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Abstract—This work addresses the problem of deriving fun-
damental trade-off bounds for a 1-relay and a 2-relay wireless
network when multiple performance criteria are of interest. It
proposes a simple MultiObjective (MO) performance evaluation
framework composed of a broadcast and interference-limited
network model; capacity, delay and energy performance metrics
and an associated MO optimization problem. Pareto optimal
performance bounds between end-to-end delay and energy for
a capacity-achieving network are given for 1-relay and 2-relay
topologies and assessed through simulations. Moreover, we also
show in this paper that these bounds are tight since they can
be reached by simple practical coding strategies performed by
the source and the relays. Two different types of network coding
strategies are investigated. Practical performance bounds for both
strategies are compared to the theoretical upper bound. Results
confirm that the proposed upper bound on delay and energy
performance is tight and can be reached with the proposed
combined source and network coding strategies.

Index Terms—Multiobjective performance evaluation, funda-
mental bounds, wireless networks, random linear network coding,
fountain codes

I. INTRODUCTION

Two main and complementary directions have driven re-

search in wireless ad hoc networking. The first direction targets

the design of efficient distributed protocols at all layers of the

protocol stack: physical, medium access control (MAC), rout-

ing, and transport layers. Various techniques in the context of

resource allocation (power control [1], scheduling, frequency

assignment,... ), coding (source coding [2], [3], network coding

[4], [5]), and routing (reactive routing [6], proactive routing

[7], opportunistic routing [8], geographic routing [9]... ). The

second research direction targets the derivation of fundamental

performance limits of wireless ad hoc networks (cf. [10] and

the references herein). Both directions are clearly related since

performance limits can provide insight into proper network de-

sign solutions and thus, help improving protocol performance.

They provide as well upper bounds against which to compare

the performance of existing protocols.

Initial research in both directions has concentrated on deriv-

ing upper bounds [11], [12] and protocols maximizing network

capacity [7], [6]. Yet, capacity achieving strategies and related

bounds even for some simple network configurations are still

to be found [10], [13]. With the introduction of new applica-

tions (e.g. wireless sensor networks, vehicular networks, etc...),

additional metrics and their impact on network capacity have

become relevant. New studies on the trade-off between metrics

implying energy consumption minimization [14], [15], end to

end delay minimization [16], [14] or reliability maximization

[15] have started. These trade-offs can be characterized with

MultiObjective (MO) bounds. A 2-objective MO bound rep-

resents the relationship between two criteria f1 and f2.

As considered by Goldsmith et al. in [10], a promising

way towards achieving fundamental MO bounds in wireless

ad hoc networks is to leverage “the broadcast features of

wireless transmissions through generalized network coding,

including cooperation and relaying”. In our previous work

[17], [18], we have proposed a framework composed of a

cross-layer network model and a steady state performance

evaluation model capturing capacity, delay and energy met-

rics. We have formulated an associated MO optimization

problem whose resolution provides both the MO bound and

MO Pareto-optimal network configurations. This framework

has been designed to incorporate broadcast and interference-

limited channels and thus, is capable of deriving MO bounds

for a layerless communication paradigm [10] that integrates

generalized network coding, cooperation and relaying.

The purpose of this paper is to assess the quality of this

MO bound through the derivation of a lower achievable MO

bound. An achievable MO lower bound can be obtained with

any distributed network strategy incorporating relaying, coding

or cooperation decision. Our aim is to exhibit MO lower

bounds that are as close as possible to our MO upper bound,

validating the tightness of our MO bound and the efficiency of

the network strategy (which is nothing else than a distributed

network protocol). Proposed lower bounds are achieved using

simple source and network coding algorithms. Looking at first

for simple transmission and relaying strategies is motivated

by their ease of deployment. Focusing on network coding

is driven by the fact that it leverages the inherent broadcast

nature of wireless propagation, phenomenon that is captured

as well in the framework used to derive MO upper bounds.

Investigated network strategies have sources transmitting a

random linear fountain code and relays re-combining packet

using different simple network coding strategies. Two dif-



ferent network coding strategies are investigated. Practical

performance bounds for both strategies are compared to the

theoretical bound. Therefore, we focus on 1-relay and 2-relay

topologies. Results clearly demonstrate the tightness of our

upper MO bound compared to a combined source and network

code.

This paper is organized as follows. Our network model is

introduced in Section II. The considered MO optimization

problem is presented in Section III and its derivation for 1-

relay and 2-relay cases in Section IV. Results are given in

Section VI-B and coding strategies are discussed in Section

VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

The two following topologies of wireless ad hoc networks,

illustrated in Fig. 1 are studied in depth in this paper:

• 1-relay topology

• 2-relay or diamond topology

Next, the framework for our study is introduced.

A. Protocol and network model

We assume a synchronized wireless ad hoc network where

transmissions are time-multiplexed (the synchronization pro-

cedure is out of the scope of this paper). A frame of |T |
time slots is repeated indefinitely. One or more packets can

be transmitted in a time slot. In the rest of this paper, our

examples assume that one packet is being sent in one time

slot. A time epoch s is defined as the time needed to transmit

one frame of |T | time slots.

1) Wireless channel model: For any time slot u ∈ T , there

is an interference-limited channel between any two nodes i and

j of the network. This channel is modeled by the probability

of a packet to be correctly transmitted between i and j in time

slot u. This probability is referred to as the channel probability

and denoted puij in the following.

It is computed assuming interference is modeled as an

additive noise and for the medium access scheme presented

hereafter. Its derivation is based on the distribution of the

packet error rates (PER) originating from the statistics of

nodes attempting emission in the same time slot. We refer the

reader to [17][18] to get the exact derivation of this channel

probability.
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Fig. 2. Channel and node model

Each channel is assumed to be in a half-duplex mode, i.e.

a node cannot transmit and receive a packet at the same time.

2) Network model: The considered 1-relay and 2-relay

wireless networks are modeled by a finite weighted multiple

edges complete graph K|V| = (V, E) with V the set of

vertices and E the set of edges. Two vertices are linked by |T |
edges representing orthogonal interference-limited channels as

illustrated on Fig. 2. In this graph, an edge (i, j, u) represents

the channel between nodes i and j in time slot u. Each edge

is assigned a weight of puij . If the transmission between i and

j on time slot u is not possible, puij = 0. For each node i ∈ V ,
−→
Ni and

←−
Ni are the set of edges leaving from and going into

i, respectively.

A unique flow with a source S continuously transmitting

data to a destination D is defined. Source and destination

nodes do not relay the information. Multi-hop transmissions

are allowed and we model the other nodes as relay nodes

R = V − S −D. We have N = |R| the number of relays in

the network.

As said before, the network is synchronized. Depending

on their time slot assignments, source and relays emit their

packets at the beginning of their assigned time slots. We

assume their packet emission lasts for the whole time slot

duration. Nodes that are not emitting in a time slot can receive

packets in this time slot. Important to our model is that all

relays that aren’t emitting are listening. If packet reception is

possible in the current time slot, the packet is stored in its

incoming buffer. In other words, in our graph K|V|, if any

node i ∈ |V| emits a packet in time slot u, all edges leaving

i in time slot u ((i, j, u) ∀j ∈ E) carry the same packet to

their next hops j. As such, our model completely captures the

broadcast property of the wireless medium.

We assume that relays have |T | incoming buffers and |T |
outgoing buffers. All buffers are able to store the amount of

packets transmitted in one time slot duration. In our examples,

they can store one packet. We consider as well in our model

that a relay can not differentiate packets: identical packets are

indiscernible.

3) Medium access control for broadcast transmissions:

We assume a very basic random channel access for all nodes

sharing a time slot u: if a node i is willing to transmit its packet

in time slot u in the next frame, it attempts it with probability

τui . The packet is disregarded with probability 1−τui . There is

no acknowledgment procedure. If the receiver can not decode

the packet, it is definitively lost. Contrary to more elaborated

medium access procedures, emission decisions of nodes are

independent.

An emission is defined as the couple (i, u) ∈ V × T and

represents the fact that node i is emitting in a time slot u.

The emission rate τui is defined as the probability node i is

emitting in time slot u. Thus, a node i transmitting at a rate

of τui = 0.5 in time slot u will decide with probability 0.5

to transmit its previously received packet in time slot u in the

upcoming frame. If this decision is successful, it will occupy

time slot u of the next frame for its whole duration.

