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Inconsistency Robustness in Foundations 

Mathematics self proves its own Consistency and Other 

Matters 
 

Carl Hewitt  

 
This article is dedicated to Alonzo Church, Stanisław Jaśkowski, 

Ludwig Wittgenstein, and Ernst Zermelo. 

Abstract 
Inconsistency Robustness is performance of information systems with 

pervasively inconsistent information. Inconsistency Robustness of the 

community of professional mathematicians is their performance repeatedly 

repairing contradictions over the centuries. In the Inconsistency Robustness 

paradigm, deriving contradictions have been a progressive development and 

not “game stoppers.” Contradictions can be helpful instead of being something 

to be “swept under the rug” by denying their existence, which has been 

repeatedly attempted by Establishment Philosophers (beginning with some 

Pythagoreans). Such denial has delayed mathematical development. This 

article reports how considerations of Inconsistency Robustness have recently 

influenced the foundations of mathematics for Computer Science continuing 

a tradition developing the sociological basis for foundations.1 

 

Classical Direct Logic is a foundation of mathematics for Computer Science, 

which has a foundational theory (for convenience called “Mathematics”) that 

can be used in any other theory. A bare turnstile is used for Mathematics so 

that ├Ψ means that Ψ is a mathematical proposition that is a theorem of 

Mathematics and Φ├Ψ means that Ψ can be inferred from Φ in Mathematics. 

 

The current common understanding is that Gödel proved “Mathematics cannot 

prove its own consistency, if it is consistent.” However, the formal consistency 

of mathematics can be proved by a simple argument using standard rules of 

Mathematics including the following: 

 rule of Proof by Contradiction, i.e.,  (Φ⇒(ΘΘ))├ Φ 

 and the rule of Soundness (a theorem can be used in a proof 
2), i.e., 

(├Φ)⇒Φ 

Formal Proof.  
By definition, Consistent⇔∃[Ψ:Proposition]→├ (ΨΨ). By 
Existential Elimination, there is some proposition Ψ0 such that 
Consistent⇒├ (Ψ0 Ψ0) which by Soundness and transitivity of 
implication means Consistent⇒(Ψ0Ψ0). Substituting for Φ and Θ, in 
the rule for Proof by Contradiction, it follows that 
(Consistent⇒(Ψ0Ψ0))├ Consistent.  Thus, ├ Consistent. 
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The above theorem means that consistency is deeply embedded in the 

architecture of classical mathematics. Please note the following points:  The 

above argument formally mathematically proves the theorem that 

mathematics is consistent and that it is not a premise of the theorem that 

mathematics is consistent. Classical mathematics was designed for 

consistent axioms and consequently the rules of classical mathematics can be 

used to prove consistency regardless of the axioms, e.g., Euclidean geometry. 

 

The above proof means that “Mathematics is consistent” is a theorem in 

Classical Direct Logic. This means that the usefulness of Classical Direct 

Logic depends crucially on the consistency of Mathematics. Good evidence 

for the consistency of Mathematics comes from the way that Classical Direct 

Logic avoids the known paradoxes. Humans have spent millennia devising 

paradoxes.i 

 

Having a powerful system like Direct Logic is important in computer science 

because computers must be able to formalize all logical inferences (including 

inferences about their own inference processes) without requiring recourse to 

human intervention. Any inconsistency in Classical Direct Logic would be a 

potential security hole because it could be used to cause computer systems to 

adopt invalid conclusions. 

 

mathematics is provably formally consistent! By formally consistent, it is 

meant that a consistency is not inferred. The proof is remarkably tiny 

consisting of only using proof by contradiction and soundness. In fact, it is 

so easy that one wonders why this was overlooked by so many great 

logicians in the past. The proof is also remarkable that it does not use 

knowledge about the content of mathematical theories (plane geometry, 

integers, etc.).  The proof serves to formalize that consistency is built into 

the very architecture of classical mathematics.  However, the proof of formal 

consistency does not prove constructive consistency, which is defined to be 

that the rules of Classical Direct Logic themselves do not derive a 

contradiction. Proof of constructive consistency requires a separate inductive 

proof using the axioms and rules of inference of Classical Direct Logic. The 

upshot is that, contra Gödel, there seems to be no inherent reason that 

mathematics cannot prove constructive consistency of Classical Direct Logic 

                                                           
i Note that the proof that Mathematics is consistent does not rule out that Mathematics 

is inconsistent. If Mathematics is inconsistent, then every proposition is provable in 

Mathematics including the proposition “Mathematics is consistent.”  Consequently, 

it is very important to carefully choose axioms for Mathematics. 
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(which formalizes classical mathematical theories). However, such a proof is 

far beyond the current state of the art. 

The recently developed self-proof of consistency (above) shows that the 

current common understanding that Gödel proved “Mathematics 

cannot prove its own consistency, if it is consistent” is inaccurate. 

It is very important to distinguish between the following: 

 “self-reference” using the Y fixed point 

 recursion using types 

Gödel famously thought that mathematics necessarily has the “self-

referential”3 proposition I am not provable. which allegedly comes from a Y 

fixed-point construction. Using types, it is impossible to construct such a 

“self-referential” proposition because the Y fixed points do not exist. In 

this way, consistency of mathematics is preserved without giving up power.  

 

Mathematical Foundation for Computer Science 
 

Computer Science brought different concerns and a new perspective to 

mathematical foundations including the following requirements:4 [Arabic 

numeral superscripts refer to endnotes at the end of this article] 

 

 provide powerful inference machinery so that arguments (proofs) can be 

short and understandable and all logical inferences can be formalized 

 establish standard foundations so people can join forces and develop 

common techniques and technology 

 incorporate axioms thought to be consistent by the overwhelming 

consensus of working professional mathematicians, e.g., natural numbers 

[Dedekind 1888, Peano 1889], real numbers [Dedekind 1888], sets of sets 

of integers, reals, etc. 

 facilitate inferences about the mathematical foundations used by computer 

systems. 

 

Classical Direct Logic is a foundation of mathematics for Computer Science, 

which has a foundational theory (for convenience called “Mathematics”) that 

can be used in any other theory. A bare turnstile is used for Mathematics so 

that ├Ψ means that Ψ is a mathematical proposition that is a theorem of 

Mathematics and Φ├Ψ means that Ψ can be inferred from Φ in Mathematics. 
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Mathematics self proves its own consistency 

A mathematically significant idea involves: 

“…a very high degree of unexpectedness, combined with 

inevitability and economy.” [Hardy 1940] 

 

The following rules are fundamental to classical mathematics: 

 Proof by Contradiction, i.e. (Φ⇒(ΘΘ))├ Φ, which says that a 

proposition can be proved by showing that it implies a contradiction. 

