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Abstract

We provide a general Doob-Meyer decomposition for g-supermartingale
systems, which does not require any right-continuity on the system. In
particular, it generalizes the Doob-Meyer decomposition of Mertens [31] for
classical supermartingales, as well as Peng’s [35] version for right-continuous
g-supermartingales. As examples of application, we prove an optional de-
composition theorem for g-supermartingale systems, and also obtain a gen-
eral version of the well-known dual formation for BSDEs with constraint on
the gains-process, using very simple arguments.

Key words: Doob-Meyer decomposition, Non-linear expectations, Backward
stochastic differential equations.

MSC Classification (2010): 60H99.

1 Introduction

The Doob-Meyer decomposition is one of the fundamental result of the gen-
eral theory of processes. Recently, it has been generalized by Peng [35] in the
semi-linear context of the so-called g-expectations. Namely, let (Ω,F ,P) be a
probability space equipped with a d-dimensional Brownian motion W , as well as
the Brownian filtration F = (Ft)t≥0, let g : (t, ω, y, z) ∈ R+ × Ω× R× Rd −→ R
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be some function, progressively measurable in (t, ω) and Lipschitz in (y, z), and
ξ ∈ L2(Fτ ) for some stopping time τ . We define Eg·,τ [ξ] := Y· where (Y, Z) solves
the backward stochastic differential equation

−dYt = gt(Yt, Zt)dt− Zt · dWt, on [0, τ ],

with terminal condition Yτ = ξ. Then, an optional process X is said to be a
(strong) Eg-supermartingale if for all stopping times σ ≤ τ we have Xτ ∈ L2(Fτ )
and Xσ ≥ Egσ,τ [Xτ ] almost surely. When X is right-continuous, it is shown in
Peng [35] that it admits a unique decomposition of the form

−dXt = gt(Xt, Z
X
t )dt− ZXt · dWt + dAXt ,

in which ZX is a square integrable and predictable process, and AX is non-
decreasing predictable. See also [9, 21, 28]. In particular, when g ≡ 0, this is the
classical Doob-Meyer decomposition in a Brownian filtration framework.

As fundamental as its classical version, this result was used by many authors
in various contexts : backward stochastic differential equation with constraints
[2, 25, 36], minimal supersolutions under non-classical conditions on the driver
[15, 20], minimal supersolutions under volatility uncertainty [7, 14, 29, 30, 37, 39,
42, 43], backward stochastic differential equations with weak terminal conditions
[3], etc.

However, it is limited to right-continuous Eg-supermartingales, while the right-
continuity might be very difficult to prove, if even correct. The method generally
used by the authors is then to work with the right-limit process, which is au-
tomatically right-continuous, but they then face important difficulties in trying
to prove that it still shares the dynamic programming principle of the original
process. This was sometimes overcome to the price of stringent assumptions,
which are often too restrictive, in particular in the context of singular optimal
control problems.

In the classical case, g ≡ 0, we can avoid these technical difficulties by appealing
to the version of the Doob-Meyer decomposition for supermartingales with only
right and left limits, established by Mertens [31]. Unfortunately, such a result
has not been available so far in the semi-linear context.

This paper fills this gap and provides a version à la Mertens of the Doob-Meyer
decomposition of g-supermartingales, extending Peng [35]. By following the ar-
guments of Mertens [31], we first show that a supermartingale associated to a
general family of semi-linear (non-expansive) and time consistent expectation op-
erators can be corrected into a right-continuous one by subtracting the sum of the
previous jumps on the right. Applying this result to the g-expectation context,
together with the decomposition of Peng [35], we then obtain a decomposition
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for the original Eg-supermartingale, even when it is not right-continuous. The
same arguments apply to g-expectations defined on Lp, p > 1, and more general
filtrations than the Brownian one considered in Peng [35]. This is our Theo-
rem 3.1 below. The only additional difficulty is that Peng’s decomposition for
right-continuous processes has to be extended first, see Proposition 3.1. Using
classical results of the general theory of stochastic processes, we can even replace
the notion of supermartingale by that of supermartingale systems, for which an
optional aggregation process can be easily found.

These key statements aim not only at extending already known results to much
more general contexts, but also at simplifying many difficult arguments recently
encountered in the literature. We provide two illustrative examples. First, we
prove a general optional decomposition theorem for g-supermartingales. To the
best of our knowledge, such a decomposition was not obtained before. Then,
we show how a general duality for the minimal super-solution of a backward
stochastic differential equation with constraint on the gains-process can be ob-
tained. This is an hold problem, but we obtain it in a framework that could not
be considered in the literature before, compare with [2, 10]. In both cases, these
a-priori difficult results turn out to be easy consequences of our main Theorem
3.1, whenever right continuity per se is irrelevant.

Notations: (i) In this paper, (Ω,F ,P) is a complete probability space, endowed
with a filtration F = (Ft)t≥0 satisfying the usual conditions.
(ii) We fix a fixed time horizon T > 0 throughout the paper, and denote by T
the set of stopping times a.s. less than T . We shall also make use of the set Tσ of
stopping times τ ∈ T a.s. greater than σ ∈ T . For ease of notations, let us say
that (σ, τ) ∈ T2 if σ ∈ T and τ ∈ Tσ.
(iii) Let σ ∈ T , conditional expectations or probabilities given Fσ are simply
denoted by Eσ and Pσ. Inequalities between random variable are taken in the
a.s. sense unless something else is specified. If Q is another probability measure
on (Ω,F), which is equivalent to P, we will write Q ∼ P.
(iv) For any sub-σ-field G of F , L0(G) denotes the set of random variables on
(Ω,F) which are in addition G-measurable. Similarly, for any p ∈ (0,∞], and any
probability measure Q on (Ω,F), we let Lp(G,Q) be the collection of real-valued
G-measurable random variables with absolute value admitting a p-moment under
Q. For ease of notations, we denote Lp(G) := Lp(G,P) and also Lp := Lp(F).
These spaces are endowed with their usual norm.
(v) For p ∈ (0,∞], we denote by Xp (resp. Xp

r , Xp
`r) the collection of all optional

processes X such that Xτ lies in Lp(Fτ ) for all τ ∈ T (resp. and such that X
admits right-limits, and such that X admits right- and left-limits). We denote
by Sp the set of all càdlàg, F-optional processes Y , such that sup0≤t≤T Yt ∈ Lp,
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and by Hp the set of all predictable d-dimensional processes Z such that

E

[(∫ T

0
|Zs|2ds

) p
2

]
< +∞.

Finally, we denote by Ap the set of all non-decreasing predictable processes A
such that A0 = 0 and AT ∈ Lp.
(vi) For any d ∈ N\{0}, we will denote by x · y the usual inner product of two
elements (x, y) ∈ Rd × Rd. We will also abuse notation and let |x| denote the
Euclidean norm of any x ∈ Rd, as well the associated operator norm of any d× d
matrix with real entries.

2 Stability of E-supermatingales under Mertens’s re-
gularization

In this section, we provide an abstract regularization result for supermartingales
associated to a family of semi-linear non-expansive and time consistent condi-
tional expectation operators (see below for the exact meaning we give to this,
for the moment, vague appellation). It states that we can always modify a su-
permartingale with right-limits so as to obtain a right-continuous process which
is still a supermatingale. This was the starting point of Mertens’s proof of the
Doob-Meyer decomposition theorem for supermatingales (in the classical sense)
with only right-limits. Our proof actually mimics the one of Mertens [31]. This
abstract formulation has the merit to point out the key ingredients that are re-
quired for it to go through, in a non-linear context. It will then be applied to
g-expectation operators as introduced by Peng in [34] to obtain our Doob-Meyer
type decomposition, which is the main result of this paper.