Having this, a vector of emission rates for a node i can be

defined τi =
[

τ1i . . . τ
|T |
i

]

. Let τ =
[

τ †1 · · · τ †N
]†
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Fig. 1. 1-relay and 2-relay network topologies

be the emission rate matrix. A particular instance of τ values

is feasible if and only if the following Properties 1 and 2 hold

for each node:

PROPERTY 1: Flow conservation. The sum rate of all

outgoing links is lower or equal to the sum rate of all incoming

links, i.e.
−→rj ≤

←−rj , ∀j ∈ V (1)

with ←−rj =
∑

u∈T

∑

(i,j)∈
−−→
Nu

j

τui p
u
ij the average rate at which

all the packets are coming into node j and −→rj =
∑

v∈T τvj the

rate at which packets are being transmitted by node j.

In the case of equality, we have a strict flow conservation.

Otherwise, |←−rj −
−→rj | are dropped by node j as a consequence

of a forwarding decision described in the next item.

PROPERTY 2: Half duplex. A node j is able to receive a

message on a time slot u if it is not transmitting on that same

time slot. As a consequence, a τ is feasible if for each node

of the network, the average number of time slots it spends

transmitting and receiving sums up to a maximum value of

one: ←−
ruj + τuj ≤ 1, ∀(j, u) ∈ V × T (2)

where
←−
ruj =

∑

(i,j)∈
−−→
Nu

j

τui p
u
ij stands for the incoming cumu-

lative rate in time slot u.

We define Γ as the set of all feasible emission rate matrices.

4) Forwarding and scheduling decisions: Each node j will

decide, with the forwarding probability xuv
ij , to transmit on

time slot v a packet coming from node i in the time slot u
of the next frame. Thus, we can define a N |T |-by-|T | matrix

giving all the forwarding probabilities relative to any node j

of the network. It is given by Xj =
[

X1j · · · XNj

]†

where each matrix Xij provides the scheduling probabilities

of a flow of packets coming from node i on its output times

slots, depending on the time slot the packets are received on.

We have

Xij =









x11
ij · · · x

1|T |
ij

...
...

x
|T |1
ij · · · x

|T ||T |
ij









.

The matrix of forwarding probabilities is related to the matrix

of emission rates τ and the matrix of channel probabilities P
with the following set of |A| equations

∑

(i,j)∈
−−→
Nu

j

∑

u∈T

τui p
u
ijx

uv
ij = τvj , ∀(j, v) ∈ A (3)

where τui p
u
ij is the probability that a packet sent by i on

time slot u arrives in j. These equations are derived from

the flow conservation property of (1). They strictly constrain

the choices of forwarding probabilities.

The forwarding probabilities represent the decisions of

the nodes to either (i) retransmit all the packets received

or (ii) reduce the output rate by dropping or re-encoding

them together. From now on, we will refer to the set of

all forwarding probabilities of the complete network using a

matrix X = [X1 . . . XN ] , X ∈ X of size N.|T |-by-N.|T |
where X is the set of all possible matrix instances.

III. MO OPTIMIZATION PROBLEM

A. Elementary criteria definition

This section defines for one source-destination flow opti-

mization objectives related to reliability, capacity, end-to-end

delay and energy consumption based on the aforementioned

network and protocol model.

CAPACITY OBJECTIVE fC : It is defined as the average

number of packets received by the destination per packet sent

by S. If P is the set of all possible paths on K|V| between

S and D, it is derived by summing the transmission success

probability of a packet on each path. Formally:

fC =
∑

p∈P

P (p) (4)

where P (p) is the transmission success probability of a packet

on path p ∈ P .

RELIABILITY OBJECTIVE fR: It is defined as the proba-

bility of a packet to arrive at the destination. It is equivalent

to the success rate of a packet sent by the source. It differs

from the capacity criterion because redundant packet copies

that successfully arrive at the destination are not accounted

for. More specifically, it is the probability that at least one

copy arrives at D. Formally:

fR = 1−
∏

p∈P

1− P (p) (5)

DELAY OBJECTIVE fD : It is defined as the average delay a

packet sent by the source needs to reach the destination, ex-

pressed in number of hops. Assuming that one hop introduces

a delay of 1 unit, a h-hop transmission introduces a delay of h
units. Having H(p) the length in hops of path p, the average



end to end delay is computed by:

fD =

∑

p∈P H(p) · P (p)
∑

p∈P P (p)
=

∑

p∈P H(p) · P (p)

fC
(6)

where the numerator provides the total delay of all paths and

the denominator the number of copies received, in average.

ENERGY OBJECTIVE fE : We consider as a first approxi-

mation that the main energy consumption factor is due to the

emission of a packet. Thus, the energy criterion fE is defined

as the average number of emissions performed by all nodes

(source and relays) per packet sent by the source. This simple

energy model will be improved in future works to account for

idling, listening and receiving energy expenditure.

B. Capacity and reliability achieving criteria

We define as well two other types of criteria, naming

reliability achieving and capacity achieving criteria. These

objectives directly derive from the elementary objectives in-

troduced earlier.

RELIABILITY ACHIEVING DELAY fr
D AND ENERGY fr

E :

Reliability-achieving delay and energy criteria are defined as

follows:

fr
D = fD/fR (7)

fr
E = fE/fR (8)

They represent the delay and energy needed to reach a

perfectly reliable transmission. For instance, if fC = 0.5,

fr
D = 2fD and fr

E = 2fE , meaning that 2 times more packets

have to be sent in average to reach perfect reliability at the

cost of double delay and energy.

CAPACITY ACHIEVING DELAY f c
D AND ENERGY f c

E :

Capacity-achieving delay and energy criteria are defined as

follows:

f c
D = fD/min(fC , 1) (9)

f c
E = fE/min(fC , 1) (10)

Here, capacity achieving criteria f c
D and f c

E are obtained by

dividing the value of fD and fE by min(fC , 1) respectively.

Capacity and reliability criteria are equal if the packet

travels on a unique path between S and D. When more than

one path connect S and D, these criteria are not equal anymore

because several copies may reach D. More generally, fC upper

bounds reliability: fC ≥ fR.

If fR = 1, it implies that fC ≥ 1 but the converse is not

true. For instance, if two paths with non-null transmission

probabilities exist between S and D and if fC = 1, either

zero, one or two copies of the original packet can be received

at D, with a temporal average of 1 packet per frame. The cases

where zero or two copies are received are not interesting of

course. But we show in Section VI that this capacity criterion

can be reached if relays perform network coding, introducing

diversity into the packets they are relaying.

C. Pareto-optimal bound and solution set

The first goal of this paper is to derive the Pareto-

optimal performance bounds and the set of corresponding

Pareto-optimal networking solutions of the considered network

topologies with respect to given performance objectives.

1) Pareto-optimality: Formally, a Pareto-optimal solution

set is composed of all the non-dominated solutions of the MO

problem with respect to the performance metrics considered.

The definition of dominance is:

DEFINITION 1: A solution x dominates a solution y for a

n−objective MO problem if x is at least as good as y for all

the objectives and x is strictly better than y for at least one

objective.

DEFINITION 2: A solution x ∈ S is Pareto-optimal if there

is no other solution y ∈ S that dominates x.

Thus, the set of Pareto-optimal solutions is as follows:

Sopt = {x ∈ S : ∀y ∈ Sopt, y does not dominate x} (11)

and the corresponding Pareto-optimal performance bound is:

Bopt = {(f1(x), f2(x), . . . , fn(x)) ∀x ∈ Sopt} (12)

with f1, f2, . . . fn the n arbitrary objective functions.

2) Solution set: Based on our network model, several pa-

rameters can be treated as optimization variables: the location

of the N relays, the number of relays N , the transmission

power of each relay, the number of time slots |T | and the

forwarding probabilities represented by matrix X ∈ X . In this

paper, considered variables are the location of the N relays

and their respective forwarding probabilities. Location l of N
relays can be chosen in a convex set l ∈ CN . For one network

realization, the forwarding probabilities are chosen in the set

X . Thus the complete search space is S = CN ×X .