 Soundness, i.e. (├ Φ)⇒Φ, which says that a theorem can be used in a 

proof.5  

 

Theorem:  Mathematics self proves its own formal consistency.6 

Formal Proof 7 By definition, 

Consistent⇔∃ [Ψ:Proposition]→├ (ΨΨ).8 By the rule of 

Existential Elimination, there is some proposition Ψ0 such that 

Consistent ⇒├ (Ψ0 Ψ0) which by the rule of Soundness and 

transitivity of implication means Consistent⇒ (Ψ0 Ψ0). Substituting 

for Φ and Θ, in the rule for Proof by Contradiction, we have  

(Consistent⇒(Ψ0Ψ0))├ Consistent. Thus,├ Consistent. 

 

A Natural Deductioni proof is given below: 

1) Consistent  // hypothesis to derive a contradiction just in this subargument

├ Consistent                                            // rule of Proof by Contradiction using 1) and 4)
 

2) ∃[Ψ:Proposition]→├(ΨΨ)       // definition of inconsistency using 1)
 

3)├(Ψ0Ψ0)                                          // rule of Existential Elimination using 2)
  

4) Ψ0Ψ0                                                                       // rule of Soundness using 3)
  

 
              Natural Deduction Proof of Consistency of Mathematics 

                                                           
i [Jaśkowski 1934] developed Natural Deduction cf. [Barker-Plummer, Barwise, and 

Etchemendy 2011] 
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Please note the following points:   

 The above argument formally mathematically proves that 

mathematics is formally consistent and that it is not a premise of the 

theorem that mathematics is consistent.9  

 Classical mathematics was designed for consistent axioms and 

consequently the rules of classical mathematics can be used to prove 

consistency regardless of other axioms.10 

 

The above proof means that “Mathematics is consistent” is a theorem in 

Classical Direct Logic. This means that the usefulness of Classical Direct 

Logic depends crucially on the consistency of Mathematics. Good evidence 

for the consistency of Mathematics comes from the way that Classical Direct 

Logic avoids the known paradoxes. Humans have spent millennia devising 

paradoxes. 

 

Computer Science needs very strong foundations for mathematics so that 

computer systems are not handicapped. It is important not to have 

inconsistencies in mathematical foundations of Computer Science because 

they represent security vulnerabilities. 

 

The recently developed self-proof of consistency (above) shows that the 

current common understanding that Gödel proved “Mathematics cannot prove 

its own consistency, if it is consistent” is inaccurate. But the situation is even 

more interesting because Wittgenstein more than a half-century ago showed 

that contradiction in mathematics results from the kind of “self-referential” 

sentence that Gödel used in his proof. Fortunately, using types, it can be 

proved that the kind “self-referential” sentence that Gödel used in his proof 

cannot be constructed because required Y fixed points do not exist. 

Consequently, using a types, consistency of mathematics can be preserved 

without giving up power.  

 

Gödel and other philosophers developed the First-order Thesis that weakened 

the foundations of mathematics so that, as expressed, “self-referential” 

propositions do not infer contradiction.11 The weakened foundations (based 

on first-order logic) enabled some limited meta-mathematical theorems to be 

proved. However, as explained in this article, the weakened foundations are 

cumbersome, unnatural, and unsuitable as the mathematical foundation for 

Computer Science. 

 

By the above formalized proof, Mathematics (├) proves its own consistency. 

However, the proof does so without regard to the content of Mathematics. For 

example, Mathematics includes the Peano/Dedekind categorical 
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axiomatization of the natural numbers. The consistency proof doesn't lead to 

any technical problems as long as there are no inconsistencies, e.g., 

 the Peano/Dedekind categorical axiomatization doesn't infer any 

contradictions 

 there are no “self-referential” propositions in Mathematics 
 

Monster-Barring 
 “But why accept the counterexample? ... Why should the 

theorem give way...? It is the ‘criticism’ that should retreat.... It 

is a monster, a pathological case, not a counterexample.”   

Delta, student in [Lakatos, 1976, pg. 14]. 

 

The Euler formula for polyhedra is Vertices-Edges+Faces=2, which can be 

proved in a variety of different ways.  

 

But the hollow cube below is a counterexample because Vertices-

Edges+Faces=4.  

 
 

Counterexample to Euler's Formula 
 

In the face of this counterexample, it becomes important to characterize 

polyhedra more rigorously. For example, 

 A Regular solid 

 A convex solid with polyhedral faces 

 A surface consisting of a system of polygons 

 etc. 

 

Lakatos has called this strategy “monster-barring.” 
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Wittgenstein: “self-referential” propositions lead to inconsistency 

in mathematics 
All truth passes through three stages:  

First, it is ridiculed. 

Second, it is violently opposed. 

Third, it is accepted as being self-evident. 

Arthur Schopenhauer (1788-1860) 

 

Early on, Wittgenstein correctly noted that Gödel's 

“self-referential” proposition infers inconsistency in 

mathematics:i  
Let us suppose [Gödel's writings are correct 

and therefore] I proveii the improvability (in 
Russell’s system) of [Gödel's “self-

referential” propositioniii] P; [i.e., ⊢⊬P 
where P⇔⊬P] then by this proof I have 
proved P [i.e., ⊢P]. 
    Now if this proof were one in Russell’s 
system [i.e., ⊢⊢P] —I should in this case 
have proved at once that it belonged [i.e., 
⊢P] and did not belong [i.e., ⊢P because 

P⇔⊢P] to Russell’s system. 
    But there is a contradiction here! [i.e., ⊢P 
and ⊢P] 

 

According to [Monk 2007]:12 

Wittgenstein hoped that his work on mathematics would have a cultural 

impact, that it would threaten the attitudes that prevail in logic, 

mathematics and the philosophies of them. On this measure it has been a 

spectacular failure.  

                                                           
i Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e] 
ii Wittgenstein was granting the supposition that Gödel had proved inferential 

undecidability (sometimes called “incompleteness”) of Russell’s system, e.g., ⊢⊬
 

P. However, inferential undecidability is easy to prove using the “self-referential” 

proposition P:  

Proof. Suppose to obtain a contradiction that ⊢
 
P. Both of the following can be 

inferred:  

1) ⊢
 
⊬

 
P from the hypothesis because P⇔⊬P 

2) ⊢
 
⊢

 
P from the hypothesis by Adequacy. 

But 1) and 2) are a contradiction. Consequently, ⊢⊬
 
P follows from proof by 

contradiction. 
iii constructed using a Y fixed point exploiting an untyped sentences for mathematics 

Ludwig Wittgenstein 



 

 

 

 

 

 

 

 

   

8 

 

Unfortunately, recognition of the worth of Wittgenstein’s work on 

mathematics came long after his death. For decades, professional work 

logicians mistakenly believed that they had been completely victorious over 

Wittgenstein. 

 

 

contra Gödel et. al 
“Men… think in herds …  
they only recover their senses slowly, and one by one.”  
Charles Mackay 

 

That mathematics self proves its own consistency contradicts the [Gödel 1931] 

article claiming (using a “self-referential” propositioni I am not provable.) that 

mathematics cannot prove its own consistency. 