2.1 Semi-linear time consistent expectation operators

Let p ∈ (1,+∞]. Throughout the paper, q will denote the conjugate of p (i.e.
p−1 + q−1 = 1). Then, we define a non-linear conditional expectation operator
as a family E = {Eσ,τ , (σ, τ) ∈ T2} of maps

Eσ,τ : Lp(Fτ ) 7−→ Lp(Fσ), for (σ, τ) ∈ T2.

One needs it to satisfy certain structural and regularity properties. Let us start
with the notions related to time consistency.

Assumption (Tc). Fix (τi)i≤3 ⊂ T such that τ1 ∨ τ2 ≤ τ3. Then,

(a) Eτ1,τ1 is the identity.
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(b) Eτ1,τ2 ◦ Eτ2,τ3 = Eτ1,τ3, if τ1 ≤ τ2.

(c) Eτ1,τ3 [ξ] = Eτ2,τ3 [ξ] a.s. on {τ1 = τ2}, for all ξ ∈ Lp(Fτ3).

We also need some regularity with respect to monotone convergence.

Assumption (S). Fix (σ, τ) ∈ T2.

(a) Fix s ∈ [0, T ) and ξ ∈ L0(Fs). Let (sn)n≥1 ⊂ [s, T ] decrease to s and (ξn)n≥1

be such that ξn ∈ Lp(Fsn) for each n, (ξ−n )n≥1 is bounded in Lp, and ξn −→ ξ
a.s. as n −→∞, then

lim sup
n→∞

Es,sn [ξn] ≥ ξ.

(b) Let (σn)n≥1 ⊂ T be a decreasing sequence which converges a.s. to σ and
s.t. σn ≤ τ a.s. for all n ≥ 1. Fix ξ ∈ Lp(Fτ ). Then,

lim sup
n→∞

Eσn,τ [ξ] ≥ Eσ,τ [ξ].

(c) Let (ξn)n≥1 ⊂ Lp(Fτ ) be a non-decreasing sequence which converges a.s. to
ξ ∈ Lp. Then,

lim sup
n→∞

Eσ,τ [ξn] ≥ Eσ,τ [ξ].

The idea that E should be semi-linear and non-expansive is encoded in the fol-
lowing.

Let Q1, Q2 be two probability measures on (Ω,F) and τ ∈ T , we define the
concatenated probability measure Q1 ⊗τ Q2 on (Ω,F) by

EQ1⊗τQ2[
ξ
]

:= EQ1[
EQ2[

ξ
∣∣Fτ ]], for all bounded measurable variable ξ.

Assumption (Sld). There is a family Q of P-equivalent probability measures
such that:

• E
[∣∣∣dQdP ∣∣∣q +

∣∣∣dQdP ∣∣∣1−q] ≤ L for all Q ∈ Q, for some L > 1.

• Q1 ⊗τ Q2 ∈ Q, for all Q1,Q2 ∈ Q and τ ∈ T .

• For all (σ, τ) ∈ T2 and (ξ, ξ′) ∈ Lp(Fτ )× Lp(Fτ ) there exists Q ∈ Q and a
[L−1, 1]-valued β ∈ L0(F) satisfying

Eσ,τ [ξ] ≤ Eσ,τ [ξ′] + EQ
σ [β(ξ − ξ′)].
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Let us comment this last condition. Assume that (Q, β) is the same for (ξ, ξ′)
and (ξ′, ξ). Then, inverting the roles of ξ and ξ′, it indeed says that

Eσ,τ [ξ]− Eσ,τ [ξ′] = EQ
σ [β(ξ − ξ′)].

Otherwise stated, in this case, the operator E can be linearized as each point.
However, the linearization, namely (Q, β), depends in general on (ξ, ξ′), σ and τ ,
so that it is not a linear operator. Thus the label semi-linear.

In any case, it is non-expansive in the sense that Eσ,τ [ξ]− Eσ,τ [ξ′] ≤ EQ
σ [|ξ − ξ′|],

since β ≤ 1. Moreover, Eσ,τ [ξ] ≤ Eσ,τ [ξ′] whenever ξ ≤ ξ′ a.s., and with strict
inequality on {Pσ[ξ < ξ′] > 0}, since β > 0.

2.2 Stability by regularization on the right

Before stating the main result of this section, one needs to define the notion of
E-supermartingales.

We say that X is a E-supermatingale if X ∈ Xp and Xσ ≥ Eσ,τ [Xτ ] a.s. for all
(σ, τ) ∈ T2. We say that it is a local E-supermatingale if there exists a non-
decreasing sequence of stopping times (ϑn)n≥1 s.t. Xσ∧ϑn ≥ Eσ∧ϑn,τ∧ϑn [Xτ∧ϑn ]
for all (σ, τ) ∈ T2 and n ≥ 1, and ϑn ↑ ∞ a.s. as n −→∞.

Lemma 2.1. Let Assumptions (Tc), (S) and (Sld) hold. Let X ∈ Xp
r be a

E-supermartingale such that (X−t )t≤T is bounded in Lp. Define the process I by

It :=
∑
s<t

(Xs −Xs+), t ≤ T. (1)

Then, I is non-decreasing, left-continuous and belongs to X
1
p . Moreover, X :=

X + I is a right-continuous local E-supermatingale.

Proof. We split the proof in several steps. As already mentioned, we basically
only check that the arguments of Mertens [31] go through under our assumptions.

(a) X is right-continuous. Indeed, for every t ∈ [0, T ), one has

Xt+ = Xt+ + It+ = Xt+ + It + (Xt −Xt+) = Xt + It.

(b) Jumps from the right are non-positive, i.e. Xt ≥ Xt+ for each t ∈ [0, T ), so
that I is non-decreasing, and Xσ+ ≥ Eσ,τ [Xτ ] for all (σ, τ) ∈ T2 with σ < τ .

By the E-supermartingale property, Xt ≥ Et,t+h[Xt+h] for any h ∈ (0, T − t] and
t < T . SinceXt+h −→ Xt+ as h ↓ 0 and (X−t+h)h is bounded in Lp, it follows from
(S)(a) that Xt ≥ Xt+. Similarly, Xσ+ ≥ Eσ,τ [Xτ ] as a consequence of (S)(b).
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(c) Let k ∈ N, ε > 0, and (σi)i≤k ⊂ T be the non-decreasing sequence of stopping
times which exhausts the first k jumps from the right of X of size bigger than ε
(recall that X admits right-limits). Denote

Iε,kt :=

k∑
i=1

(Xσi −Xσi+)1σi<t, and X
ε,k
t := Xt + Iε,kt , (2)

then Xε,k is still a E-supermartingale.

Note that we can always assume that there is a.s. at least k jumps, as we can
always add jumps of size 0 at T . We shall use the conventions σ0 = 0 and
σk+1 = T . The proof proceeds by induction and requires several steps. For ease
of notation, we omit the superscript (ε, k) in (X

ε,k
, Iε,k) and write (X, I) in this

part (that is in item (c) only).

(i) Fix i ≤ k and τ1, τ2 ∈ T such that σi ≤ τ1 ≤ τ2 ≤ σi+1 a.s. Let us show
that

Xτ1 ≥ Eτ1,τ2 [Xτ2 ].

Indeed, since X ≥ X+ and I ≥ 0 by (b), (Sld) implies that

Eτ1,τ2 [Xτ2 ] = Eτ1,τ2
[
Xτ2 + Iσi + (Xσi −Xσi+)1{σi<τ2}

]
≤ Eτ1,τ2 [Xτ2 ] + Iσi + (Xσi −Xσi+)1{σi<τ2}.

