunphachai and Koç (2010) found that the 
formability of AA5052 and AA6061 increased with temperature (from room temperature to 300 °C) and decreased 
with strain rate (0.0013 and 0.013 s-1) by bulge tests. Li and Ghosh (2004) investigated the formability of AA5754, 
AA5182 and AA6111-T4 by forming rectangular designed parts at the strain rate of 1s-1 from 200 to 350 °C. It was 
shown that temperature had a significant positive effect on the sheet drawing formability and this effect varied for 
these three materials. Palumbo and Tricarico (2007) investigated the formability of AA5754-O through the warm 
deep drawing equipment, which could be improved obviously at a certain temperature. The study of Wang et al. 
(2011) also showed that both temperature and punch speed had a strong influence on the formability of AA2024 by 
the cup punch test. By performing cylindrical deep drawing tests, Naka and Yoshida (1999) found that the limiting 
drawing ratio of AA5083-O increased with the increasing die temperature and decreased with the increasing 
forming speed. 

As an effective tool to evaluate the formability of sheet metals, forming limit curves, developed by Keeler and 
Backofen (1963) in the 1960s, is widely used now. It is known from the literatures above, aluminum alloy becomes 
very sensitive to strain rate at warm forming temperatures, and exhibits very different mechanical properties at 
high strain rates and quasi-static strain rates (Tarigopula et al., 2008). Naka et al. (2001) investigated 
experimentally the effects of forming speed and temperature on the forming limit curves of AA5083-O by 
performing stretch-forming tests at various forming speeds (0.2-200 mm/min) and temperatures (20-300 °C). It 
was shown that forming limit curves increased drastically with the decreasing speed for any strain path at high 
temperatures ranging from 150 to 300 °C, while at room temperature the forming limit curves was not sensitive to 
forming speed. Chu et al. (2014) obtained the forming limit curves of AA5086 under different temperatures 
(20,150 and 200 °C) and strain rates (0.02, 0.2 and 2 s-1) by Marciniak test and the M-K model. It was found that 
both temperature and strain rate have an important influence on the forming limit curves of AA5086.  

Due to the complexity and difficulty in carrying out the physical Marciniak test under high forming speeds and 
at elevated temperatures, current studies regarding the effect of strain rate on forming limit curves are mostly based 
on Marciniak-Kuczynski theory, but only a small range of strain rate was covered in these works, so the research 
about the effects of strain rate and temperature on the forming limit curves of aluminum alloys is still relatively 
lacking. Therefore, the purpose of this work is to propose a modified Voce constitutive model (named Lin-Voce 
constitutive model) and to investigate the effects of temperature and strain rate on forming limit curves of AA5086 
by combining the proposed constitutive model and Marciniak test. Material parameters in Lin-voce constitutive 
model are identified by the inverse analysis technique and verified by carrying out Marciniak test. Finally, by 
combining the identified model and the numerical simulation of Marciniak test, the effects of temperature (100, 
200 and 300 °C) and punch speeds (10, 750 and 1000 mm/s) on forming limit curves of AA5086 are discussed. 

2. Construction and identification of a modified constitutive model 

2.1. Construction of a constitutive model 

Voce hardening law is usually used to describe the rheological behaviour of the aluminium alloys which 
exhibit a saturation stress-strain state when a great equivalent strain arrives at high temperatures (Diot et al., 2006). 
In this work, a modified Voce constitutive model called Lin-Voce is proposed to describe the flow behaviour of 
AA5086, as shown in Eq.1. 
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Y C C T C 5- ,                                                                                                   (1)   

where is the flow stress, Y is the yield stress, C1 and C2 are the strain hardening coefficients, C3 is the strain 
softening coefficient, C4 and C5 are strain rate sensitivity coefficients. 

2.2. Material parameters identification based on the inverse analysis technique 

Due to the irregular cross-section of the specimen, it is difficult to obtain the material parameters in Lin-Voce 
model. Hence, the inverse analysis technique is used in this work. The basic concept of an inverse analysis for 
parameter identification is to find out a set of unknown material parameters by continuous iterations based on 
numerical simulation and experimental data. Here, the hypothesis that the yield strength depends only on 
temperature but not on strain rate is adopted, which is commonly verified for aluminium alloys (Pedersen et al., 
2008). Thus, in this paper, the yield strength is set as a variable and identified by the inverse analysis, as listed in 
Table 1. 