D. MO Optimization problem

Even if the forwarding probabilities are the main optimiza-

tion variables, we have to derive the emission rate matrix

to exactly compute the interference level in the network. As

shown in [17], the derivation of the emission rate matrix τ ∈ Γ
knowing the forwarding probabilities X ∈ X is intractable. In

a nutshell, to compute the emission rates of a node j knowing

X , the incoming transmission probabilities puij have to be

known as well. Yet, in order to compute the puij values, the

emission rates of the nodes i ∈ V, i 6= j are needed, creating

a circular dependency between the emission rates.

Thus, we have proposed a reverse approach in [17] where

the main optimization variable is switched to the set of feasible

emission rate matrices Γ. From any feasible value τ ∈ Γ, it

is straightforward to derive the channel probabilities since the

activity of all nodes on each time slot is known.

Only instances of τ that meet the constraints relative to

Property 1 and 2 are further considered as valid. Now that

we have a valid τ , we can derive all the forwarding matrices

X ∈ X that verify the constraints of equation (3). There are

|A| constraints, each one constraining the choice of the xuv
ij

for all nodes and time slots of the network with respect to



τ . Let X τ be the subset of X that verifies (3) with respect

to the emission rate matrix τ . Each solution X ∈ X τ can be

evaluated according to fC , fD, fR or fE .

In the rest of the paper, the following multiobjective op-

timization problem that concurrently maximizes capacity and

minimizes end-to-end delay and overall energy consumption

is solved:

[max fC(x),min fD(x),min fE(x)]
T

(13)

s.t.

x = (l, τ,X) ∈ CN × Γ×X τ

where l is the location vector of N relays, τ a feasible emission

rate matrix and X a feasible forwarding matrix for τ .

Additional constraints can be included in this MO problem

depending on the type of analysis needed or to reduce the size

of the search space. For instance, nodes can be assigned time

slots beforehand. In this case, if channel u is not assigned to

node i, the τui variable becomes a constant equal to zero. The

τui = 0 constraint would then be added to the MO problem.

1) Multiobjective performance bounds: Three different

types of bounds are investigated in this work, derived from the

solution of the MO optimization problem defined in Eq. (13).

The first bound, referred to as Bopt, is directly obtained by

solving Eq. (13). It is defined as:

Bopt = {(fC(x), fD(x), fE(x)) ∀x ∈ Sopt}

where Sopt is the corresponding Pareto-optimal solution set.

From Bopt, the two following bounds are derived:

• The capacity-achieving upper bound:

Bc = {(f c
D(x), f c

E(x)) ∀x ∈ Sopt}

• The reliability-achieving lower bound:

Br = {(fr
D(x), fr

E(x)) ∀x ∈ Sopt}

Both bounds are calculated by applying capacity and reliability

achieving criteria to the solutions of Sopt.
The MO problem of Eq. (13) optimizes the capacity crite-

rion and not the reliability criterion. As presented earlier, the

capacity criterion upper bounds the reliability criterion. The

reliability-achieving bound Br is a feasible delay-energy per-

formance bound obtained as relays forward packets according

to the forwarding probabilities of the solutions of S . On the

contrary, the capacity-achieving bound Bc is an upper bound

because it accounts for multiple copies. We show in Section

VI that it is possible to reach the capacity-achieving bound

using network coding, and that this bound is tight for the 1

and 2-relay networks.

These bounds are not Pareto-optimal with respect to

(f c
D, f c

E) or (fr
D, fr

E). From Bc (resp. Br) the set of non-

dominated solutions with respect to f c
D and f c

E (reps. fr
D and

fr
E) is selected. These sets are referred to as:

• Bc
opt, the Pareto capacity-achieving upper bound,

• Br
opt, the Pareto reliability-achieving lower bound.

Study Nodes transmitting on slot Loop between
case Topology |T | 1 2 3 A and B

1 1-Relay 2 S R - -

2 1-Relay 1 S,R - - -

3 2-Relay 3 S A B No

4 2-Relay 3 S A B Yes

5 2-Relay 2 S A,B - No

TABLE I
STUDY CASES

IV. PARETO BOUNDS FOR 1-RELAY AND 2-RELAY

TOPOLOGIES

A. Study cases

For the two topologies presented in Fig. 1, five different

study cases are considered and summarized in Table I. In all

study cases, the source only emits packets on the first time

slot with rate one: τ1S = 1 and ∀u 6= 1, τuS = 0.

Each study case defines which topology is assumed, how

many time slots constitute a frame and which nodes are al-

lowed to transmit in each time slot. The time slots assignments

of study cases 1, 3 and 4 ensure no interference exists, while

other study cases exhibit time slots with possible interference.

For the 2-relay topology, transmissions between relays A and

B are possible or not. If they are possible, packets may loop

infinitely between A and B. All study cases are defined by

introducing additional constraints into the MO optimization

problem defined in (13). For each study case, section IV-B

defines the exact MO optimization problems solved.

B. Criteria for 1-relay and 2-relay topologies

For both topologies, the general multiobjective problem of

(13) is considered. Expressions for the optimization criteria of

each study case are detailed in this subsection.

1) 1-relay topology: For a 1-relay topology using |T | time

slots, optimization objectives are defined as:

fC = τ1Sp
1
SD +

∑|T |
u=1 τ

1
Sp

1
SRx

1u
SRp

u
RD (14)

fR = 1− (1− τ1Sp
1
SD)

∏|T |
u=1

(

1− τ1Sp
1
SRx

1u
SRp

u
RD

)

(15)

fD = (
∑|T |

u=1 2 · τ
1
Sp

1
SRx

1u
SRp

u
RD + τ1S .p

1
SD)/fC (16)

fE = τ1S +
∑|T |

u=1 τ
1
Sp

1
SRx

1u
SR (17)

Briefly, fC adds the probability for a packet in arrive to D
directly (i.e. τ1Sp

1
SD) and the probability for the same packet

to arrive through the relay node for each available time slot.

The reliability criterion equals the probability for at least one

packet to arrive through any available path and time slot. The

delay criterion sums the delays of all packets arriving through

all possible paths and averages it with the value of fC . Finally,

the energy criterion sums the number of emissions of the

source and the relay, knowing the probability that the relay

will receive and forward packets.

Study cases 1 and 2 are covered by the MO problem of (13)

and objectives are given in Eq. (14) to (17). For study case 1,

|T | = 2 times slots, S emits in time slot 1 and relay R in time

slot 2. Additional constraint to MO problem (13) is τ1R = 0.



Thus, following (3), x11
SR = 0 and x12

SR = τ2R/(τ
1
S .p

1
SR). As

such, the only variables in this problem are the location of the

relay lR ∈ C and its forwarding probability x12
SR ∈ [0, 1].

For study case 2, since there is only one time slot, a single

variable x11
SR is defined. It is directly related to τ1R following

(3): x11
SR = τ1R/(τ

1
Sp

1
SR). As such, the only variables in this

problem are the location of the relay lR ∈ C and its forwarding

probability x11
SR ∈ [0, 1].

2) 2-relay topology: Study cases 3 to 5 are covered by the

MO problem of (13). Objectives and additional constraints are

defined hereafter.

For the interference free study cases 3 and 4, we have |T | =
3 time slots. S is still transmitting in time slot 1 while relays

A and B are transmitting in time slot 2 and 3, respectively.

Following from the slot allocation, only τ2A and τ3B are defined,

other relay emission rates are set to 0. From Eq. (3), we deduce

that only x12
SA, x13

SB , x32
BA and x23

AB are non zero variables.

Moreover, an X ∈ X matrix is feasible if the 2 constraints on

the forwarding probabilities originating from (3) are met:

τ1S .p
1
SA.x

12
SA + τ3B .p

3
BA.x

32
BA = τ2A

τ1S .p
1
SB .x

13
SB + τ2A.p

2
AB .x

23
AB = τ3B

Introducing the notation Quv
ij = puijx

uv
ij , the optimization

objectives are:

fC = τ1S .p
1
SD +

τ1S
1−Q23

ABQ
32
BA

.(E + F ) (18)

with E = (Q12
SA + Q13

SB .Q
32
BA).p

2
AD and F = (Q13

SB +
Q12

SA.Q
23
AB).p

3
BD.

fD =
1

fC
· [

τ1S
(1−Q23

ABQ
32
BA)

2
(A+B) + τ1S .p

1
SD] (19)

with A = p2AD[Q13
SB .Q

32
BA(3−Q23

AB .Q
32
BA)+2Q12

SA] and B =
p3BD[Q12

SA.Q
23
AB(3−Q23

AB .Q
32
BA) + 2Q13

SB ].

fE = τ1S +
τ1S

1−Q23
ABQ

32
BA

(Q12
SA +Q13

SB .Q
32
BA

+Q12
SA.Q

23
AB +Q13

SB)

(20)

Detailed derivation of these criteria are presented in the

Appendix. These equations originate from infinite summations

over all possible path lengths. Indeed, due to the loop, packets

may travel up to an infinite number of hops in the network.