On the other hand, it follows from (b) that Eτ1,τ2 [Xτ2 ] ≤ Xτ1+. Hence,

Eτ1,τ2 [Xτ2 ] ≤ Xτ1+ + Iσi + (Xσi −Xσi+)1{σi<τ2} = Xτ1 + Iτ1 = Xτ1 .

(ii) In view of (Tc)(b), the result of (i) implies in particular that Xτ1 ≥
Eτ1,τ2 [Xτ2 ] for any (τ1, τ2) ∈ T2 such that σi ≤ τ1 ≤ σi+1 and σj ≤ τ2 ≤ σj+1 a.s.,
for some i ≤ j ≤ k.

(iii) Given τ ∈ T , we next show by induction that

Xσi ≥ Eσi,τ [Xτ ] on {σi ≤ τ}, ∀ i ≤ k.

For i = k, this follows from (Tc)(c) and (i). Assume that it is true for 1 ≤ i+1 ≤
k. Then, on {σi ≤ τ},

Xσi ≥ Eσi,τ∧σi+1

[
Xτ∧σi+1

]
= Eσi,τ∧σi+1

[
Xτ1τ≤σi+1 +Xσi+11τ>σi+1

]
.

But, by (a) and (c) of (Tc) and the induction hypothesis, we deduce immediately

Xτ1τ≤σi+1 = Eτ∧σi+1,τ

[
Xτ

]
1τ≤σi+1 and Xσi+11τ>σi+1 ≥ Eτ∧σi+1,τ

[
Xτ

]
1τ>σi+1 .
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It remains to appeal to (Sld) to deduce that Xσi ≥ Eσi,τ∧σi+1 ◦ Eτ∧σi+1,τ [Xτ ], on
{σi ≤ τ}, and to conclude by (Tc)(b).

(iv) We are in position to conclude this step. Fix (τ1, τ2) ∈ T2. Set τ̃ i1 :=
(τ1∨σi)∧σi+1. Then, (Tc)(c) implies that Eτ1,σi+1∧τ2 [Xτ2 ] = Eτ̃ i1,σi+1∧τ2 [Xσi+1∧τ2 ]

on {σi ≤ τ1 ≤ σi+1}. But it follows from (iii), and the same arguments as above,
that

Eτ̃ i1,σi+1∧τ2
[
Xσi+1∧τ2

]
= Eτ̃ i1,σi+1∧τ2

[
Xτ21τ2≤σi+1 +Xσi+11τ2>σi+1

]
≥ Eτ̃ i1,σi+1∧τ2

[
Eτ2∧σi+1,τ2

[
Xτ2

]]
= Eτ̃ i1,τ2

[
Xτ2

]
.

Recalling the result of (i), we conclude that, on {σi ≤ τ1 ≤ σi+1},

Xτ1 ≥ Eτ1,σi+1∧τ2
[
Xσi+1∧τ2

]
≥ Eτ1,τ2

[
Xτ2

]
.

Since ∪ki=0{σi ≤ τ1 ≤ σi+1} = Ω, this concludes the proof of this step.

(d) We now provide a bound on Iε,kT defined by (2).

Let (σi)i≤k be as in (c) associated to the parameter (ε, k). We first prove by
induction that

Eσi,T [Iε,kT ] ≤ Iσi +Xσi + EQi
σi [X−T ], i ≤ k + 1,

in which Qi ∈ Q. The result is true for i = k+ 1, recall our convention σk+1 = T
and (Tc)(a). Let us assume that it holds for some i + 1 ≤ k + 1. Then, by
(Tc)(a)-(b) and (Sld) combined with (b),

Eσi,T
[
Iε,kT

]
= Eσi,σi+1 ◦ Eσi+1,T

[
Iε,kT

]
≤ Eσi,σi+1

[
Iε,kσi+1

+Xσi+1 + EQi+1
σi+1

[
X−T
]]

= Eσi,σi+1

[
Iε,kσi +Xσi −Xσi+ +Xσi+1 + EQi+1

σi+1 [X−T ]
]

≤ Iε,kσi +Xσi −Xσi+ + Eσi,σi+1

[
Xσi+1

]
+ EQ̃i

σi

[
EQi+1
σi+1 [X−T ]

]
≤ Iε,kσi +Xσi + EQ̃i

σi

[
EQi+1
σi+1 [X−T ]

]
,

in which Q̃i ∈ Q. Then, our induction claim follows for i by composing Q̃i

and Qi+1 in an obvious way. Recalling our convention σ0 = 0, this implies that
E0,T [Iε,kT ] ≤ X0 + EQ0 [X−T ], from which (Sld) provides the estimate

L−1EQ
[
Iε,kT

]
≤ E0,T

[
Iε,kT

]
− E0,T [0] ≤ X0 + EQ0 [X−T ]− E0,T [0],
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in which Q ∼ P is such that EQ[|dP/dQ|q] ≤ L. Since p and q are conjugate, it
remains to use Hölder’s inequality to deduce that

E
[(
Iε,kT
) 1
p

]p
≤ CL

(
1 + |X0|+ E[(X−T )p]

1
p + |E0,T [0]|

)
, (3)

for some CL > 0 which only depends on L.

(e) We now extend the bound (3) to the general case.

Notice that the r.h.s. of (3) does not depend on ε nor k, so we can first send k
to ∞ and then ε to 0 and apply the monotone convergence theorem, to obtain
that

E
[(
IT
) 1
p

]p
≤ CL

(
1 + |X0|+ E[(X−T )p]

1
p + |E0,T [0]|

)
.

(f) It remains to show that X := X + I is a local E-supermartingale.

Recall that I is defined in (1), and (Iε,k, X
ε,k

) are defined in (2). Let ϑn be the
first time when I ≥ n. Note that (ϑn)n≥1 is a.s. increasing and converges to ∞,
this follows from (e). We know from (c) that Xε,k is a E-supermartingale. Hence,
for (σ, τ) ∈ T2, we have

X
ε,k
σ∧ϑn ≥ Eσ∧ϑn,τ∧ϑn

[
X
ε,k
τ∧ϑn

]
.

But Xε,k
ϑ ↑ Xϑ a.s. for any stopping time ϑ, when one let k first go to ∞ and

then ε to 0. Since Xτ∧ϑn ∈ Lp(Fτ ), by definition of (ϑn)n≥1 and the fact that
X ∈ Xp

r , (S)(c) implies that

Xσ∧ϑn ≥ Eσ∧ϑn,τ∧ϑn
[
Xτ∧ϑn

]
,

which concludes the proof. �

3 Doob-Meyer-Mertens decomposition of g-supermar-
tingale systems

We now specialize to the context of g-expectations introduced by Peng [34] (no-
tice however that we consider a slightly more general version). The object is
to provide a Doob-Meyer-Mertens decomposition of g-supermartingale systems
without càdlàg conditions. This is our Theorem 3.1 below.

We assume that the space (Ω,F ,P) carries a d-dimensional Brownian motion
W , adapted to the filtration F, which may be strictly larger than the natural
(completed) filtration of W . Recall that F satisfies the usual conditions. We
assume in addition that F is quasi-left-continuous in this Section.
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3.1 g-expectation and Doob-Meyer decomposition

Fix some p > 1. Let g : (ω, t, y, z) ∈ Ω × [0, T ] × R × Rd 7−→ gt(ω, y, z) ∈ R be
such that (gt(·, y, z))t≤T is F-progressively measurable for every (y, z) ∈ R × Rd
and

|gt(ω, y, z)− gt(ω, y′, z′)| ≤ Lg(|y − y′|+ |z − z′|), (4)
∀ (y, z), (y′, z′) ∈ R× Rd, for dt× dP− a.e. (t, ω) ∈ [0, T ]× Ω,

for some constant number Lg > 0. We also assume that (gt(ω, 0, 0))t≤T satisfies
the following integrability condition

E
[∫ T

0
|gt(0, 0)|pdt

]
<∞. (5)

In the following, we most of the time omit the argument ω in g.