 

One resolution is not to have “self-referential” propositions.ii This can be 

achieved by carefully arranging the rules using types so that “self-referential” 

propositions cannot be constructed as shown below.iii The basic idea is to use 

types for propositions so that Y fixed points do not 

exist and consequently cannot be used to construct 

“self-referential” propositions.  

 

However, there is a crucial difference between how 

Russell used types and the method used in Direct 

Logic. Russell attempted to use types as the 

fundamental mechanism for preventing 

inconsistencies by restricting the domain of 

mathematics to object that can be described by a strict 

hierarchical type system. However, he ran into trouble 

because his type mechanism was too strict and 

prevented ordinary mathematical reasoning.iv  

 

  

                                                           
i constructed using a Y fixed point that does not exist for typed Mathematical sentences 
ii There do not seem to be any practical uses of “self-referential” propositions in the 

mathematical foundations of Computer Science. 
iii It is important to note that disallowing “self-referential” propositions does not place 

restrictions on recursion in computation, e.g., the Actor Model, untyped lambda 

calculus, etc. 
iv In order to be able to carry out ordinary mathematical reasoning, Russell introduced 

an (unmotivated) patch called “ramified types” that collapsed the type hierarchy. 
 

Bertrand Russell 
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In this paper, types are used to prevent the construction of “self-referential” 

sentences and to provide the foundations for sets. The difficulties encountered 

by Russell are avoided as follows: 

 having integers13 as primitive 

 constructing sets from the characteristic functions of typed functions 

 types are used to resolve the usual paradoxes with sets, e.g., there is no 

set of all sets, etc.14 

 

The above approach provides a very usable foundation for ordinary 

mathematical reasoning. Combining types and sets as the foundation has the 

advantage of using the strengths of each without the limitations of trying to 

use just one because each can be used to make up for the limitations of the 

other. The key idea is compositionality, i.e., composing new entities from 

others. Types can be composed from other types and sets can be composed 

from other sets.i 

 

Classical Direct Logic 
 

I suspect there are few today who share ... [the] belief that there 

should be a single overarching theory embracing all of mathematics.  

[Dowson 2006] 

 

Classical Direct Logic must meet the following challenges: 

 Consistent to avoid security holes 

 Powerful so that computer systems can formalize all logical inferences 

 Principled so that it can be easily learned by software engineers 

 Coherent so that it hangs together without a lot of edge cases 

 Intuitive so that humans can follow computer system reasoning 

 Comprehensive to accommodate all forms of logical argumentation 

 Inconsistency Robust to be applicable to pervasively inconsistent theories 

of practice with 

o Inconsistency Robust Direct Logic for logical inference about 

inconsistent information 

o Classical Direct Logic for Mathematics used in inconsistency-robust 

theories 

 

In Direct Logic, unrestricted recursion is allowed in programs by using 

recursive definitions. 

                                                           
i Compositionality avoids standard foundational paradoxes. For example, Direct 

Logic composes sentences from others using types so there are no “self-referential” 

propositions. 
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There are uncountably many Actors.15 For example, CreateReal∎[ ] can 

output any real numberi between 0 and 1 whereii     

          CreateReal∎[ ] ≡ [(0 either 1), ⩛Postpone CreateReal∎[ ]] 

              where 

 CreateReal∎[ ] is the result of sending the Actor CreateReal the 

message [ ] 

 (0 either 1) is the nondeterministic choice of 0 or 1,  

 [first, rest] is the list that begins with first and whose remainder 

is rest, and 

 Postpone expression delays execution of expression until the 

value is needed. 

Each CreateReal∎[ ] is one of uncountably many Actors. 

 

There are uncountably many propositions (because there is a different 

proposition for every real number). Consequently, there are propositions that 

are not the abstraction of any element of a denumerable set of sentences. For 

example, p ≡ [x:ℝ]→ ([y:ℝ]→ (y=x)) defines a different predicate p[x] for 

each real number x, which holds for only one real number, namely x.iii 
 

It is important to distinguish between sentences, and propositions. Sentencesiv 

(which without free variables) can be abstracted into propositions that can be 

asserted. Furthermore, termsv can be abstracted into Actors (i.e. objects in 

mathematics). 

 

Abstraction and parsing are becoming increasingly important in software 

engineering. e.g., 

 The execution of code can be dynamically checked against its 

documentation.  Also Web Services can be dynamically searched for 

and invoked on the basis of their documentation. 

 Use cases can be inferred by specialization of documentation and from 

code by automatic test generators and by model checking. 

 Code can be generated by inference from documentation and by 

generalization from use cases. 

 

                                                           
i using binary representation.  
ii Typically, a result returned by the non-deterministic procedure Real is not 

computable in the sense there is no computable deterministic procedure that can 

compute its digits. 
iii For example (p[3])[y] holds if and only if y=3. 
iv which are grammar tree structures 
v which are grammar tree structures 
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Abstraction and parsing are needed for large software systems so that 

that documentation, use cases, and code can mutually speak about what 

has been said and their relationships. 

For example: 

 

 

 

 

 

 

 

 

 

  

Propositionℕ 

e.g.  ∀[n:ℕ]→ ∃[m:ℕ]→ m>n 

i.e., for every ℕ there is a larger ℕ  

 

intuitively : For every number, there is a 

larger number. 

Sentenceℕ 

  e.g. ⦅∀[n:ℕ]→ ⦅∃[m:ℕ]→ ⦅m>n⦆⦆⦆ 

i.e., the sentence that for every ℕ there is a larger ℕ  
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In Direct Logic, a sentence is a grammar tree (analogous to the ones used by 

linguists). Such a grammar tree has terminals that can be constants. And there 

are uncountably many constants, e.g., the real numbers: 

Of course, because the digits of 3.14159...  are computable, there is a 

expression1 such that  expression1  = 3.14159... that can be used to create 

the sentence  ⦅expression1 <  ⦅expression1 + 1⦆⦆.  

However the sentence  ⦅expression1 <  ⦅expression1 + 1⦆⦆ is not the same 

as ⦅3.14159... <  ⦅3.14159... + 1⦆⦆ because it does not have the same 

vocabulary and it is a much larger sentence that has many terminals 

whereas ⦅3.14159... <  ⦅3.14159... + 1⦆⦆  has just 3 terminals: 

Consequently, sentences cannot be enumerated. 

Note:  Type theory of Classical Direct Logic is much stronger than 

constructive type theory with constructive logic16 because Classical 

Direct Logic has all of the power of Classical Mathematics. 

 

  

                                                        < 

                                                                            + 

                                      3.14159...                     