If Q23
ABQ

32
BA < 1, the geometric serie of ratio Q23

ABQ
32
BA with

first term 1 converges and finite values for fC , fD and fE can

be derived. Expressing fR as a function of this infinite sum is

not possible and this criterion is evaluated through simulations

when a loop exists between A and B.

Q23
ABQ

32
BA may be equal to one if perfect links between

A and B exist and x23
AB = x32

BA = 1. As such, we add the

following constraint to the MO problem of (13) for study case

4:

∀X ∈ X if (p2AB = 1 ∧ p3BA = 1)

{

x23
AB < 1−∆

x32
BA < 1−∆

with an empirically chosen value of ∆ = 0.05.

For study cases 3 and 5, additional constraints that avoid

relay A to forward packets from B and vice versa are defined:

x23
AB = x32

AB = 0 for case 3 and x22
AB = x22

AB = 0 for case 5.

Only one-hop and two-hop transmissions are possible. fC , fD
and fE can be deduced from (18), (19) and (20), respectively.

In both study cases 3 and 5, it is possible as well to derive a

closed form expression for fR:

fR = 1− (1− τ1Sp
1
SD)(1− τ1Sp

1
SAx

12
SAp

2
AD)

×(1− τ1Sp
1
SBx

13
SBp

3
BD)

(21)

Study cases 5 differs from 3 and 4 respectively by its time

slot assignment. Indeed, A and B emit on the same slot 2. As

such, aforementioned criteria are straightforward to adapt to

this other time slot assignment.

C. Implementation

For most of the study cases, the distance between S and D
is set to dSD = 620m such as having a direct transmission

probability p1SD without interference near 0 (assuming a

transmission power PT = 0.15mW and a pathloss exponent of

3). The set of Pareto optimal locations of relays is searched in

a continuous square surface area C of size dSD × dSD meters

as shown in Figure 3.

S D

620m
C

dSD = 620m

Fig. 3. Relay location search space C

When study cases where different |T | values are compared

on the same figure, they are scaled to be comparable.

1) MO optimization: Theoretical Pareto-optimal solutions

and bounds are obtained using the state of the art non-

dominated sorting genetic algorithm (NSGA-2) [19]. For

NSGA-2, a population size of 300 solutions is used and a

maximum number of 1000 generations. The crossover proba-

bility is set to 0.9.

For each study case, upper Pareto bounds Bopt between ca-

pacity, delay and energy objectives are computed analytically

by solving the corresponding MO optimization problem. Then,

the capacity-achieving upper bound Bc is calculated analyti-

cally. The reliability-achieving lower bound Br is calculated

analytically for the no-loop study cases and empirically using

simulations otherwise.

2) Simulations settings: To assess analytical results, both

upper and lower bounds are compared with simulations ob-

tained with the event-driven network simulator WSNet1 [20].

1http://wsnet.gforge.inria.fr/



TABLE II
THE RMSE AND GENERATIONAL DISTANCE FOR STUDY CASES

Study Cases fC fD fE
Study case 1(p1SD ≃ 0.5) 4.6e-05 1.5e-05 1.5e-05

Study case 1(p1SD ≃ 0) 1.7e-03 0 1.8e-05

Study case 2(p1SD ≃ 0.5) 4.3e-05 1.8e-05 1.1e-05

Study case 3 1.6e-04 0 2.1e-05

Study case 4 5.2e-04 1.1e-03 2.2e-04

Study case 5 2.6e-04 0 1.8e-05

Each upper Pareto bound solution is simulated with WSNet.

For each solution, the location of the relays and their forward-

ing probabilities are known. These forwarding probabilities

are used in simulation to decide whether to forward a packet

upon its reception. If the decision of packet emission is not

successful, the packet is disregarded. In our simulations, a

perfect TDMA is implemented following the specifications of

the study case of interest. S sends a packet every first time

slot of every frame. Experiment is run for 10000 frames.

Simulated values f̃C , f̃D, f̃E , f̃ c
D and f̃ c

E are calculated

from simulations as follows. f̃C is measured by the total

number of packets Nrx received at D (including copies)

divided by the number of packets transmitted by S. f̃D is

measured using the statistical distribution of the delays of

the packets arrived over each possible distance measured in

hops: P (h) = n(h)/Nrx, where n(h) is the number of

packets arrived in h hops at D. f̃D is then calculated with

f̃D =
∑hmax

h=1 h · P (h), with hmax the maximum number of

hops of all packets collected at D. f̃E is the sum of the number

of packets transmitted by the source and the relays divided by

the number of packets sent by S.

Besides, for each study case we compute empirically the

reliability objective fR. It measures the proportion of different

packets arriving at D. It is a regular success rate (copies are

disregarded). From f̃R, empirical reliability-achieving delay

f̃r
D = f̃D/f̃R and energy f̃r

E = f̃E/f̃R objectives are defined.

V. RESULTS FOR CONSIDERED TOPOLOGIES

This section presents the bounds Bopt, B
c and Br computed

analytically and by simulations for the study cases introduced

earlier. We extract as well the Bc
opt and Br

opt bounds repre-

senting the set of non-dominated solutions of Bc and Br with

respect to capacity-achieving and reliability-achieving criteria,

respectively.

A first important conclusion is that in all figures, the analyt-

ical bounds and their simulated counterparts perfectly match,

assessing our network model and criteria definitions. Table II

gives the root mean square error (RMSE) between Bopt and

B̃opt for all study cases. RMSE = 1
Nopt

√

∑N
i=1

(f(i)−f̃(i))2

f(i)2

where Nopt is the total number of Pareto-optimal solutions in

Bopt. Values are really small, showing a quasi-perfect match

between the model and simulations.

A. 1-relay Pareto bounds and sets

Study cases 1 and 2 are investigated for two configurations:

p1SD ≃ 0 (dSD = 620m) and p1SD ≃ 0.5 (dSD = 310m).

Bounds Bopt, B
c and Br are given in Figures 4 and 5 for

study cases 1 and in Figure 7 for study case 2.

Another important conclusion is that when the source is

connected to D with a single path, there is a perfect match

between Bc and Br as expected. This is true for study cases

1 and 2 where p1SD ≃ 0 since only one path from S to D
exists. When multiple copies arrive at the destination, fC and

fR are different by definition, creating different bounds Bc
opt

and Br.

Lastly, a clear compromise is visible: decreased energy

is obtained at the price of an increase in delay. Solutions

that consume less energy have the relay forward packets

with a lower probability, creating less reliable communica-

tion. Less reliable solutions introduce an extended delay to

achieve perfect capacity as shown by the increase in capacity

or reliability-achieving delay. A detailed explanation of the

results presented for study cases 1 and 2 is given hereafter.

1) STUDY CASE 1: No interference exits in this scenario.
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For p1SD ≃ 0, all bounds are given in Fig. 4. Bopt is
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presented in Fig. 4-(top). For this bound, the solution with

lowest capacity (fC ≃ 0), lowest delay (fD = 2) and lowest

energy (fE = 1) is experienced when the relay node is

not contributing to the transmission. This is the case if the

relay’s forwarding probability x12
SR is zero or if the relay

is not covered by S (p1SR ≃ 0). Energy is minimized in

this case since the relay never re-transmits packets. A delay

of 2 is experienced because since p1SD = 0 and the path

probability on the S − R −D path (τ1Sp
1
SRx

12
SRp

2
RD) is very

small but not null, the few packets arriving have a delay of

two. More generally, we can say that for any non zero value

of τ1Sp
1
SRx

12
SRp

2
RD, which is equal to fC , the delay is always

equal to 2.