Given (σ, τ) ∈ T2 and ξ ∈ Lp(Fτ ), we set Egσ,τ [ξ] := Yσ in which (Y,Z,N) is the
unique solution of

Yt = ξ +

∫ τ

t∧τ
gs(Ys, Zs)ds−

∫ τ

t∧τ
Zs · dWs −

∫ τ

t∧τ
dNs, t ≤ T, (6)

such that (Y,Z) ∈ Sp ×Hp and N is a càdlàg F-martingale orthogonal to W in
the sense that the bracket [W,N ] is null, P-a.s., and such that

E
[
[N ]

p
2
T

]
< +∞.

The wellposedness of this equation follows from [26, Thm 2], see also [25] or [38,
Prop. A.1] for the case p = 2. We also remind the reader that the introduction of
the orthogonal martingale N in the definition of the solution is necessary, since
the martingale predictable representation property may not hold with a general
filtration F. The map Eg is usually called the g-expectation operator.

We define Eg-supermartingales, also called g-supermatingales, as in the previous
section, for E = Eg, i.e. X is a Eg-supermatingale iff X ∈ Xp and Xσ ≥ Egσ,τ [Xτ ]
a.s. for all (σ, τ) ∈ T2. For càdlàg Eg-supermartingales, we have the following
classical Doob-Meyer decomposition (see Peng [35, Thm. 3.3] in the case of a
Brownian filtration).

Proposition 3.1. Let X ∈ Xp be a càdlàg Eg-supermartingale s.t. X ≤M + V

where M is a martingale satisfying E[[M ]
p/2
T ] < ∞ and V ∈ Ap. Then there

exists Z ∈ Hp, a càdlàg process A ∈ Ap and a càdlàg martingale N , orthogonal
to W , satisfying E[[N ]

p/2
T ] <∞, such that

Xσ = Xτ +

∫ τ

σ
gs(Xs, Zs)ds+Aτ −Aσ −

∫ τ

σ
Zs · dWs −

∫ τ

σ
dNs,

10



for all (σ, τ) ∈ T2. Moreover, this decomposition is unique.

Proof. We provide a brief proof which is based on a personal communication
with Nicole El Karoui.
Let us start by considering the following reflected BSDEs with lower obstacle X
on [0, τ ]

Y = Yτ +

∫ τ

·
gs(Ys, Zs)ds−

∫ τ

·
Zs · dWs −

∫ τ

·
dNs −

∫ τ

·
dKs,

Y ≥ X on [0, τ ],∫ τ

0
(Ys− −Xs−)dKs = 0,

(7)

where N is again a càdlàg martingale orthogonal to W , and K is a càdlàg non-
decreasing and predictable process. Since the obstacle X is assumed to be càdlàg,
the wellposedness of such an equation is guaranteed by the same arguments as
in [25, Thm. 6.4] (it suffices to adapt the estimate of [25, Prop. 6.1] by following
[26, Prop. 3] and [23, Prop. 2.1]).

Let us now prove that we have Yt = Xt, a.s., for any t ∈ [0, τ ]. Let us argue
by contradiction and suppose that this equality does not hold. Without loss of
generality, we can assume that Y0 > X0 (otherwise, we replace 0 by the first time
when Y > X+ ι for some ι > 0). Fix then some ε > 0 and consider the following
stopping time

τ ε := inf {t ≥ 0, Yt ≤ Xt + ε} ∧ τ.
Since Y is strictly above X before τ ε, we know that K is identically 0 on [[0, τ ε]],
which implies that

Yt = Yτε +

∫ τε

t
gs(Ys, Zs)ds−

∫ τε

t
Zs · dWs −

∫ τε

t
dNs.

Consider now the following BSDE on [[0, τ ε]]

yt = Xτε +

∫ τε

t
gs(ys, zs)ds−

∫ τε

t
zs · dWs −

∫ τε

t
dns.

By standard a priori estimates (see for instance the arguments in the proofs of
[26, Lem. 9 and Prop. 4 ]), we can find a constant C > 0 independent of ε > 0
s.t.

Y0 ≤ y0 + CE [|Xτε − Yτε |] ≤ y0 + Cε.

But remember that X is an Eg-supermartingale, so that we must have y0 ≤
X0. Hence, we have obtained Y0 ≤ X0 + Cε, which implies a contradiction by
arbitrariness of ε > 0.

The uniqueness of the decomposition is then clear by identification of the local
martingale part and the finite variation part of a semimartingale. �

11



3.2 Time consistence and regularity of g-expectations

We now verify that the conditions of Lemma 2.1 apply to Eg.

Proposition 3.2. Assume that y 7−→ gt(ω, y, z) is non-increasing for all z ∈ R,
for dt×dP− a.e. (t, ω) ∈ [0, T ]×Ω. Then, Assumptions (Tc), (S) and (Sld) hold
for Eg.

Proof. First, notice that since W is actually continuous, we not only have
[W,N ] = 0, a.s., but also

〈W,N〉 = 〈W,N c〉 = 〈W,Nd〉 = 0, a.s.,

where N c (resp. Nd) is the continuous (resp. purely discontinuous) martingale
part of N . Then (Tc) follows from the definition of Eg and the uniqueness of a
solution. The stability properties (S)(b) and (c) follow from the path continuity
of the Y component of the solution of (6) and the standard estimates given in
[26, Prop. 3]1.

The fact that (Sld) holds is a consequence of the usual linearization argument.
Let (Y,Z,N) and (Y ′, Z ′, N ′) be the solutions of (6) with terminal conditions ξ
and ξ′. Then, since g is uniformly Lipschitz continuous, there exist two processes
λ and η, which are F-progressively measurable, such that

gs(Ys, Zs)− gs(Y ′s , Z ′s) = λs
(
Ys − Y ′s

)
+ ηs ·

(
Zs − Z ′s

)
, ds× dP− a.e.

These two processes are bounded by Lg for dt× dP− a.e. (t, ω) ∈ [0, T ]× Ω, as
a consequence of (4). Moreover, λ ≤ 0 since g is non-increasing in y.

Then, for any 0 ≤ t ≤ s ≤ T , let us define the following continuous, positive and
F-progressively measurable process

At,s := exp

(∫ s

t
λudu−

∫ s

t
ηu · dWu −

1

2

∫ s

t
|ηu|2du

)
.

By applying Itô’s formula, we deduce classically (see [26, Lem. 9]) that

Yσ − Y ′σ = Eσ
[
Aσ,τ (ξ − ξ′)

]
,

which is nothing else but Assumption (Sld) by Girsanov’s theorem (recall that
λ ≤ 0 and that λ and η are bounded by Lg, i.e. it suffices to consider Q as the
collection of measures with density with respect to P given by an exponential of
Doléans-Dade of the above form with η bounded by Lg).

1Notice that these estimates can be readily extended to the difference of two solutions of
BSDEs, since, as pointed out in the proof of [4, Thm 4.2], such a difference is itself the solution
to a BSDE.
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Finally, the condition (S)(a) follows from a similar linearization argument. Let
s ∈ [0, T ) and ξ ∈ L0(Fs), sn ↘ s and (ξn)n≥1 be such that ξn ∈ Lp(Fsn) for
each n, (ξ−n )n≥1 is bounded in Lp and ξn → ξ as n→∞. One has

Egs,sn [ξn] ≥ Es
[
An

(
ξn − C

∫ sn

s
|gs(0, 0)|ds

)]
,

for a sequence (An)n≥1 bounded in any Lp
′ , p′ ≥ 1, which converges a.s. to 1,

and some C ≥ 1 independent on n. Since
(
ξ−n ,

∫ sn
s |gs(0, 0)|ds

)
n≥1

is bounded in
Lp, and p > 1, the negative part of term in the above expectation is uniformly
integrable, and we can apply Fatou’s Lemma to conclude the proof. �

Remark 3.1. One easily checks that Xσ+ ≥ Egσ,τ [Xτ+] for (σ, τ) ∈ T2, whenever
X is a Eg-supermartingale. Again, this follows from the path continuity of the
Y component of the solution of (6) and the estimates of [26, Prop. 3].