                                                          3.14159...              1                                                                                                

 

                                                              3.14159...            1 
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Mathematics self proves that it is open 
 

Mathematics proves that it is open in the sense that it can prove that its 

theorems cannot be provably computationally enumerated:17 

   Theorem ⊢Mathematics is Open, i.e.,   

                                               ⊢TheoremsComputationalyEnumerable 
Proof.i  

Suppose to obtain a contradiction that it is possible to prove closure, i.e., 

⊢TheoremsComputationalyEnumerable. Then there is a provably 

computable total procedure TheoremsEnumerator:[ℕ]↦Propositionℕ 

such that it is provable that 

  ∀[Ψ:Propositionℕ]→  (⊢ Ψ)  ⇔  ∃[i:ℕ]→TheoremsEnumerator∎[i]= Ψ 

A subset of the theorems are those proving that certain procedures [ℕ]↦ℕ 

are total. Consequently, there is a 

   ProvedTotalsEnumerator:[ℕ]↦([ℕ]↦ℕ) that enumerates the provably 

total computable procedures [ℕ]↦ℕ that can be used in the 

implementation of the following procedure: 

      Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i]) ∎[i] 
Consequently: 

 Diagonal is a proved total procedure because it is implemented 
using computable proved total procedures. 

 Diagonal is not a proved total procedure because it differs from 
every other computable proved total procedure. 

The above contradiction completes the proof. 
 

[Franzén 2004] argued that mathematics is inexhaustible because of 

inferential undecidabilityii of mathematical theories. The above theorem that 

mathematics is open provides another independent argument for the 

inexhaustibility of mathematics. 

 

Completeness of inference versus inferential undecidability of 

closed mathematical theories 
 

A closed mathematical theory is an extension of mathematics whose proofs 

are computationally enumerable. For example, group theory is obtained by 

adding the axioms of groups to Classical Direct Logic along with the axiom 

that theorems of group theory are computationally enumerable. 

 

                                                           
i This argument appeared in [Church 1934] expressing concern that the argument 

meant that there is “no sound basis for supposing that there is such a thing as logic.” 
ii See section immediately below. 
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By definition, if T is a closed theory, there is a total procedure TheoremT 

such that  

∀[Ψ:Proposition]→  (⊢T  Ψ)   ⇔  ∃[i:ℕ]→  TheoremT∎[i]= Ψ  

 

Theorem:i If T is a consistent, closed mathematical theory, there is a 

proposition ChurchTuring
T
 such that both of the following hold:18 

 ⊢⊬
T
  ChurchTuring

T
 

 ⊢⊬
T
  ChurchTuring

T
 

 

In the following note that ⊢ℕ Φ means that there is an actual concrete of Φ 

using the axioms and rules of inference of ℕ. 

 

Corollary: There is a proposition ΦTrueButUnprovableInℕ of ℕ such that the 

following hold:19 

 ⊢⊨ℕ ΦTrueButUnprovableInℕ 

 ⊢⊬ℕ ΦTrueButUnprovableInℕ 

Proof. ii  Since ℕ is consistent, one of the following two cases hold: 

1. ⊨ℕΨChurchTuring: choose ΦTrueButUnprovableInℕ to be ChurchTuringℕ 

2. ⊨ℕ ΨChurchTuring: choose ΦTrueButUnprovableInℕ to be ChurchTuringℕ 

 

The next theorem provides a concrete example of a ΦTrueButUnprovableInℕ 
  

                                                           
i First stated in [Gödel 1931]. 
ii This proof is a replacement for the invalid proof in [Gödel 1931]. 

Alonzo Church 

 

Alan Turing 

 

Ernst Zermelo 

http://knol.google.com/k/-/-/pcxtp4rx7g1t/mdzs7d/alonzo-church.jpg
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Theorem TheoremsComputationalyEnumerableℕ is true but provably in ℕ 

unprovable in ℕi 
Proof:   

Clearly by construction, ⊨ℕ TheoremsComputationalyEnumerableℕ  

Suppose to obtain a contradiction that  

                     ⊢ℕ TheoremsComputationalyEnumerableℕ 

Then there is a provable in ℕ computable total procedure 
TheoremsEnumerator:[ℕ]↦Propositionℕ such that it is provable in ℕ 
that 

∀[Ψ:Propositionℕ]→(⊢ℕ Ψ)⇔∃[i:ℕ]→TheoremsEnumerator∎[i]=Ψ 

A subset of the theorems in ℕ are those proving that certain procedures 

[ℕ]↦ℕ are total. Consequently, there is a procedure 

   ProvedTotalsEnumerator:[ℕ]↦([ℕ]↦ℕ) 
that enumerates the provable in ℕ total computable procedures [ℕ]↦ℕ 

that can be used in the implementation of the following procedure: 

      Diagonal∎[i:ℕ]:ℕ ≡ 1+ (ProvedTotalsEnumerator∎[i]) ∎[i] 
Consequently: 

 Diagonal is a provable in ℕ total procedure because it is 
implemented using computable provable in ℕ total procedures. 

 Diagonal is not a provable in ℕ total procedure because it differs 
from every other computable provable in ℕ total procedure. 

The above contradiction completes the proof. 
 

Theorem ⊢ℕ Consistentℕ  
Proof:  Suppose to derive an inconsistency that Consistentℕ. By the 

definition of inconsistency for ℕ,  

                             ∃[Ψ:Propositionℕ]→├ℕ  (Ψ  Ψ) 

By Existential Elimination, there is some proposition Ψ0 such that 

├ℕ  (Ψ0  Ψ0) which can be used in our proof to infer (Ψ0  Ψ0). 

The above contradiction completes the proof. 

 

  

                                                           
i i.e., both of the following hold 

 ⊨ℕ TheoremsComputationalyEnumerableℕ 

 ⊢ℕ ⊬ℕ TheoremsComputationalyEnumerableℕ 
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Information Invariancei is a fundamental technical goal of logic consisting of 

the following: 

1. Soundness of inference: information is not increased by inferenceii 

2. Completeness of inference: all information that necessarily holds can be 

inferred 

 

Note that a closed mathematical theory
 
T is inferentially undecidableiii with 

respect to ChurchTuring
T
 does not mean incompleteness with respect to the 

information that can be inferred about theory T because  

⊢(⊬
T
 ChurchTuring

T
), (⊬

T ChurchTuring
T
).20 

 
Overview 
 

Contradiction Outcome 

Church discovered to his dismay that 
if theorems of mathematics are 
postulated to be computationally 
enumerable, then mathematics is 
inconsistent. 

Theorems of mathematics cannot 
be computationally enumerated and 
mathematics is open and 
inexhaustible. But theorems of a 
particular theory can be postulated 
to be computationally enumerable.  

Using Y fixed points to construct a 
“self-referential” sentence for 
untyped mathematical sentences, 
[Gödel 1931] claimed that 
mathematics cannot prove its own 
consistency. However, it is pointed 
out in this paper that mathematics 
easily proves its own consistency. 

 
 
The contradiction can be resolved 
by using types for sentences of 
mathematics so that of Y fixed 
points do not exist. 

  

                                                           
i Closely related to conservation laws in physics  

ii E.g. inconsistent information does not infer nonsense. 
iii sometimes called “incomplete” 
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Using Y fixed points to construct a 
“self-referential” sentence using an 
untyped mathematical sentences, 
[Gödel 1931] claimed to prove 
inferential undecidability (sometimes 
called “incompleteness”) for 
mathematics. However, such “self-
referential” sentences lead to 
inconsistency in mathematics. 