For the Pareto-optimal solution with highest capacity (fC =
0.25), highest delay (fD = 2) and highest energy (fE = 1.5),

the relay is located right in the middle of the [S,D] segment

and forwarding all received packet (x12
SR = 1). In this case,

link probabilities between S and R and between R and D are

maximized (p1SR ≃ 0.5 and p2RD ≃ 0.5), providing maximum

energy consumption and capacity. Delay is still equal to two

hops because each packet arrives on the S − R − D path.

For the solutions that lie in between highest and lowest Pareto

solutions, as fC is getting smaller, the relay is getting closer

to D. In this case, the S−R link has a weaker link while the

R−D link has a stronger link. fE is getting smaller as well

because less packets are received by R.

Fig. 4-(middle) represents Bc and Br and Fig. 4-(bottom)

their Pareto-optimal versions Bc
opt and Br

opt. Since all packets

arriving at D use the S − R −D path, fR and fC are equal

and thus Bc and Br match as expected. The solutions with a

very high f c
D are the ones where the S −R path is very low

and thus, lots of retransmissions would be necessary to over-

come the high packet loss probability. Pareto-optimal bounds

(Bc
opt and Br

opt) are composed of the solutions concurrently

minimizing f c
D and f c

E . These solutions have a forwarding

probability x12
SR = 1 and the relay is located in the very close

neighborhood of the center of the [S,D] segment.

For p1SD ≃ 0.5, all bounds are given in Fig. 5. Bopt is

presented in Fig. 5-(top). In Bopt, all solutions of the Pareto

set have a perfect link between the relay and the destination

(i.e. p2RD = 1). The lowest capacity (fC = 0.50), lowest delay

(fD = 1.00) and lowest energy (fE = 1.00) solution of Bopt

is obtained for solutions where either p1SR = 0 or x12
SR =

0. In this case, packets arrive though the direct link S − D,

minimizing energy and delay since no 2-hop paths are used.

The solution with highest capacity (fC = 1.50), delay (fD =
1.66) and energy (fE = 2.00) has x12

SR = 1 and the relay is in

the middle of the [S,D] segment, maximizing S−R and R−D
link probabilities (p1SR = 1 and p2RD = 1). In this solution,

two copies per sent packet are received, one on the direct path,

the other on the relay path. All other solutions from the set S
are as well included in the Pareto solution set Sopt. Depending

on the relay location and x12
SR value, you get either high or

low fC . For instance, a solution with a relay close to D and

high x12
SR has low capacity, delay and energy. A solution with

a relay close to S will experience high performance if x12
SR

is high and low performance if x12
SR is low. It shows that the

most important variable is the location of the relay, and that

the forwarding probability is secondary.

Similarly, the capacity-achieving and reliability-achieving

bounds are shown in Fig. 5-(bottom), together with Bc
opt and

Br
opt. In this case, there is a clear unique Pareto-optimal point

with f c
D = 1.5 and f c

E = 1.5. It is obtained for fC = 1.

This Pareto-optimal point contains several solutions. One of

these Pareto-optimal solutions is represented in Fig.6-(top). All

solutions with fC = 1 have a perfect R − D link to ensure

the forwarded packet perfectly arrives in D. Thus, the relay

is located closer to D than to S. The depicted solution has

x1
SR2 = 1 and p1SR = 0.5. The other solutions have different

relay locations and forwarding probability values that verify

p1SRx
12
SR = 0.5 to have fC = 1.

For p1SD ≃ 0, we recall that no packet is transmitted through

the S−D link, meaning there are no duplicated packets. Thus

fC = fR as seen in Fig. 4-(bottom). However, for p1SD ≃ 0.5,

the same packet can be transmitted through two paths, creating

a difference between reliability and capacity criteria as seen

in Fig. 5-(bottom).

2) STUDY CASE 2: Transmissions are interference limited.

When p1SD ≃ 0, no relay position ensures pSR 6= 0 and

pRD 6= 0 simultaneously, thus no solution exists in this case.

It is a direct consequence of interference between S and R.

When p1SD ≃ 0.5, Bopt is presented in Fig. 7-(top). For

solutions with the lowest capacity (fC ≃ 0.5042), lowest delay

(fD = 1.0) and lowest energy (fE = 1.0), the relay doesn’t

participate in the communication and packets only arrive in D
through the direct link S −D. This is again the case if R is

out of reach for S or if x11
SR = 0. There is only one solution
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with the highest capacity (fC = 0.75), highest delay (fD =
1.66) and highest energy (fE = 1.5). For this solution, the

relay always forwards x11
SR = 1 and its location is represented

in Fig. 6-(bottom). Since R and S use the same time slot,

interference reduces the maximum link probabilities on links

S−R and R−D compared to the no-interference study case 1.

Here, p1SR = 0.5, p1RD = 1 and p1SD = 0.25 and the maximum

transmission rate of R is 0.5. Delay is higher than 1 because

some packets arrive on the S −R−D path.

For the solutions different from the minimum and maximum

values of the three criteria, fC decreases for solutions that

have a lower forwarding probability. This decrease in x11
SR

is beneficial to p1SR and p1SD since R interferes less with S.

These solutions have a relay located closer to D to get a perfect

link with D. Since the relay is forwarding less, capacity,

energy and delay decrease. Similarly, the capacity-achieving

and reliability-achieving bounds are shown in Fig. 7-(bottom),

together with Bc
opt and Br

opt. Since packets may be received

from two different path, reliability-achieving and capacity
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Fig. 7. STUDY CASE 2 with p1SD ≃ 0.5: Pareto-optimal bound Bopt (top).
Capacity and reliability-achieving bounds (bottom).

achieving bounds are different. Capacity-achieving represents

the upper bound. Both bounds have the same Pareto-optimal

point Bc
opt and Br

opt, which is the lowest performance point

on Bopt. This single Pareto-optimal point has f c
D = 1.98 and

f c
E = 1.98 with x11

SR = 0. This is the point where the relay

is not contributing, thus packets only arrive through the direct

path and capacity and reliability coincide.

B. 2-relay Pareto bounds and sets

In the 2-relay topology study, all bounds are obtained for

p1SD ≃ 0.

1) STUDY CASE 3 : All bounds are given in Fig. 8. The

Pareto optimal bound Bopt is represented in Fig. 8-(top). The

solution with lowest capacity (fC ≃ 0), lowest delay (fD =
2.0) and lowest energy (fe = 1.0) does not use the relays

which are either far away from S or have a null forwarding

probability. The solution with highest capacity (fC = 0.508),

highest delay (fD = 2.0) and highest energy (fE = 2.0) is

leveraging the two relays. Both relays are located in the middle

of [S − D] with p1SA = p2AD = 0.504 (and p1SB = p3BD =
0.504). They use the maximum forwarding probability with

x12
SA = 1 and x13

SB = 1.

The capacity-achieving and reliability-achieving bounds are

shown in Fig. 8-(middle), and their Pareto-optimal counterpart

Bc
opt and Br

opt in Fig. 8-(bottom). Bc and Br don’t coincide

because packets can arrive from two different paths. There is

a single Pareto-optimal point f c
D = 3.93 and f c

E = 3.93. It

is obtained for fC = 0.508351. This solution has x12
SA = 1

and x13
SB = 1 and relays are located exactly in the middle

of [S,D] as depicted on Fig. 9. This solution is the highest

capacity case, thus f c
D and f c

E are minimized. There is a gap
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Fig. 8. STUDY CASE 3: Pareto-optimal bound Bopt (top). Capacity and
reliability-achieving bounds Bc and Br (middle) and their corresponding
Pareto-optimal bounds Bc

opt and Br
opt (bottom).

between the upper capacity-achieving bound and the lower

reliability achieving bound as represented in Fig. 8-(bottom),

due to multi-path transmissions.

2) STUDY CASE 4 : The Pareto optimal bound Bopt is

represented in Fig. 10-(top). Similarly to the previous study

cases, the solution with lowest capacity (fC ≃ 0), lowest delay

(fD = 2.0) and lowest energy (fE = 1.0) doesn’t use the

relays.

The solution with the highest capacity (fC = 10.16), highest

delay (fD = 21.00) and highest energy (fe = 21.15) has

its two relays located around the middle of [S,D] with a

forwarding probability x12
SA = x13

SB = 1. It is in the middle of

[S,D] that p1SA and p2AD (reps. p1SB and p2BD) are maximal

and equal to 0.5. There is no interference and the channel

between the relays is good with p23AB = p32BA = 1. The

difference with study case 3 is that here, packets can be

forwarded in the loop between A and B. Relays use the

maximum forwarding probability between themselves with

x12
SA = x13

SB = 0.95.