Corollary 3.1. Assume that y 7−→ gt(ω, y, z) is non-increasing for all z ∈ Rd,
for dt × dP − a.e. (t, ω) ∈ [0, T ] × Ω. Let X ∈ Xp

r be an Eg-supermartingale.
Define the process I by

It :=
∑
s<t

(Xs −Xs+), t ≤ T. (8)

Then, I is a non-decreasing and left-continuous process satisfying IT ∈ L
1
p . More-

over, X := X + I is a right-continuous local Eg-supermatingale.

Proof. This is an immediate consequence of Lemma 2.1 and Proposition 3.2 if
(X−t )t≤T is bounded in Lp. But this follows from the fact that X− ≤ Eg·,T [XT ]− ∈
Sp. �

For later use, let us a provide another version in which the monotonicity of g in
y is not used anymore. The price to pay is that the I process defined below may
not be non-decreasing anymore.

Corollary 3.2. Let X ∈ Xp
r be an Eg-supermartingale. Then, Xt ≥ Xt+ for all

t ∈ [0, T ). Define the process I by

It :=
∑
s<t

eLg(s−t)(Xs −Xs+), t ≤ T. (9)

Then, IT ∈ L
1
p , I is left-continuous. Moreover, X := X+ I is a right-continuous

local Eg-supermatingale.
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Proof. It follows from Corollary 3.1 that the result holds if g is non-increasing
in its y-variable. On the other hand, it is immediate to check that ζ is an Eg-
supermartingale if and only if ζ̃ is an E g̃-supermartingale, with

ζ̃ := eLgT ζ and g̃t(y, z) := eLgtg(ye−Lgt, ze−Lgt)− Lgy.

The map g̃ is now non-increasing in its y-component as a consequence of (4).
Moreover, g̃ still satisfies (4), with the same constant Lg, and, by (5), g̃(0, 0)
satisfies the integrability condition needed to define the corresponding BSDE.
Hence X̃ + Ĩ is a right-continuous E g̃-supermartingale, Ĩ is non-decreasing and
ĨT ∈ L

1
p , where we have defined

Ĩt :=
∑
s<t

(X̃s − X̃s+) =
∑
s<t

eLgs(Xs −Xs+).

Hence, X+I = e−Lg ·(X̃+Ĩ) is a Eg-supermartingale, and IT ∈ L
1
p since ĨT ∈ L

1
p .
�

3.3 The Doob-Meyer-Mertens’s decomposition for Eg-supermar-
tingales

We are now in position to state the main result of this paper.

Let S = {S(τ), τ ∈ T } be a T -system in the sense that for all τ, τ ′ ∈ T

(i) S(τ) ∈ L0(Fτ ),

(ii) S(τ) = S(τ ′) a.s. on {τ = τ ′}.

If S(τ) ∈ Lp(Fτ ) for every τ ∈ T and S(σ) ≥ Egσ,τ [S(τ)] for all (σ, τ) ∈ T2, then
we say that it is a Eg-supermartingale system.

Theorem 3.1 (Mertens’s decomposition). Let S be a Eg-supermatingale system
s.t. {S(τ), τ ∈ T } is uniformly integrable, then there exists X ∈ Xp

`r such that
S(σ) = Xσ for all σ ∈ T . If in addition, esssup{S(τ) τ ∈ T } ∈ Lp, then there
exists (Z,A) ∈ Hp×Ap and a càdlàg martingale N , orthogonal to W , satisfying
E[[N ]

p/2
T ] <∞, such that

S(σ) = Xσ = Xτ +

∫ τ

σ
gs(Xs, Zs)ds+Aτ −Aσ −

∫ τ

σ
Zs · dWs −

∫ τ

σ
dNs,

for all (σ, τ) ∈ T2. This decomposition is unique.
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Proof. (a) Let us first prove that there exists an optional process X ∈ Xp such
that S(σ) = Xσ a.s. for all σ ∈ T . Since S is uniformly integrable, [12, Thm. 6
and Rem. 7 c)] imply that it suffices to show that

E[S(σ)] ≥ lim inf
n→∞

E[S(σn)],

for all non-increasing sequence (σn)n≥1 ∈ Tσ such that σn −→ σ ∈ T , a.s. By
using a similar linearization argument as the one used in the proof of Proposition
3.2, we can find F-progressively measurable processes λn and ηn that are bounded
by Lg dt× dP-a.e. and such that

S(σ) ≥ Eσ
[
Hn
σn

(
e
∫ σn
σ λns dsS(σn) +

∫ σn

σ
e
∫ s
σ λ

n
s dsgs(0, 0)ds

)]
where

Hn := exp

(
−1

2

∫ ·∨σ
σ
|ηns |2ds+

∫ ·∨σ
σ

ηns · dWs

)
.

Then,

E[S(σ)] ≥ E[S(σn)] + E
[
e
∫ σn
σ λns ds(Hn

σn − 1)S(σn)
]

+ E
[
Hn
σn

∫ σn

σ
e
∫ s
σ λ

n
s dsgs(0, 0)ds

]
(10)

+ E
[(
e
∫ σn
σ λns ds − 1

)
S(σn)

]
.

Note that
(Hn

σn − 1)S(σn) ≥ −(S(σn))+ −Hn
σn(S(σn))−.

Since S is uniformly integrable, so is S+. Besides, we have by definition

S(σn) ≥ Egσn,T [S(T )].

But, once more by the estimates of [26, Prop. 3], it is clear that Egσn,T [S(T )] is
bounded in Lp, uniformly in n. SinceHn

σn has bounded (uniformly in n) moments
of any order, de la Vallée-Poussin criterion ensures that HnS− is also uniformly
integrable. Therefore, {[(Hn

σn − 1)S(σn)]−, n ≥ 1} is uniformly integrable. Using
the fact that (λn, ηn)n is uniformly bounded by Lg, as well as (5), we can use
Fatou’s lemma in (10) to obtain that the second and the third terms on the
right-hand side converges to 0 as n −→∞.

(b) The fact that X has right- and left-limits, up to an evanescent set, follows
from Lemma A.2 stated below, since X is an Eg-supermartingale.