 
 
[Church 1935, Turing 1936] proved 
inferential undecidabilty of closed 
mathematical theories without 
using Y fixed points to construct 
“self-referential” sentences. 

In Computer Science, it is important 
that the Natural Numbers (ℕ) be 
axiomatized in a way that does not 
allow integers (e.g. infinite ones) in 
models of the axioms.  However, it is 
impossible to properly axiomatize ℕ 
using first-order logic. 

Using Classical Direct Logic, ℕ can 
be axiomatized in such a way that 
all models are uniquely isomorphic 
to ℕ [Dedekind 1888, Peano 
1889]. Consequently, there are no 
infinite integers in models of the 
axioms. 

In Computer Science, it is important 
that sets of the Natural Numbers 
(Setsℕ) be axiomatized in a way 
that does not allow countable models. 
However, it is impossible to properly 
axiomatize Setsℕ using first-order 
logic. 

Using Classical Direct Logic, 
Setsℕ are defined by 
characteristic functions of types 
and thus all models are uniquely 
isomorphic to Setsℕ. 
Consequently, its models have no 
infinite integers or other 
nonstandard elements. 

First-order logic is unsuitable as the 
foundation of mathematics for 
Computer Science: 

 Some theorems of ordinary 
classical mathematics cannot 
be proved. 

 Some ordinary theorems 
useful in Computer Science 
cannot be proved. 

 There are undesirable models 
of mathematical theories (see 
above). 

Classical Direct Logic is suitable as 
the foundation of mathematics for 
Computer Science: 

 All ordinary theorems of 
classical mathematics can 
be proved. 

 All ordinary theorems 
useful in Computer 
Science can be proved 

 There are no undesirable 
models of mathematical 
theories. 

 

Conclusion 
 

The problem is that today some knowledge still feels too dangerous 

because our times are not so different to Cantor or Boltzmann or Gödel's 

time. We too feel things we thought were solid being challenged; feel our 

certainties slipping away. And so, as then, we still desperately want to 

cling go a belief in certainty. It makes us feel safe. ...  
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 Are we grown up enough to live with uncertainties or will we repeat the 

mistakes of the twentieth century and pledge blind allegiance to another 

certainty.  Malone [2007]The world always needs heretics to challenge the 

prevailing orthodoxies. We are lucky that we can be heretics today without 

any danger of being burned at the stake. But unfortunately I am an old heretic. 

Old heretics do not cut much ice. When you hear an old heretic talking, you 

always say, “Too bad he has lost his marbles.”  

 

What the world needs is young heretics. I am hoping that one or two of 

you people in the audience may fill that role. 

Dyson [2005] 

 

A closed mathematical theory is an extension of mathematics whose proofs 

are computationally enumerable. For example, group theory is obtained by 

adding the axioms of groups to Classical Direct Logic along with the axioms 

that the theorems of group theory are computationally enumerable. If a closed 

mathematical theory T is consistent, then it is inferentially undecidablei 

because provability in T is computationally undecidable [Church 1935 and 

later Turing 1936]. 

 

Information Invariance is a fundamental technical goal of logic consisting of 

the following: 

1. Soundness of inference: information is not increased by inference 

2. Completeness of inference: all information that necessarily holds can be 

inferred. 

That a closed mathematical theory T is inferentially undecidableii with respect 

to Ψ (above) does not mean incompleteness with respect to the information 

that can be inferred because (by construction) 

⊢(⊬
T
Ψ), (⊬

T
 Ψ). 

 

Computer Science needs a rigorous foundation for all of mathematics that 

enables computers to carry out all reasoning without human intervention.21 

[Frege 1879] was a good start, but it foundered on the issue of being well-

founded. [Russell 1925] attempted basing foundations entirely on types, but 

foundered on the issue of being expressive enough to carry to some common 

mathematical reasoning. [Church 1932, 1933] attempted basing foundations 

entirely on untyped higher-order functions, but foundered because it allowed 

“self-referential” propositions leading to contradictions [Kleene and Rosser 

1935]. Presently, Isabelle [Paulson 1989] and Coq [Coquand and Huet 1986] 

                                                           
i i.e. there is a proposition Ψ such that ⊬

T
Ψ and  ⊬

T Ψ, which is sometimes called 

“incompleteness” 
ii sometimes called “incomplete” 
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are founded on types and do not allow theories to reason about themselves. 

Classical Direct Logic is a foundation for all of mathematical reasoning based 

on both sets (for well-founded structures) and types (to provide grounding for 

concepts) that allows general inference about reasoning. 

 

[Gödel 1931] claimed inferential undecidabilityi results for mathematics using 

a “self-referential” proposition constructed using Y fixed points for untyped  

mathematical sentences. In opposition to Wittgenstein's correct argument that 

“self-referential” propositions lead to contradictions in mathematics, Gödel 

later claimed that his results were for a cut-down first-order theory of Peano 

numbers. However, first-order logic is not a suitable foundation for Computer 

Science because of the requirement that computer systems be able to carry out 

all reasoning without requiring human intervention (including reasoning about 

their own inference systems). Following [Frege 1879, Russell 1925, and 

Church 1932-1933], Direct Logic was developed and then investigated “self-

referential” propositions with the following results. 

 Formalization of Wittgenstein's proof that Gödel's “self-referential” 

proposition leads to contradiction in mathematics. So the consistency of 

mathematics had to be rescued against Gödel's “self-referential” 

propositions. The “self-referential” proposition used in results of [Curry 

1941] and [Löb 1955] also lead to inconsistency in mathematics. 

Consequently, mathematics had to be rescued against these “self-

referential” propositions as well. 

 Self-proof of the consistency of mathematics. Consequently, 

mathematics had to be rescued against the claim [Gödel 1931] that 

mathematics cannot prove its own consistency. Also, it became an open 

problem whether mathematics proves its own consistency, which was 

resolved by the author discovering an amazing simple proof.22 A solution 

is to bar “self-referential” propositions using typed sentences of 

mathematics.23 However, Establishment Philosophers have very reluctant 

to accept the solution.  

    According to [Dawson 2006]:24 

 Gödel’s results altered the mathematical landscape, but they did not 

“produce a debacle”. 

 There is less controversy today over mathematical foundations than 

there was before Gödel’s work. 

  

                                                           
i sometimes called “incompleteness” 
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However, Gödel’s writings have produced a controversy of a very 

different kind from the one discussed by Dawson: 

 Gödel's claim that mathematics cannot prove its own consistencyi 

has been disproved. 

 Consequently, Gödel's writings have led to increased controversy 

over mathematical foundations. 

 

The development of Direct Logic has strengthened the position of working 

mathematicians as follows:ii 

 Allowing freedom from the philosophical dogma of the First-Order 

Thesis 

 Providing a usable type theory for all of Mathematics 

 Allowing theories to freely reason about theories 

 Providing Inconsistency Robust Direct Logic for safely reasoning about 

theories of practice that are (of necessity) pervasively inconsistent. 