Experimental data used in the inverse analysis technique is provided by the previous dynamic tensile tests in 
the literature (Zhang et al., 2010), which have been carried out under different temperatures (20, 230 and 290 °C) 
and different forming rates (10, 750 and 1000 mm/s).  

Fig. 1 illustrates experimental and identified force-time curves at different forming conditions. From the figure, 
the identified curves have an excellent agreement with experimental ones at 10mm/s. Considering the 
measurement errors caused by the vibrations of the testing system at high tensile speeds, the little discrepancy 
between fitted and experimental curves is acceptable. The maximum error between experimental and fitted curves 
is only 2.656%, as listed in Table 2. It can be concluded that Lin-Voce constitutive model is suitable to describe 
the deformation behaviour of AA5086 under the dynamic tensile conditions. 

 
Table 1. Yield strength of AA5086 identified at different temperatures. 

Temperature /ºC Yield strength /MPa 

20 134.81 

230 133.43 

290 125.51 

 
Table 2. Identified parameters in Lin-Voce constitutive model by the inverse analysis technique. 

Tensile speed C1 C2 C3 C4 C5 Error 

10mm /s 756.26 -1.0387 1.5508 0.00974 0.00003868 1.86% 

750mm/s 726.88 -0.8693 1.2932 0.00317 0.00003166 2.66% 

1000mm/s 698.83 -0.8392 1.5714 0.01038 0.00002545 2.48% 

 

 
(a) 10 mm /s                                                    (b) 750 mm/s                                                     (c) 1000 mm/s 

Fig. 1. Comparison of experimental force-time curves and ones fitted with Lin-Voce model. 
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2.3. Verification by Marciniak test 

2.3.1. Preparation and results analysis of Marciniak test 

To verify the proposed constitutive model, a Marciniak test setup is designed, and its schematic illustration is 
shown in Fig. 2. To facilitate capturing the deformation process of the blank, a reverse structure with a bell jar is 
designed. An optical mirror is used to reflect the forming process to the high speed camera. Limit strains of every 
specimen are calculated by digital image correlation technology. 

Different strain paths, ranging from uniaxial tension through plane strain to equi-biaxial stretching, can be 
covered by 13 specimens with different widths (Fig. 3). To assure the occurrence of the maximal strains (to trigger 
localization) on the centre part of the blank and eliminate the effect of friction on forming limits, the specimens are 
designed with non-uniform thicknesses. The central part has a thickness of 0.8 mm, while the adjacent and the 
clamping parts are in 1.5 and 2.0 mm, respectively. The specimens are sprayed with paints to produce a random 
distribution of speckle pattern. Finally, the Marciniak test is carried out under a punch speed of 10mm/s at room 
temperature. To predict the occurrence of necking, a failure criterion widely used for the Marciniak-Kuczynski 
model is adopted: when the ratio of average equivalent plastic strain increments in the localized and non-localized 
zone reaches 7, localized necking is assumed to occur. At this moment, the principal strains in the localized zone 
are retained as limit strains. 

 

 
Fig. 2. Marciniak test setup and its schematic illustration. 

 
Fig. 3. Specimens used in Marciniak test. 

 

4.2.2. Construction of the FE-Marciniak model 

Corresponding to the experimental setup in Fig. 2, the FE-Marciniak model consists in three parts: a rigid 
cylindrical punch with a flat bottom, a rigid die and a deformable specimen. Due to the symmetrical boundary 
conditions, only a quarter part of the geometrical model is considered, as shown in Fig. 4. The die remains fixed 
during the simulation process and the blank-holder is simulated by a pressure load directly applied on the specimen. 
The pressure load is set to an enough large value of 100 kN to prevent sliding between the blank and the die or the 
blank-holder. As the thickness of specimen is non-uniform, the centre of the blank and the punch is non-contact in 
the experimental Marciniak test. Therefore, the friction coefficient of Coulomb’s law between blank and punch in 
the FE-Marciniak model is set to 0, while it is set to 0.05 and 0.1 between the blank and the parts with thickness of 
1.5 mm and 2.0 mm, respectively. Lin-Voce constitutive model is implemented into the FE-Marciniak model via 
ABAQUS UHARD subroutine.  
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Fig. 4. Illustration of FE-Marciniak model.                  Fig. 5. Comparison of forming limit curves obtained by the physical 

Marciniak test and FE-Marciniak model.  
 