(c) Let I be defined as in Corollary 3.2 for X. Since X+I is right-continuous,
we can apply the Doob-Meyer decomposition of Proposition 3.1 to Xn

:= (X +
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I)·∧ϑn where ϑn is the first time when I ≥ n. There exists (Zn, Ān) ∈ Hp ×Ap

and a càdlàg martingale Nn, orthogonal to W , such that, for (σ, τ) ∈ T2,

X
n
σ = X

n
τ +

∫ ϑn∧τ

ϑn∧σ
gs(X

n
s , Z

n
s )ds+ Ānτ − Ānσ −

∫ ϑn∧τ

ϑn∧σ
Zns · dWs −

∫ ϑn∧τ

ϑn∧σ
dNn

s

= X
n
τ +

∫ ϑn∧τ

ϑn∧σ
{gs(Xs, Z

n
s ) + ηsIs}ds+ Ānτ − Ānσ −

∫ ϑn∧τ

ϑn∧σ
Zns · dWs

−
∫ ϑn∧τ

ϑn∧σ
dNn

s ,

in which η is a progressively measurable process bounded by Lg, dt× dP-a.e., as
a consequence of (4). Set

An := I·∧ϑn + Ān +

∫ ·∧ϑn
0

ηsIsds, (11)

and observe that (An, Zn, Nn) = (Ak, Zk, Nk) on [[0, ϑk]] for n ≤ k, by uniqueness
of the decomposition in Proposition 3.1. We can then define

(A,Z,N) := 1[[0,ϑ1]](A
1, Z1, N1) +

∑
n≥1

1]]ϑn,ϑn+1]](A
n+1, Zn+1, Nn+1), (12)

so that

Xσ = Xτ +

∫ τ

σ
gs(Xs, Zs)ds+Aτ −Aσ −

∫ τ

σ
Zs · dWs −

∫ τ

σ
dNs. (13)

We claim that A is non-decreasing and that the above decomposition is unique.
The fact that (Z,A, [N ]T ) ∈ Hp×Ap×Lp/2 then follows from standard arguments
(see e.g. [24, Lem. 3.4] and compare with [23, Prop. 2.1] for p = 2 which is easily
extended by replacing the usual Itô’s formula by the version for làdlàg processes
[27, p538]).

Let us now prove our claim. Define X̃ and g̃ by

X̃ := eLg ·X and g̃t(y, z) := eLgtg(ye−Lgt, ze−t)− Lgy.

Then, X̃ is a E g̃-supermartingale, and so is its right-limits process X̃+ := X̃+,
as a consequence of Remark 3.1, recall Lemma A.2 below. Applying Proposition
3.1, we can find a right-continuous non-decreasing process Ã ∈ Ap, Z̃ ∈ Hp and
a càdlàg martingale Ñ , orthogonal to W , such that

X̃+
σ = X̃+

τ +

∫ τ

σ
g̃s(X̃

+
s , Z̃s)ds+ Ãτ − Ãσ −

∫ τ

σ
Z̃s · dWs −

∫ τ

σ
dÑs
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for all (σ, τ) ∈ T2. This decomposition is unique. On the other hand, (13) implies
that

X̃+
σ = X̃+

τ +

∫ τ

σ
g̃s(X̃

+
s , e

LgsZs)ds+ B̃τ − B̃σ −
∫ τ

σ
eLgsZs · dWs −

∫ τ

σ
eLgsdNs,

in which

B̃τ − B̃σ :=

∫ τ

σ
(g̃s(X̃s, e

LgsZs)− g̃s(X̃+
s , e

LgsZs))ds

+

∫ τ

σ
eLgsdAs + eLgτ (Aτ+ −Aτ )− eLgσ(Aσ+ −Aσ).

Hence, B̃ = Ã is non-decreasing. But, since (g̃(X̃, eLg ·Z) − g̃(X̃+, eLg ·Z)) ≤ 0
as a consequence of Corollary 3.2 (namely X̃ ≥ X̃+) and the fact that g̃ is
non-increasing in its first component, we must have that the continuous part of∫ ·

0 e
LgsdAs is non-decreasing, and so must be the continuous part of A. We now

deduce from the definition of I in (9) and (11)-(12) that A can only decrease in a
continuous manner, recall that Ān is non-decreasing. Hence, A is non-decreasing.
The fact that the decomposition is unique comes from the uniqueness of the
decomposition for X̃+. �

3.4 Remarks

The framework of this section corresponds to the case where the BSDEs are driven
by a continuous martingaleM , whose quadratic variation is absolutely continuous
with respect to the Lebesgue measure, and with an invertible density. Extensions
to the context of [5], see also [16], [25] or [8], would be of interest. Similarly, one
could certainly consider BSDEs with jumps, generators with quadratic growth,
obstacles, stochastic Lipschitz conditions, etc. We have chosen to work in a
simpler setting so as not to drown our arguments with unneeded technicalities,
and to focus on the novelty of our approach.
However, the case p = 1 can not be treated by the same technics, in particular
we can not appeal to the classical linearization procedure. It would also require
a reinforcement of the condition (4), see [4].

4 Applications

We now consider two problems studied in the recent literature, which are solved
with sophisticated arguments under technical conditions. Using Theorem 3.1, we
can solve these problems in a very general context with quite simple arguments.
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4.1 Optional decomposition of g-supermartingale systems

We are still in the context of the previous section, with the slight modifica-
tion that, instead of the Brownian motion W , we consider a continuous (P,F)-
martingale M of the form: Mt =

∫ t
0 α
>
s dWs, in which α is a Rd×d-bounded

predictable process with bounded inverse. Recall that F satisfies the usual con-
ditions and is assumed quasi-left-continuous.

Let S = {S(τ), τ ∈ T } be a T -system, g be as in Section 3 such that (4) and
(5) hold. LetM0 denote the set of probability measures Q on (Ω,F) which are
equivalent to P and such that M is a (Q,F)-martingale. We then say that a T -
system S is a Eg-supermartingale system under some Q ∈ M0 if S(τ) ∈ Lp(Q)
for all τ ∈ T and S(σ) ≥ EQ,gσ,τ [S(τ)] for all (σ, τ) ∈ T2, where, with (σ, τ) ∈ T2

and ξ ∈ Lp(Fτ ,Q), we set EQ,gσ,τ [ξ] := Yσ, with (Y, Z,N) the unique solution of

Yt = ξ +

∫ τ

t∧τ
gs(Ys, Zs)ds−

∫ τ

t∧τ
Zs · dMs −

∫ τ

t∧τ
dNs,

= ξ +

∫ τ

t∧τ
gs(Ys, α

−1
s αsZs)ds−

∫ τ

t∧τ
αsZs · dWs −

∫ τ

t∧τ
dNs, t ≤ T,

such that Y ∈ Sp(Q), Z belongs to Hp(Q) and N is a càdlàg (F,Q)-martingale
orthogonal to M , and such that

EQ
[
[N ]

p/2
T

]
< +∞.

The spaces Sp(Q) and Hp(Q) are defined as Sp and Hp, but with Q instead of
P.

The main result of this section is the following optional type decomposition (see
e.g. [17, 22, 18]).

Theorem 4.1 (Optional decomposition). If for any Q ∈ M0, S is a EQ,g-
supermartingale system which is Q-uniformly integrable and such that esssup{|S(τ)|,
τ ∈ T } ∈ Lp(Q), then there exists (X,Z) ∈ Xp

`r ×Hp such that S(σ) = Xσ for
all σ ∈ T , and

X· +

∫ ·
0
gs(Xs, Zs)ds−

∫ ·
0
Zs · dMs is non-increasing, a.s.

Proof. The existence of the process X ∈ Xp
`r such that S(σ) = Xσ for all σ ∈ T

follows from Theorem 3.1. Fix then some Q ∈ M0. Using Theorem 3.1, we
deduce the existence of (ZQ, AQ) ∈ Hp(Q) ×Ap(Q) and of a Q-martingale NQ

orthogonal to M such that P− a.s. (or Q− a.s.)

Xσ = Xτ +

∫ τ

σ
gs(Xs, Z

Q
s )ds+AQ

τ −AQ
σ −

∫ τ

σ
ZQ
s · dMs −

∫ T

t
dNQ

s ,
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for (σ, τ) ∈ T2. Recall the definition of I in Corollary 3.2 and that X + I is
right-continuous. Then,

[X + I,M ]· =

∫ ·
0
α>s αsZ

Q
s ds, (14)

and the family (ZQ)Q∈M0 can actually be aggregated into a universal predictable
process Z, since α is invertible. Hence, we deduce that X +

∫ ·
0 gs(Xs, Zs)ds is

actually a supermartingale under any Q ∈M0, and we can apply the classical op-
tional decomposition theorem ([18, Thm.1]) together with the classical Mertens’s
decomposition ([31, T2 Lemme]) to deduce the existence of an F-predictable
process Z̃ such that

X· +

∫ ·
0
gs(Xs, Zs)ds−

∫ ·
0
Z̃s · dMs is non-increasing, P− a.s.