 

Acknowledgments 

Extensive discussions with Tom Costello, Eric Kao, Ron van der Meyden and 

other members of the Stanford CS Logic Group helped the development of 

this paper. Tom suggested that more conventional terminology be used in the 

formal proof of consistency of mathematics. Martin Davis kindly provide the 

reference for [Gödel 1933]. Comments by James Lottes, Pat Suppes, Daniel 

Raggi, Eric Winsberg, John Woods, and Ming Xiong helped improve the 

presentation. Dan Flickinger suggested including an overview table. Alan 

Bundy pointed out many crucial places where the presentation needed 

improvement. John Woods served ably as the senior referee by compiling an 

excellent synopsis of anonymized conference referee reports for this article. 

Discussions with Michael Beeson helped improve the section on how 

mathematics self-proves its own consistency. Correspondence with Monroe 

Eskew helped clarify the relationship of Classical Direct Logic with first-order 

logic. Also, Monroe suggested looking at Berry's Paradox.iii Correspondence 

with Jack Copeland helped clarify the relationship of the work reported in this 

article with previous work by Gödel et. al. Also, Jack suggested inclusion of 

the closely related natural deduction proof that mathematics proves its own 

consistency in addition to the linear proof.  Discussions on the FriAM 

electronic mailing list were very helpful in improving this article.  

                                                           
i Gödel's writing was accepted doctrine by Establishment Philosophers for over eight 

decades 
ii Of course, Direct Logic must preserve as much previous learning as possible. 
iii Please see section on Berry's Paradox in the historical appendix. 



 

 

 

 

 

 

 

 

   

21 

Conversations with Dana Scott were very helpful in clarifying the discussion 

of the issue of the provability of the consistency of ℕ within ℕ. 

 

Bibliography 
 
Anthony Anderson and Michael Zelëny (editors). Logic, Meaning and 

Computation: Essays in Memory of Alonzo Church Springer. 2002. 
Jeremy Avigad and John Harrison. Formally Verified Mathematics. CACM. 

April 2014. 
Steve Awodey and Erich Reck. Completeness and Categoricity. Parts I and 

II: Nineteenth-century Axiomatics to Twentieth-century Metalogic. History 
and Philosophy of Logic. Vol. 23. 2002.  

Steve Awodey, Álvaro Pelayo, and Michael A. Warren. Voevodsky’s 
Univalence Axiom in Homotopy Type Theory Notices of AMS. October 
2013.  

Alan Anderson. Mathematics and the “Language Game” (1958) in 
Philosophy of Mathematics Selected Readings. Prentice Hall. 1964. 

David Barker-Plummer, Jon Barwise and John Etchemendy. Language, 
Proof, and Logic: Second Edition Stanford Center for the Study of 
Language and Information. 2011. 

Jon Barwise. Model-Theoretic Logics: Background and Aims in “Model 
Theoretic Logics” Springer-Verlag. 1985. 

Hamid Berenji, et. al. A reply to the paradoxical success of Fuzzy Logic AI 
Magazine. Spring 1994. 

Francesco Berto. The Gödel Paradox and Wittgenstein’s Reasons 
Philosophia Mathematica. February, 2009. 

Errett Bishop. The Crisis in Contemporary Mathematics Historia 
Mathematica. 2. 1975. 

George Boolos. On second-order logic Journal of Philosophy. Vol. 72. 1975. 
Bernd Buldt. The Scope of Gödel’s First Incompleteness Theorem. Logica 

Universalis. Volume 8. December 2014. 
Andrea Cantini, Paradoxes and Contemporary Logic, Stanford 

Encyclopedia of Philosophy. Winter 2012 Edition. 
Rudolph Carnap.  Logische Syntax der Sprache. (The Logical Syntax of 

Language Open Court Publishing 2003) 1934. 
Walter Carnielli and João Marcos. Ex Contradictione Non Sequitur 

Quodlibet Bulletin of Advanced Reasoning and Knowledge. 2001. 
Hasok Chang. Inventing Temperature:  Measurement and Scientific Progress 

Oxford University Press. 2007. 
Aziem Chawdhary, Byron Cook, Sumit Gulwani, Mooly Sagiv, and 

Hongseok Yang Ranking Abstractions ESOP’08. 
Gregory Chaitin. Interview in “Dangerous Knowledge” BBC4 

documentary. 2007. 
Alonzo Church. A Set of postulates for the foundation of logic (1) Annals of 

Mathematics. Vol. 33, 1932. 



 

 

 

 

 

 

 

 

   

22 

Alonzo Church. A Set of postulates for the foundation of logic (2) Annals of 
Mathematics. Vol. 34, 1933. 

Alonzo Church. The Richard Paradox. Proceedings of American 
Mathematical Society. 1934. 

Alonzo Church. An unsolvable problem of elementary number theory 
Bulletin of the American Mathematical Society 19, May, 1935. American 
Journal of Mathematics, 58 (1936), 

Alonzo Church: A Formulation of the Simple Theory of Types, Journal of 
Symbolic Logic. vol. 5. 1940. 

Alonzo Church The Calculi of Lambda-Conversion Princeton University 
Press. 1941. 

Alonzo Church. Introduction to Mathematical Logic Princeton University 
Press. 1956. 

Paul Cohen. The Independence of the Continuum Hypothesis I and II 
Proceedings of the National Academy of Sciences of the United States of 
America, Vol. 50, No. 6. Dec. 15, 1963. 

John Corcoran.  Second-order Logic.  Logic, Meaning and Computation. 
Kluwer. 2001.  

Thierry Coquand and Gérard Huet: The calculus of constructions. Technical 
Report 530, INRIA, Centre de Rocquencourt, 1986.John Corcoran. Gaps 
between logical theory and mathematical practice in The methodological 
unity of science. 1973.John Corcoran. Categoricity. History and 
Philosophy of Logic. Vol. 1. 1980 

Will Clinger. Foundations of Actor Semantics MIT Mathematics Doctoral 
Dissertation. June 1981.  

Jack Copeland. The Essential Turing Oxford University Press. 2004. 
Haskell Curry “Some Aspects of the Problem of Mathematical Rigor” 

Bulletin of the American Mathematical Society Vol. 4. 1941. 
Reuben Hersh (editor). 18 Unconventional Essays on the Nature of 

Mathematics Springer. 2005 
John Dawson. Shaken Foundations or Groundbreaking Realignment? A 

Centennial Assessment of Kurt Gödel's Impact on Logic, Mathematics, and 
Computer Science FLOC’06. 

Richard Dedekind (1888) What are and what should the numbers be? 
(Translation in From Kant to Hilbert: A Source Book in the Foundations 
of Mathematics. Oxford University Press. 1996)  Braunschweig. 

Cora Diamond. Wittgenstein's Lectures on the Foundations of Mathematics, 
Cambridge, 1939 Cornell University Press. 1967. 