For the other solutions, one relay (A) is located closer to
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S and the other one (B) is closer to D. The decrease in

fC is experiences in two ways. Either the relay A is getting

further from S, reducing p1SA, or x12
SA is decreased and less

packets arrive at A. Solutions with low values of fC have

small forwarding probability in between relays.

The capacity-achieving and reliability-achieving bounds are

shown in Fig. 10-(middle), and their Pareto-optimal counter-

part Bc
opt and Br

opt in Fig. 10-(bottom). As expected, Bc and

Br are disjoint because of the multiple copies received because

of the loop between A and B. There are three Pareto-optimal

solution in Fig. 10-bottom. Their location and forwarding

probabilities are depicted in Fig. 9. The optimal solutions

are obtained for fC ≈ 1. For these solutions, one relay

is in the middle of [S,D] and the other relay is close to

D, having p1SB = 0 and p2BD = 1. The two relays are

close together, inducing a perfect link between them with a

forwarding probability adjusted to obtain fC ≈ 1.

3) STUDY CASE 5: For study cases 5, the two relays

share the same time slot and thus transmission is interference-

limited.

The Pareto optimal bound Bopt is represented in Fig. 11-

(top). This bound is the same as the bound observed for study

case 1 with p1SD ≃ 0. For the solution with the highest capacity

(fC = 0.254), highest delay (fD = 2.00) and highest energy

(fE = 1.498), one of its relays is in the middle of [S,D] with

a forwarding probability x12
SA = 1 and p1SA = 0.5. The other

relay is not participating in the transmission: it is either located

far from S or x12
SB = 0. It is the same maximum performance

solution than the one observed in Fig. 4-(top) for study case 1.

The same type of observation can be made for the solutions

with lowest capacity (fC ≃ 0), lowest delay (fD = 2) and

lowest energy (fE = 1), where neither relay A nor B are

used.

Interference between the relays is clearly detrimental to

the network performance since solutions with a single relay

dominate solutions with two relays. There are no solutions in

Bopt with two active relays.
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Fig. 10. Study Case 4: Pareto-optimal bound Bopt (top). Capacity and
reliability-achieving bounds Bc and Br (middle) and their corresponding
Pareto-optimal bounds Bc

opt and Br
opt (bottom).

C. COMPARATIVE ANALYSIS

The purpose of this section is to compare the different

Pareto-optimal capacity and reliability achieving bounds. First,

results related to the case where transmission between S and D
is possible half the time (p1SD = 0.5) is investigated. Second,

results related to the case where transmission between S and

D is almost impossible (p1SD ≃ 0) are analyzed.

1) Case p1SD = 0.5: When one out of two packets can be

transmitted on the S−D path, two different 1-relay strategies

have been compared. The first one assigns a different time slot

to S and R (study case 1) and the other one assigns the same

time slot (study case 2). Not surprisingly, the Pareto bounds

Br
opt and Bc

opt for the interference free case dominate the one

for the interfered scenario.

What is interesting to note, is that for the study case 1, the

capacity-achieving upper bound Bc
opt = (1.5, 1.5) dominates

Br
opt = (2, 2). If the relay is able to leverage copies to transmit

information that hasn’t arrived yet through the direct path to

D, then, average delay could be better than 2 hops but no
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Fig. 11. Study Case 5: Pareto-optimal bound Bopt (top). Capacity and
reliability-achieving bounds Bc and Br (middle) and their corresponding
Pareto-optimal bounds Bc

opt and Br
opt (bottom).

shorter than 1.5 hops. Similarly, energy could be smaller than

2 transmissions but no better than 1.5 transmissions.

We will show in the next section VI that the combination

of source and network coding is the mean to improve the

reliability-achieving bound and get closer to the capacity-

achieving upper bound.

2) Case p1SD = 0: In this case, transmission is almost

impossible between S and D. We have studied different study

cases and we aim at comparing their performance. First, we

have seen that optimizing the problem where the two relays use

the same channel in study case 5 converges to a bound where

only one relay is active. Thus, interference limited solutions

are not surprisingly dominated by interference free solutions.

The conclusion is that for bigger networks, optimizing their

performance should be done in two steps. First, derive an

interference free channel allocation if possible and second,

optimize the node’s forwarding decisions.

We compare the optimal upper and lower bounds Bc
opt and

Br
opt obtained for the interference-free study cases 1, 3 and 4
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Fig. 12. Bc
opt and Br

opt for study cases 1, 3 and 4 where pSD ≃ 0

in Fig. 12. Looking at the reliability-achieving bound, better

performance is obtained if two relays are used since the Br
opt

bound for study case 3 dominates the bound for study case 1.

More reliable transmission are obtained when two relays can

be leveraged using our broadcast forwarding mode.

It is really interesting to look at the capacity-achieving

bound Bc
opt for study case 4. Study case 4 is the only one

where a loop exists between A and B in the network. For this

case, lots of copies of the same packet arrive at D because

of the loop. So if it is possible to leverage all these copies

using network coding, the network performance can be greatly

improved since Bc
opt dominates the bounds of all other study

cases.

If Bc
opt can be reached, then the optimization of the network

forwarding probabilities may be simplified. There is no need

to introduce constraints that avoid the presence of loops

in the network. With such a broadcast oriented forwarding

mechanism, loops become beneficial for network performance

if network coding is used. This is a major contribution of this

study. Next, we provide a simple two-layered coding approach

and show its benefits for the aforementioned study cases.

VI. TWO-LAYERED CODING SOLUTION TO REACH Bc
opt

In the previous section, we showed that if it is possible

to spread the information in the redundant packets forwarded

by the relays, it is possible to improve overall network perfor-

mance. We will show in this section that it is possible to breach

the gap between the reliability-achieving lower bound and the

capacity-achieving upper bound. The strategy we propose to

leverage the redundant packets in the transmission relies on

two design strategies:

• the use of fountain codes to ensure end-to-end reliability,

• the use network coding to introduce diversity in the

received packets.

Introducing coding capabilities requires the introduction of an

additional memory of size M which stores the last M packets

received by a node.

A. Coding solution

K Fragments

Encoded Packets

Fig. 13. Encoding procedure for RL code

1) Fountain Codes: Fountain codes are rateless erasure

codes in the sense that a potentially limitless sequence of

encoding packets can be generated from the source infor-

mation. This flow is stopped by the destination when it has

received enough packets to recover the information [2]. As

a consequence, the major advantage of fountain codes is

that they are not channel-dependent, thus the same coded

information flow is inherently adapted to any channel types.

Besides, these codes ensure perfect reliability on the link.

There exists several class of fountain codes. In this paper,

we will consider the random linear fountain code(RL code)[2].

Indeed, this code requires only 1.6 additionnal overhead pack-

ets in average for decoding information with any K fragments.

This is an obvious advantage in contrast to Luby Transform

code (LT code)[3], where the overhead is higher and depends

on K. Besides, the RL code is more XOR-friendly, and

so better adapted to network coding schemes. However, the

decoding process of RL code is computationally more complex

than LT code, since it corresponds to solving a dense linear

system of equations. The encoding and decoding computations

cost grows as quadratic and cubic respectively with the number

of packets encoded, but this scaling is not important if K is

less than 1000 [2].

RL encoding algorithm: The information from source is

first partitioned into K fragments with equal length as shown in

Fig. 13. Each fragment is selected randomly with probability

1/2 to be XORed to create a new encoded packet. New packets

are along those lines created in order to be transmitted until

the information can be recovered at destination.

RL decoding algorithm: At destination, the received

encoded packets are equivalent to equations forming a linear

system (where the variables are the fragments). To recover

the original information, the system must be full rank. The

most efficient decoding algorithm for any random codes on

an erasure channel is Maximum Likelihood decoding (ML-

decoding), which solves linear equations and can be performed

using Gaussian elimination.