Next, using (14), we obtain Z = Z̃ dt× dP-a.e., which ends the proof. �

4.2 Dual formulation for minimal super-solutions of BSDEs with
constraints on the gains process

In this section, we provide an application to the dual representation for BSDEs
with constraints. We specialize to the situation where Ω is the canonical space of
Rd-valued continuous functions on [0, T ], starting at 0, endowed with the Wiener
measure P. We let F◦ = (F◦t )t≤T denote the raw filtration of the canonical process
ω 7−→W (ω) = ω, while F denotes its P-augmentation. We also fix p′ > p > 1.

We let g be as in Section 3 such that (4) and (5) hold for p′ and fix ξ ∈ Lp
′ .

Further, let O = (Ot(ω))(t,ω)∈[0,T ]×Ω be a family of non-empty closed convex
random subsets of Rd, such that O is F◦-progressively measurable in the sense
of random sets (see e.g. Rockafellar [40]) i.e. {(s, ω) ∈ [0, t] × Ω : Os(ω) ∩ O 6=
∅} ∈ B([0, t])⊗F for all t ∈ [0, T ] and all closed O ⊆ Rd. In particular, it admits
a Castaing representation, see e.g. [40], which in turn ensures that the support
function defined by

δt(ω, ·) : u ∈ Rd 7−→ δt(ω, u) := sup{u · z, z ∈ Ot(ω)}

is F◦t ⊗ B([0, t])⊗ B(Rd)/B(Rd ∪ {∞})-measurable, for each t ∈ [0, T ].

We consider solutions (Y,Z,A) ∈ Xp
`r ×Hp ×Ap of

Y = ξ +

∫ T

·
gs(Ys, Zs)ds+AT −A−

∫ T

·
Zs · dWs, (15)

under the constraint

Z ∈ O, dt× dP− a.e. (16)
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We say that a solution (Y,Z,A) ∈ Xp
`r ×Hp ×Ap of (15)-(16) is minimal if any

other solution (Y ′, Z ′, A′) ∈ Xp
`r ×Hp × Ap is such that Yτ ≤ Y ′τ a.s., for any

τ ∈ T .

The dual characterization relies on the following construction.

Let us also define U as the class of Rd-valued, progressively measurable processes
such that |ν| + |δ(ν)| ≤ c, dt × dP-a.e., for some c ∈ R. Given ν ∈ U , we let
Pν be the probability measure whose density with respect to P is given by the
Doléans-Dade exponential of

∫ ·
0 νs · dWs, and denote by W ν := W −

∫ ·
0 νsds the

corresponding Pν-Brownian motion. Then, given ξ′ ∈ Lp(Fτ ,Pν), τ ∈ T , we
define Eν·,τ [ξ′] as the Y ν-component of the solution (Y ν , Zν) ∈ Sp(Pν) ×Hp(Pν)
of the BSDE

Y ν = ξ′ +

∫ τ

·
(gs(Y

ν
s , Z

ν
s )− δs(νs)) ds−

∫ τ

·
Zνs · dW ν

s .

In the above, Sp(Pν) and Hp(Pν) are defined as Sp and Hp but with respect to
Pν in place of P.

Theorem 4.2. Define

S(τ) := esssup
{
Eντ,T [ξ], ν ∈ U

}
, τ ∈ T . (17)

Assume that esssup{|S(τ)|, τ ∈ T } ∈ Lp
′ for some p′ > p. Then, there exists

X ∈ Xp
`r such that Xτ = S(τ) for all τ ∈ T , and (Z,A) ∈ Hp ×Ap such that

(X,Z,A) is the minimal solution of (15)-(16).

Before providing the proof of this result, let us comment it. This formulation
is known since [10], however it was proven only under strong assumptions. Al-
though it should essentially be a consequence of the Doob-Meyer decomposition
for g-supermatingales, the main difficulty comes from the fact that the family of
controls in U is not uniformly bounded. Hence, (17) is a singular control problem
for which the right-continuity of τ 7−→ S(τ) is very difficult to establish, a priori,
see [2] for a restrictive Markovian setting. This fact prevents us to apply the
result of [35]. Theorem 3.1 allows us to bypass this issue and provides a very
simple proof.

Proof of Theorem 4.2. Let (Y,Z,A) ∈ Xp
`r×H

p×Ap be a solution of (15)-(16).
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Then, for (σ, τ) ∈ T2,

Yσ = Yτ +

∫ τ

σ
gs(Ys, Zs)ds+Aτ −Aσ −

∫ τ

σ
Zs · dWs

= Yτ +

∫ τ

σ
(gs(Ys, Zs)− νs · Zs)ds+Aτ −Aσ −

∫ τ

σ
Zs · dW ν

s

= Yτ +

∫ τ

σ
(gs(Ys, Zs)− δs(νs))ds+Aτ −Aσ +

∫ τ

σ
(δs(νs)− νs · Zs)ds

−
∫ τ

σ
Zs · dW ν

s .

Notice that Z ∈ O, dt× dP-a.e. and hence δ(ν)− ν · Z ≥ 0, dt× dP-a.e. Then,
it follows by comparison that

Yσ ≥ Eνσ,T [ξ], for all ν ∈ U and σ ∈ T . (18)

Conversely, it is not difficult to deduce from the definition of S that it satisfies a
dynamic programming principle:

S(σ) = esssup
{
Eνσ,τ [S(τ)], ν ∈ U

}
, ∀ (σ, τ) ∈ T2,

see e.g. [2]. Taking ν ≡ 0, we deduce that S is a E0-supermartingale system.
The existence of the aggregating process X ∈ Xp

`r then follows from Theorem
3.1. Since it is also a Eν-supermartingale system for ν ∈ U , the same theorem
implies that we can find (Zν , Aν) ∈ Hp(Pν)×Ap(Pν) such that

Xσ = ξ +

∫ T

σ
(gs(Xs, Z

ν
s )− δs(νs))ds+AνT −Aνσ −

∫ T

σ
Zνs · dW ν

s , σ ∈ T .

Identifying the quadratic variation terms implies that Zν = Z0 =: Z. Thus for
all ν ∈ U ,

e(ν) :=

∫ T

0
(νsZs − δs(νs))ds ≤

∫ T

0
(νsZs − δ(νs))ds+AνT −Aν0 = A0

T −A0
0.

We claim that if N := {(ω, t) : Zt(ω) /∈ Ot,ω} has a non-zero measure w.r.t
dP × dt, then we can find ν̂ ∈ U such that e(ν̂) ≥ 0 and P[e(ν̂) > 0] > 0.
However, for any real λ > 0, one has λν̂ ∈ U and e(λν̂) = λe(ν̂) ≤ A0

T − A0
0, by

the above, which is a contradiction since A0
T − A0

0 is independent of λ. Hence,
(16) holds for Z = Z0 and

Xσ = ξ +

∫ T

σ
gs(Xs, Zs)ds+A0

T −A0
σ −

∫ T

σ
Zs · dWs, σ ∈ T .
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By (18), it is clear that (X,Z,A0) is the minimal solution of (15)-(16).
It remains to prove the above claim. Assume that N has non-zero measure.

Then, it follows from [41, Thm. 13.1] that {(ω, t) : F̄t(ω) := sup{Ft(ω, u), |u| =
1} ≥ 2ι} has non-zero measure, for some ι > 0, in which

Ft(ω, u) := u · Zt(ω)− δt(ω, u).