Heinz-Dieter Ebbinghaus. Ernst Zermelo: An Approach to His Life and Work 
Springer. 2007. 

Solomon Feferman. Arithmetization of Metamathematics in a General 
Setting Fundamenta Mathematicae. 49. 1960. 

Solomon Feferman. Finitary Inductively Presented Logics Logic 
Colloquium ‘88. North-Holland, 1989. 

Solomon Feferman “Axioms for determinateness and truth” Review of 
Symbolic Logic. 2008. 



 

 

 

 

 

 

 

 

   

23 

Freeman Dyson. Heretical Thoughts about Science and Society Boston 
University. November 1, 2005. 

T. S. Eliot. Four Quartets. Harcourt. 1943. 
Solomon Feferman, Solomon (1984). Toward Useful Type-Free Theories, I. 

"Journal of Symbolic Logic. 1984. 
Juliet Floyd and Hilary Putnam A note on Wittgenstein’s “Notorious 

Paragraph” about the Gödel's Theorem Journal of Philosophy. 2000. 
Torkel Franzén. Inexhaustibility AK Peters. 2004 
Gottlob Frege. Begriffsschrift: eine der arithmetischen nachgebildete 

Formelsprache des reinen Denkens Halle, 1879. 
Gerhard Gentzen. Investigations into Logical Deduction. 1934-1935 in The 

collected works of Gerhard Gentzen. edited by Szabo. North-Holland, 
1969. 

Gerhard Gentzen. The Consistency of Arithmetic. 1936 in The collected 
works of Gerhard Gentzen. edited by Szabo. North-Holland, 1969. 

Kurt Gödel. Über die Vollständigkeit des Logikkalküls. Doctoral dissertation. 
University Of Vienna. 1929 

Kurt Gödel. Die Vollständigkeit der Axiome des logischen 
Functionenkalküls, Monatshefte für Mathematik und Physik 1930.Kurt 
Gödel (1931) On formally undecidable propositions of Principia 
Mathematica in “A Source Book in Mathematical Logic, 1879-1931” 
Translated by Jean van Heijenoort. Harvard Univ. Press. 1967. 

Kurt Gödel (1933) Kurt Gödel Collected Works, Vol. III. Oxford University 
Press. Page 47. 

Godfrey Hardy, A Mathematician’s Apology Cambridge: University Press. 
1940 

Carl Hewitt, Peter Bishop and Richard Steiger. A Universal Modular Actor 
Formalism for Artificial Intelligence IJCAI-1973.  

Carl Hewitt Inconsistency Robustness for Logic Programs in Inconsistency 
Robustness. College Publications. 2015. 

Carl Hewitt Formalizing common sense for inconsistency-robust information 
integration using Direct Logic™ Reasoning and the Actor Model 
Inconsistency Robustness 2010.  

Carl Hewitt ActorScript™ extension of C#™, Java™ , JavaScript™ and 
Objective C™ in Inconsistency Robustness. College Publications. 2015. 

Carl Hewitt Actor Model of Computation: Many-core Inconsistency-robust 
Information Integration  Inconsistency Robustness 2011. 

Carl Hewitt. What is computation? A Computable Universe: Understanding 
Computation & Exploring Nature as Computation. Edited by Hector Zenil. 
World Scientific Publishing Company. 2012. 

David Hilbert Mathematical Problems Lecture delivered before the 
International Congress of Mathematicians at Paris in 1900. Translation by 
Newson:  http://aleph0.clarku.edu/~djoyce/hilbert/problems.html  

David Hilbert. Neubegründung der Mathematik: Erste Mitteilung 
Abhandlungen aus dem Seminar der Hamburgischen Universität. 1. 1922. 

http://arxiv.org/abs/0812.4852
http://arxiv.org/abs/0812.4852
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330
http://arxiv.org/abs/0907.3330


 

 

 

 

 

 

 

 

   

24 

English translation in From Brouwer to Hilbert. The Debate on the 
Foundations of Mathematics in the 1920s Oxford University Press. 1998. 

Stanisław Jaśkowski On the Rules of Suppositions in Formal “Logic Studia 
Logica” 1, 1934. (reprinted in: Polish logic 1920-1939, Oxford University 
Press, 1967. 

Stephen Kleene and John Barkley Rosser The inconsistency of certain formal 
logics Annals of Mathematics Vol. 36. 1935. 

Stephen Kleene General recursive functions and natural numbers 
Mathematical Annuals. 1936. 

Stephen Kleene On the Notation of Ordinal Numbers Journal of Symbolic 
Logic 1938. 

Stephen Kleene. Introduction to Metamathematics. North Holland. 1952. 
Morris Kline. Mathematical Thought from Ancient to Modern Times Oxford 

University Press, 1990. 
Rob Knies. Terminator Tackles an Impossible Task Microsoft Research.  

Aug. 6. 2006 
Robert Kowalski The Early Years of Logic Programming CACM. January 

1988. 
Thomas Kuhn. The Structure of Scientific Revolutions University of Chicago 

Press. 1962. 
Imre Lakatos. Proofs and Refutations Cambridge University Press. 1976. 
John Law. After Method:  mess in social science research Routledge. 2004. 
Martin Löb. Solution of a problem of Leon Henkin. Journal of Symbolic 

Logic. Vol. 20. 1955. 
David Malone. Dangerous Knowledge BBC4 documentary. 2007. 

http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-
dangerous-knowledge/1 

Ray Monk. Bourgeois, Boshevist or anarchist? The Reception of 
Wittgenstein’s Philosophy of Mathematics in Wittgenstein and his 
interpreters. Blackwell. 2007. 

Nick Nielsen Alternative Foundations/philosophical February 28, 2014.  
http://www.cs.nyu.edu/pipermail/fom/2014-February/017861.html 

nLab. Constructive mathematics 2014. 
http://ncatlab.org/nlab/show/constructive+mathematics 

Russell O'Connor. Essential Incompleteness of Arithmetic Verified by Coq 
TPHOLs 2005. http://arxiv.org/abs/cs/0505034 

George Orwell. In Front of Your Nose Tribune. London. March 22, 1946. 
Lawrence Paulson.  A Machine-Assisted Proof of Gödel's Incompleteness 

Theorems Computer Laboratory, University of Cambridge.  September 
2014. 
http://www.cl.cam.ac.uk/~lp15/papers/Formath/Goedel-slides.pdf 

Giuseppe Peano Arithmetices principia, nova methodo exposita (The 
principles of arithmetic, presented by a new method) 1889. 

Álvaro Pelayo, Michael A. Warren Homotopy type theory and Voevodsky's 
univalent foundations ArXiv:1210.5658. October 2012. 

http://research.microsoft.com/en-us/news/features/terminator.aspx
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1
http://www.dailymotion.com/playlist/x1cbyd_xSilverPhinx_bbc-dangerous-knowledge/1
http://www.cs.nyu.edu/pipermail/fom/2014-February/017861.html
http://ncatlab.org/nlab/show/constructive+mathematics
http://arxiv.org/abs/cs/0505034
http://www.cl.cam.ac.uk/~lp15/papers/Formath/Goedel-slides.pdf


 

 

 

 

 

 

 

 

   

25 

Francis Pelletier A Brief History of Natural Deduction “History and 
Philosophy of Logic” Vol. 20, Issue. 1, 1999. 