2) Network coding strategies: Network coding is a tech-

nique which consists in combining (with XOR operation)

packets at the relays. This introduces packet diversity at

the destination as the received packets are more likely to

be independent [21]. Two intra-flow coding strategies that

follow Algorithm 1 are investigated to take advantage of the

multiple copies traveling in the network. We show that the

increase in packet diversity that is created is an efficient mean



Algorithm 1 Intra flow network coding algorithm

for each relay node i do

if relay node j received a packet p from i at time slot u
then

Store the packet p into FIFO memory of size M
if
∑

v x
uv
ij > 0 then

pxor = combine(p, FIFO);

Generate a random value x ∈ [0, 1];
for (v = 1; v 6 |T |; v = v + 1) do

if xuv
ij 6 x then

Transmit encoded packet pxor in time slot v;

end if

end for

end if

end if

end for

to distributively reach the theoretical upper MO bound. In

these strategies, when a packet is received, it triggers with

a probability xuv
ij the emission of the XOR of some packets in

the buffer. The two proposed strategies differ in the way the

packets to be XORed are selected.

CODING STRATEGY “R-XOR”: the XOR operation is

made between the lastly R received packets [21] as presented

in Algorithm 2 considering M = R.

Algorithm 2 pnew = combine(p,MEM)
pnew = p;

for each packet pk 6= p in MEM do

pnew = pnew ⊕ pk ;

end for

return pnew;

CODING STRATEGY “RLNC”: A binary Random Linear

Network Coding (coding over F2) [5] is performed. For each

packet in a relay’s buffer, the relay flips a coin to know whether

tot add it or not in pout, as shown in Algorithm 3. It is the

same as computing an RL code with the packets in memory

of the relay. It makes sense to do it since we are sending RL

encoded packets at the source. A memory of size of M = K
is assumed with K the dimension of the RL code.

Algorithm 3 pnew = combine(p,memory)
pnew = p ;

for each packet pk 6= p in MEM do

Generate a random value prand ∈ [0, 1];
if (prand 6 0.5) then

pnew = pnew ⊕ pk;

end if

end for

return pnew ;

B. Lower bounds with coding

1) Coding simulations setup: We consider a message di-

vided into K fragments whose length is the size of a packet.

Transmissions are time multiplexed where one packet can be

transmitted in one time slot. Note that a frame of |T | time

slots is repeated until the end of simulation. The source sends

one RL encoded packet to D in the first time slot of each

frame. Location of the relays and their forwarding probability

from Bopt are used. S ends the transmission of RL packets as

soon as D can recover the original message and acknowledge

the successful reception.

The use of a fountain code at the sources guaranties

reliability of the network transmission strategy. Following is

the derivation of capacity-achieving delay and energy metrics

in this context.

Capacity achieving delay: To be consistent with our

empirical derivation of the capacity-achieving delay presented

in Section IV-C, we derive f̃ c
D as following. We assume that

when the coding process ends, the number of packets NTXs

that S has transmitted is derived by tracing the last packet

that has triggererd the decoding at D. When coding is used,

the capacity-achieving delay is given by:

f̃ c
D =

∑hmax

h=1 h · P (h)
K

NTXs

with P (h) = n(h)/Nrx the statistical distribution of the delays

where n(h) is the number of packets arrived in h hops at

D and hmax the maximum number of hops of all packets

collected at D. Here, K
NTXs

is the equivalent of the capacity

criterion when coding is used.

Capacity achieving energy: The energy consumption is

measured by summing the total number of packets transmitted

by the source NTXs and the relays NTXr divided by K for

normalization. Thus, f̃ c
E can be computed as:

f̃ c
E =

NTXs +
∑N

r=1 NTXr

K

The distance between two bounds is measured using the

Generational Distance (GD) metric defined as:

GD =
1

Nopt





Nopt
∑

i=1

(dpi )





1/p

Where di is the euclidian distance between the two geometrical

points of coordinates (f c
D, f c

E) and (f̃ c
D, f̃ c

E)

di =

√

(f c
D(i)− f̃ c

D(i))2 + (f c
E(i)− f̃ c

E(i))
2

Here, we use p = 2. The smaller this metric is, the closer the

solutions of lower and upper bounds are from each other.

C. Lower bound results

In this section, we investigate the performance of coding

strategies for the study cases 1 (p1SD ≃ 0.5), 3 and 4 where

there is a gap between the upper bound Bc
opt and the lower

bound Br
opt. Coding introduces an overhead composed of the



additional packets needed to decode the encoded stream. The

overhead is measure using the following criterion:

overhead =
E

K
∗ 100 =

1

K
(Nr −K) ∗ 100 (22)

where K is the number of initial fragments, E is the number

of packets received in excess when using RL codes and Nr

is the number of packets received at D before decoding the

initial fragments.

The transmission of coding coefficients in the encoded pack-

ets is an additional overhead. In this paper, we consider that

coefficients are coded over K bits and that the packet length

PL is 2560 bytes. Thus the overhead related to coefficients is

given by (PL −K)/PL. This overhead has been taken into

account when empirical delay and energy metrics are derived.
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Fig. 14. NC lower bounds for 1-relay study case 1 and p1SD ≃ 0.5

1) STUDY CASE 1 for p1SD ≃ 0.5: To analyze the per-

formance of the network coding strategies “R-XOR” and

“RLNC”, we set K to 50, 10, and 500 respectively. Table III

presents for each study case and coding strategy the values of

the generational distance and the coding overhead of Eq. (22).

As shown in Fig. 14, the plot shows that coding in this case

doesn’t improve much the lower bound. This rather negative

result can be explained by two reasons. First, since p1SD ≃ 0.5,

the reliability is already high (fr = 0.75), reducing the impact

of coding. Second, the benefits of coding are here lost by

the coding overhead and coefficient transmission. This can be

deduced from the energy performance which is slightly worse

than for the no coding case.

2) STUDY CASE 3: Considering K = 50,K = 100 and

K = 500 for “R-XOR” and “RLNC” respectively, the lower

bound results are shown in Fig. 15. In this scenario, network

coding greatly improves the lower bound Br
opt and provides

bounds that are very close to the capacity-achieving upper

bound.

Looking at the impact of K for the “R-XOR” strategies, it

can be seen that with the increase of K, the coding bound

gets closer to the upper bound. It makes sense since the

code dimension increases and the number of overhead packets

become more negligible compared to the size of the initial

data.
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Fig. 15. NC Lower bound for 2-relay study case 3.

K has not exactly the same impact on the bound for

“RLNC” strategies. This is due to the increase with K of

the overhead due to the coefficient stored in the encoded

packets. For K = 50 and K = 100, the coefficients represent

0.24% and 0.49% of the packet. Overhead due to coefficients

being rather stable, the increase of K is beneficial for the

same reasons than for “R-XOR” strategies. But for K = 500,

coefficients use 2.46% of the encoded packet size. This drastic

increase is reducing the benefit of using a higher dimension

code. Thus, the best “RLNC” strategy is to use K = 100.

For the same dimension K, “RLNC” clearly outperforms

“R-XOR” since its lower bound is closer to the upper bound

Bc
opt. However, we can note that this improvement is obtained

at the cost of bigger buffer at the relays.

3) STUDY CASE 4: Here, the bounds for K = 100 and

K = 500 for “R-XOR” and “RLNC” strategies are derived on

Fig. 16. Different from the study case 3, the increase of K is

improving the coding lower bounds. Here, the code dimension

has a positive impact on the higher number of copies received

at the relay. We recall that in study case 4, a loop exists. Thus,

the number of overhead packets in the coding solution is really

smaller than the number of redundant packets in the no-coding

lower bound.

Similarly to the study case 3, “RLNC” outperforms “R-

XOR”. The main result of this paper is that we have exhibited

a coding strategy that provides a performance bound that

is really close to the capacity-achieving upper bound Bc
opt.

We can conclude that the capacity-achieving bound we have

defined in this paper is a very tight bound on the multiobjective

performance of the network. The simple source and network

coding strategies presented in the paper are efficient for study

cases where we can leverage path diversity. Studying the

capacity-achieving bound is an efficient mean to characterize

the Pareto-optimal performance with respect to delay and en-

ergy consumption for a network using a broadcast forwarding

paradigm.