Fig. 5 shows the forming limit curves obtained by the physical Marciniak test and FE-Marciniak model at the 
punch speed of 10 mm/s at room temperature. A great consistency can be observed, which also proves that Lin-
Voce constitutive model is suitable for describing the deformation behaviour of AA5086 under different strain 
conditions. 

3. Prediction of the effects of the temperature and strain rate on the forming limit curves of AA5086 

In this section, with the identified Lin-Voce constitutive model, the numerical simulation of Marciniak test is 
carried out at different temperatures (100, 200 and 300 ºC) and punch speeds (10, 750 and 1000 mm/s). Fig. 6 and 
Fig. 7 show the obtained critical points and fitted forming limit curves of AA5086 for different temperatures and 
punch speeds.  

 
      (a) 10 mm/s                                                        (b) 750 mm/s                                                   (c) 1000 mm/s 

Fig. 6. Comparison of forming limit curves for different temperatures at given punch speed. 
 

It can be observed from Fig. 6 that forming temperature has a significant influence on forming limit curves of 
AA5086. The limit strain increases with the rising temperature at 10 mm/s. Compared to those at room temperature, 
the limit strains under the uniaxial tension, the plane strain and the equi-biaxial stretching are increased by 51.3%, 
92.9% and 116.59%, respectively. However, under dynamic forming conditions (750 and 1000 mm/s), the negative 
effect of strain rate plays a prominent role, which offsets the positive effect of temperature on sheet formability, 
resulting that the forming limit curve at 200 ºC is lower than that at room temperature. While with the increasing 
temperature, the positive effect of temperature on the sheet formability gradually compensates the negative effect 
of strain rate, consequently, the forming limit curve at 300 ºC is close to that at room temperature.  

Considering that the relatively little difference in strain rate at 750 mm/s and 1000 mm/s, only the forming 
limit curves at 10 and 1000 mm/s are compared to discuss the effect of strain rate on forming limit curves. Fig. 7 
shows that forming limit curves at high punch speed is always lower than that at low punch speed at a given 
temperature, indicating that strain rate has a negative effect on sheet formability. For example, at 200 ºC, the limit 
strains at 1000 mm/s under the uniaxial tension, the plane strain and the equi-biaxial stretching are decreased by 
36.1%, 45.2% and 50.2% compared to that at room temperature. 
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(a) 100 ºC                                                         (b) 200 ºC                                                    (c) 300 ºC 

Fig. 7. Comparison of forming limit curves under different punch speeds at a given temperature. 
 

Thus, for aluminium alloys, the warm formability depends on the offsetting interaction of temperature and 
strain rate. Under low forming speed (10 mm/s), temperature plays a prominent role due to the low strain rate. The 
positive effect of temperature on the sheet formability is dominant, as a result, the sheet formability is improved. 
On the contrary, at dynamic forming conditions, the negative effect of strain rate plays a prominent role on sheet 
formability, and leads to the decrease of the sheet formability. This is why the formability at 200 ºC becomes lower 
than that at room temperature. As the temperature increases, the positive effect of temperature is enhanced and 
compensates the negative effect of strain rate. When temperature reaches 300 ºC, there is a balance between the 
effects of temperature and strain rate, consequently, the sheet formability at this temperature is close to that at 
room temperature. 

4. Conclusions 

In this work, the method is proposed to investigate the temperature and strain rate effects on AA5086 formabiity 
by combining a modified Voce constitutive model with the numerical simulation of Marciniak test. The following 
conclusions are drawn: 

The proposed Lin-Voce constitutive model is suitable for describing the rheological behaviour of AA5086 under 
different strain conditions. 

Forming temperature has a positive effect on forming limit curves of AA5086. The limit strain increases with 
the rising temperature at 10 mm/s. However, under dynamic forming conditions (750 and 1000 mm/s), the negative 
effect of strain rate offsets the positive effect of temperature on sheet formability, resulting that the forming limit 
curve at 200 °C is lower than that at room temperature. Due to the interaction of temperature and strain rate, under 
dynamic condition, the forming limit curve at 300 °C is close to that at room temperature. 

The formability at high punch speed is always lower than that at low punch speed at a given temperature, 
indicating that strain rate has a negative effect on sheet formability. 
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