After possibly passing to another version (in the dt × dP-sense), we can as-
sume that Z is F◦-progressively measurable. Since δ is F◦T ⊗ B([0, T ]) ⊗ B(Rd)-
measurable, (ω, t, u) ∈ Ω × [0, T ] × Rd 7−→ Ft(ω, u) is Borel-measurable. By [1,
Prop. 7.50 and Lem. 7.27], we can find a Borel map (t, ω) 7−→ û(t, ω) such that
|û| = 1 and Ft(ω, û(t, ω)) ≥ F̄t(ω)−ι dt×dP-a.e. Then, ũ(t, ω) := û(t, ω)1N (ω, t)
is Borel and satisfies Ft(ω, û(t, ω)) ≥ ι1N (ω, t) dt×dP-a.e. Since Ft(ω, ·) depends
on ω only though ω·∧t, the same holds for (t, ω) 7−→ û(t, ω·∧t), which is progres-
sively measurable. We conclude by setting

ν̂t(ω) := û(t, ω·∧t)/(1 + |δt(ω, û(t, ω·∧t))|).

�

A Appendix

We provide here a down-crossing lemma for Eg-supermartingales (defined in Sec-
tion 3 with g satisfying (4) and (5) for some p > 1), which is an extension of Chen
and Peng [6, Thm 6] (see also Coquet et al. [9, Prop. 2.6]). For completeness, we
will also provide a proof. As in the classical case, g ≡ 0, it ensures the existence
of right- and left-limits for Eg-supermartingales, see Lemma A.2 below.

For any m > 0, we denote by E±mσ,τ the non-linear expectation operator associated
to the generator (t, ω, y, z) 7−→ ±m|z| and stopping times (σ, τ) ∈ T2. Let
J := (τn)n∈N be a countable family of stopping times taking values in [0, T ], which
are ordered, i.e. for any i, j ∈ N, one has τi ≤ τj , a.s., or τi ≥ τj , a.s. Let a < b, X
be some process and Jn ⊆ J be a finite subset (Jn = {0 ≤ τ1 ≤ · · · ≤ τn ≤ T}).
We denote by Db

a(X, Jn) the number of down-crossing of the process (Xτk)1≤k≤n
from b to a. We then define

Db
a(X, J) := sup

{
Db
a(X,Jn) : Jn ⊆ J, and Jn is a finite set

}
.

Lemma A.1 (Down-crossing). Suppose that the generator g satisfies (4) with
Lipschitz constant L in y and µ in z, and (5) with p > 1. Let X ∈ Xp be a
Eg-supermartingale, J := (τn)n∈N be a countable family of stopping times taking
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values in [0, T ], which are ordered. Then, for all a < b,

E−µ0,T

[
Db
a(X,J)

]
≤ eLT

b− a
Eµ0,T

[
eLT (X0 ∧ b− a)− e−LT (XT ∧ b− a)+

+ eLT (XT ∧ b− a)− + eLT
∫ T

0
|gs(a, 0)|ds

]
. (19)

Proof. First, without loss of generality, we can always suppose that τ0 ≡ 0 and
τ1 ≡ T belong to J , and also that b > a = 0. Indeed, whenever b > a 6= 0, we
can consider the barrier constants (0, b− a), and the E ḡ-supermartingale X − a,
with generator ḡt(y, z) := gt(y + a, z), which reduces the problem to the case
b > a = 0.

Now, suppose that Jn = {τ0, τ1, · · · , τn} with 0 = τ0 < τ1 < · · · < τn = T . We
consider the following BSDE

yit : = Xτi +

∫ τi

t
gs(y

i
s, z

i
s)ds−

∫ τi

t
zis · dWs −

∫ τi

t
dN i

s

= Xτi +

∫ τi

t

(
gs(0, 0) + λisy

i
s + ηisz

i
s

)
ds−

∫ τi

t
zis · dWs −

∫ τi

t
dN i

s,

where λi and ηi are progressively measurable, coming from the linearization of g.
In particular, we have |λi| ≤ L and |ηi| ≤ µ. Let us now consider another linear
BSDE

ȳit = Xτi +

∫ τi

t

(
− |gs(0, 0)|+ λisȳ

i
s + ηisz̄

i
s

)
ds−

∫ τi

t
z̄is · dWs

−
∫ τi

t
dN

i
s. (20)

By the comparison principle for BSDEs (see [26, Prop. 4]), and since X is an
Eg-supermartingale, it is clear that

ȳiτi−1
≤ yiτi−1

≤ Xτi−1 .

Solving the above linear BSDE (20), it follows that

ȳiτi−1
= EQ

[
Xτie

∫ τi
τi−1

λirdr −
∫ τi

τi−1

e
∫ s
τi−1

λirdr|gs(0, 0)|ds

∣∣∣∣∣Fτi−1

]
,

where Q is defined by

dQ
dP

= e−
1
2

∫ T
0 |ηs|

2ds+
∫ T
0 ηs·dWs , with ηs :=

n∑
i=1

ηis1[τi−1,τi)(s).
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Let λs :=
∑n

i=1 λ
i
s1[τi−1,τi)(s), it follows that the discrete process (Yτi)0≤i≤n

defined by

Yτi := Xτie
∫ τi
0 λrdr −

∫ τi

0
e
∫ s
0 λrdr|gs(0, 0)|ds

is a Q-supermartingale. Define further

Y τi := Yτi ∧
(
beLT −

∫ τi

0
e
∫ s
0 λrd〈M〉r |gs(0, 0)|ds

)
,

which is clearly also a Q-supermartingale. Let

ut := be
∫ t
0 λrdr −

∫ t

0
e
∫ s
0 λrdr|gs(0, 0)|ds,

and

lt := −
∫ t

0
e
∫ s
0 λrdr|gs(0, 0)|ds.

Denote then by Du
l (Y, J) (resp. Du

l (Y , J)) the number of down-crossing of the
process Y (resp. Y ) from the upper boundary u to lower boundary l. It is clear
that Du

l (Y, J) = Du
l (Y , J). Notice that lt is decreasing in t, so that we can

apply the classical down-crossing theorem for supermartingales (see e.g. Doob
[13, p.446]) to Y , and obtain that

EQ
[
Db

0(X, J)
]

≤ EQ [Du
l (Y , J)

]
≤ eLT

b
EQ [(Y 0 − Y T )− (uT − Y T ) ∧ 0

]
≤ eLT

b
EQ
[
X0 ∧ (beLT )− e

∫ T
0 λsds(XT ∧ b) + eLT

∫ T

0
|gs(0, 0)|ds

]
.

Notice that |λs| ≤ L, |ηs| ≤ µ and (XT ∧ b) = (XT ∧ b)+− (XT ∧ b)−. Therefore,
we have proved (19) for the case b > a = 0, from which we conclude the proof,
by our earlier discussion. �

Lemma A.2. Let X ∈ Xp be a Eg-supermartingale of class (D). Then, it admits
right- and left-limits outside an evanescent set.

Proof. We follow well-known arguments for (classical) supermartingales. Let
(ϑn)n ⊂ T be a non-increasing sequence of stopping times. Then, (Xϑn)n≥1

converges a.s. This is an immediate consequence of the down-crossing inequality
of Lemma A.1, see e.g. [11, Proof of Thm V-28]. Set X̄ := X/(1 + |X|). Then,
[11, Thm VI-48] implies that, up to an evanescent set, X̄ admits right-limits.
Since a/(1 + |a|) = b/(1 + |b|) implies a = b, for all a, b ∈ R, this shows that X
admits right-limits, up to an evanescent set. The existence of left-limits is proved
similarly by considering non-decreasing sequences of stopping times. �
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