To better understand the coding impact for these coding

strategies, we further look into the overhead compared to

the ideal RL coding. In the ideal situation for RL code,
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TABLE III
THE RMSE AND OVERHEAD FOR DIFFERENT CODING STRATEGIES

Study Cases Coding Strategies GD Overhead (%)

Study case 1

(p1SD ≃ 0.5)

8-XOR, K=50 0.6901 43.06
8-XOR, K=100 0.6908 41.782
8-XOR, K=500 0.7061 40.562
RLNC, K=50 0.7118 42.98
RLNC, K=100 0.6863 41.094
RLNC, K=500 0.7065 40.383

Study case 3

8-XOR, K=50 0.298 5
8-XOR, K=100 0.1764 2.31
8-XOR, K=500 0.1843 0.784
RLNC, K=50 0.25 4.34
RLNC, K=100 0.1152 2.05
RLNC, K=500 0.1455 0.394

Study case 4

8-XOR, K=100 1.8561 57.62
8-XOR, K=500 1.7704 55.68
RLNC, K=100 1.7431 56.215
RLNC, K=500 1.57 55.664

the number of excess packets is equal to 1.611970 in our

simulation environment. Thus, the overhead proportion for the

ideal situation is equal to 3.2239%, 1.6120% and 0.3224% for

K = 50, 100 and 500 respectively. The closer the overhead to

the ideal RL coding is, the better the network coding strategy

is efficient. The generational distance and overhead are shown

in Table III.

Seen from this table, the best coding strategy for study case

1 (p1SD ≃ 0.5) is when adopting the RLNC strategy for K

= 100 with the lowest value of generational distance equal

to 0.6863. For the study case 3, the best coding strategy is

also adopting the RLNC strategy for K = 100 with the lowest

value of generational distance equal to 0.1152. However, for

the study case 4, the best coding strategy is when adopting

the RLNC strategy for K = 500 with the lowest value of

generational distance equal to 1.57. This means that RLNC

strategy gives results very close to the optimal theoretical

bound. But considering the transmission of coding coefficients,

the performance doesn’t always increase with K.

VII. CONCLUSION

This paper has presented a flexible framework for evaluating

the performance of simple wireless relay networks with respect

TABLE IV
PATH ANALYSIS FOR CAPACITY CRITERION

Path Path success probability

S-D τ1Sp
1

SD

S-A-D τ1SQ
12

SAp2AD

S-B-D τ1SQ
13

SBp3BD

S-A-B-A-D τ1SQ
12

SA(Q23

ABQ32

BA)p3BD

S-B-A-B-D τ1SQ
13

SB(Q23

ABQ32

BA)p3BD

S-A-B-D τ1SQ
12

SAQ23

ABp3BD

S-A-B-A-B-D τ1SQ
12

SA(Q23

ABQ32

BA)2p3BD

S-B-A-D τ1SQ
13

SBQ32

BAp2AD

S-B-A-B-A-D τ1SQ
13

SB(Q32

BAQ23

AB)2p2AD

.

.

.
.
.
.

to several performance criteria. It has been designed to account

for the broadcast nature of wireless communications and for

an accurate interference characterization for the network. This

framework allows for the determination of two lower and

upper Pareto bounds and their corresponding Pareto solutions.

Network model and bounds for 1-relay and 2-relay networks

have been assessed though simulations. We have shown that

the upper MO bound provides a tight bound on the perfor-

mance of network coding strategies. Thus, this work not only

confirms the accuracy of our optimal theoretical bound, but

also proposes a way of approaching it as close as wanted.

This work will be extended to tackle problems where more

relays belong to the network of interest. The problem will as

well be formulated for the case where several concurrent flows

transit in the network.

APPENDIX

This Appendix details the derivation of fC in Eq. (18), fD
Eq. (19) and fE in Eq. (20) for the 2-relay cases.

A. Capacity criterion fC

fC is defined as the average number of packets received by

the destination per packet sent by S. It is derived by adding

the success probabilities of a packet arriving at D through all

possible path as defined in Eq. (4). For example, for the direct

path S−D, the success probability equals τ1Sp
1
SD. For the relay

path S−A−D, the capacity equals to τ1SQ
12
SAp

2
AD. Similarly,

the success probability for other paths can be derived as shown

in Table IV.

The sum of the success probabilities for all paths is the sum

of the terms of the following infinite geometric series:

fC = τ1Sp
1
SD + (E + F )(1 +Q23

ABQ
32
BA + (Q23

ABQ
32
BA)

2+

+Q23
ABQ

32
BA)

3 + · · ·+ (Q23
ABQ

32
BA)

n)

with E = (Q12
SA + Q13

SBQ
32
BA)p

2
AD and F = (Q13

SB +
Q12

SAQ
23
AB)p

3
BD. Here, τ1S(E+F ) is the first term of the series,

and Q23
ABQ

32
BA is the common ratio. As n goes to infinity, the

absolute value of Q23
ABQ

32
BA must be less than one for the

series to converge. This is true since we add the constraint

Q23
AB ≤ 1 − ∆ and Q32

BA ≤ 1 − ∆ (∆ = 0.05) in our MO

problem. The sum then becomes:

fC = τ1Sp
1
SD +

τ1S
1−Q23

ABQ
32
BA

(E + F )



TABLE V
PATH ANALYSIS FOR DELAY CRITERION

Path Delay per path

S-D fSD = p1SD

S-A-D fSAD = 2Q12

SAp2AD

S-B-D fSBD = 2Q13

SBp3BD

S-A-B-A-D fSABAD = 4Q12

SA(Q23

AB .Q32

BA)p2AD

S-B-A-B-D fSBABD = 4Q13

SB(Q32

BA.Q23

AB)p3BD

S-A-B-D fSABD = 3Q12

SAQ23

ABp3BD

S-A-B-A-B-D fSABABD = 5Q12

SAQ23

AB(Q32

BA.Q23

AB)p3BD

S-B-A-D fSBAD = 3Q13

SBQ32

BAp2AD

S-B-A-B-A-D fSBABAD = 5Q13

SBQ32

BA(Q23

ABQ32

BA)p2AD

.

.

.
.
.
.

TABLE VI
PATH ANALYSIS FOR ENERGY BY RELAYS

Path Energy per path

S-D fSD = 0
S-A-D fSAD = τ1SQ

12

SA

S-B-D fSBD = τ1SQ
13

SB

S-A-B-A-D fSABAD = τ1SQ
12

SA(Q23

ABQ32

BA)
S-B-A-B-D fSBABD = τ1SQ

13

SB(Q32

BAQ23

AB)
S-A-B-D fSABD = τ1SQ

12

SAQ23

AB

S-A-B-A-B-D fSABABD = τ1SQ
12

SAQ23

AB(Q32

BA.Q23

AB)
S-B-A-D fSBAD = τ1SQ

13

SBQ32

BA

S-B-A-B-A-D fSBABAD = τ1SQ
13

SBQ32

BA(Q23

ABQ32

BA)

.
.
.
.

.

.

.

B. Delay criterion fD

fD is defined as the average delay a packet sent by the

source needs to reach the destination. It is calculated by sum-

ming the delays for all packets arriving through all possible

paths and dividing the result by the number of copies fC as

defined in Eq. (6). A similar path analysis is done for the delay

computation in Table V. For example, for the direct path S−D,

the packet arrives in D in one hop and the corresponding delay

equals fSD = p1SD. For the relay path S −A−D, the packet

takes two hops to arrive at D and thus the delay of the path

equals to fSAD = 2Q12
SAp

2
AD. The infinite sum of the delays

of Table V is performed and provides a delay criterion of:

fD =
1

fC
· [

τ1S
(1−Q23

ABQ
32
BA)

2
(A+B) + τ1Sp

1
SD]

with A = p2AD[Q13
SBQ

32
BA(3−Q23

ABQ
32
BA) + 2Q12

SA] and B =
p3BD[Q12

SAQ
23
AB(3 −Q23

ABQ
32
BA) + 2Q13

SB ]. Again it originates

from the summation of the terms of an infinite series.

C. Energy criterion fE

fE is defined as the average number of emissions done

by all nodes per packet sent. It is derived by summing the

probability for a relays to emit a packet per path and the

probability for the source to emit a packet (which is equal to

its rate τ1S). Similarly, the energy consumed per paths is shown

in Table VI for all possible paths. Again, the summation of

the terms of an infinite geometric series leads to the following

criterion:

fE = τ1S +
τ1S

1−Q23
ABQ

32
BA

(Q12
SA +Q13

SBQ
32
BA

+Q12
SAQ

23
AB +Q13

SB)
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