Max Planck Scientific Autobiography and Other Papers 1949. 
Graham Priest. Wittgenstein’s remarks on Gödel’s Theorem in 

Wittgenstein’s Lasting Significance. Routledge 2004.  
Panu Raatikainen. Gödel's Incompleteness Theorems Stanford Encyclopedia 

of Philosophy.  Nov. 11, 2013. 
Jules Richard. Les Principes des Mathématiques et le Problème des 

Ensembles. Revue Générale des Sciences Pures et Appliquées. 1905. 
Translated in “Source Book in Mathematical Logic 1879-1931” Harvard 
University Press. 1964 

Victor Rodych. Misunderstanding Gödel: New arguments about 
Wittgenstein and new remarks by Wittgenstein Dialectica 2003. 

Claude Rosental. Weaving Self-Evidence Princeton. 2008. 
Richard Routley. Dialectical logic, semantics and metamathematics 

Erkenntnis 1979. 
Bertrand Russell. “Les paradoxes de la logique” Revue de métaphysique et 

de morale 1906. 
Bertrand Russell. Mathematical logic as based on the theory of types 

American. journal of mathematics. 1908, 
Bertrand Russell. Principia Mathematica  2nd Edition 1925. 
Michael Shulman. Type theory and category theory April 10, 2012. 

http://www.math.ucsd.edu/~mshulman/hottminicourse2012/ 
Dana Scott. Axiomatizing Set Theory “Symposium in Pure Mathematics” Los 

Angeles. July 1967. 
Dana Scott Data Types as Lattices “SIAM Journal on computing”. 1976. 
Oron Shagrir Gödel on Turing on Computability Church's Thesis after 70 

years Ontos-Verlag. 2006. 
Stewart Shapiro Foundations without Foundationalism: A Case for Second-

Order Logic Oxford. 2002. 
Stewart Shapiro. Do Not Claim Too Much: Second-order Logic and First-

order Logic Philosophia Mathematica.1999. 
Natarajan Shankar. Meta-mathematics, Machines, and Gödel’s Proof. 

Cambridge University Press. 1994. 
Sandro Skansi. A constructive proof of cut elimination for a system of full 

second-order logic Retrieved February 27, 2014. 
http://www.logic101.net/upload/4296/documents/Article%20SO%20Ska
nsi.pdf 

Alfred Tarski A Decision Method for Elementary Algebra and Geometry 
University of California Press. 1951. 

Alfred Tarski and Robert Vaught. “Arithmetical extensions of relational 

systems” Compositio Mathematica 13. 1957 
Alan Turing. On computable numbers, with an application to the 

Entscheidungsproblem Proceedings London Math Society. 1936. 

http://www.logic101.net/upload/4296/documents/Article%20SO%20Skansi.pdf
http://www.logic101.net/upload/4296/documents/Article%20SO%20Skansi.pdf


 

 

 

 

 

 

 

 

   

26 

van Dalen, D. Zermelo  and the Skolem Paradox Logic Group Preprint 
Series.  Number 83.  February 1998. Utrecht Research Institute of 
Philosophy. 

Rineke Verbrugge. Provability Logic “The Stanford Encyclopedia of 
Philosophy” 2010. 

Albert Visser. Can We Make the Second Incompleteness Theorem 
Coordinate Free Journal on Logic and Computation. 21(4) 2011. 

Hao Wang A Logical Journey, From Gödel to Philosophy MIT Press. 1974. 
Dan Willard On the Results of a 14-Year Effort to Generalize Gödel’s Second 

Incompleteness Theorem and Explore Its Partial Exceptions Collegium 
Logicum IX, 2007 

Leslie White. The Locus of Mathematical Reality: An Anthropological 
Footnote in The World of Mathematics. Vol. 4. Dover. 1956. 

Raymond Wilder Evolution of mathematical concepts. An elementary study. 
Dover. 1968. 

Ludwig Wittgenstein. 1956. Bemerkungen ¨uber die Grundlagen der 
Mathematik/Remarks on the Foundations of Mathematics, Revised Edition 
Basil Blackwell. 1978 

Ludwig Wittgenstein. Philosophische Grammatik Basil Blackwell. 1969. 
Ludwig Wittgenstein. (1933-1935) Blue and Brown Books. Harper. 1965. 
Ludwig Wittgenstein Philosophical Investigations Blackwell. 1953/2001. 
Noson Yanofsky. The Outer Limits of Reason MIT Press 2013. 
Ernst Zermelo Uber Grenzzahlen und Mengenbereiche: Neue 

Untersuchungen Äuber die Grundlagen der Mengenlehre Fundamenta 
mathematicae. 1930; English translation by Michael Hallett, “On boundary 
numbers and domains of sets: new investigations in the foundations of set 
theory" From Kant to Hilbert: a Source Book in the Foundations of 
Mathematics, Oxford University Press, 1996 

Ernst Zermelo. Collected Works/Gesammelte Werke: Volume I/Band I - Set 
Theory, Miscellanea/Mengenlehre, Varia (Schriften der Mathematisch-
naturwissenschaftlichen Klasse) (English and German Edition) Springer. 
2010. 

 

  



 

 

 

 

 

 

 

 

   

27 

Appendix 1. Notation of Classical Direct Logic 
 

• Type i.e., a Type is only by the rules below: 

• Boolean25,ℕ26,Type:Type 

• If σ:Type, then Propositionσ,Sentenceσ,Proofσ, 
Functionsσ:Type 

• If σ1,σ2:Type, then σ1⦶σ2i,[σ1, σ2]27,[σ1]↦σ2ii,𝛔𝟐
𝛔𝟏

 
iii:Type 

• True,False:Boolean and 0,1:ℕ  
 

 Propositions, i.e., a Proposition is only by the rules below: 

• If :Propositionσ, then :Propositionσ. 
• If ,:Propositionσ, then , , ⇨, 

⇔:Propositionσ. 
• If p:Boolean and ,:Propositionσ, then  

(p  �  True⦂ 1⍌ False⦂ 2):Propositionσ.28 
• If σ:Type and x1,x2:σ, then x1=x2,x1⊑x2,x1x2:Propositionσ. 
• If σ1,σ2:Type, x1:σ1 and x2:σ2, then 

x1x2,x1:?x2:Propositionσ1⦶σ2. 
• If σ1,σ2:Type, x:σ1, and p:𝐏𝐫𝐨𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧𝛔2

𝛔1, then 

p[x]:Proposition2
σ2.iv 

• If p:Proofσ, T:Theory, and 1 to n:Propositionσ, 

then (1, …, k├
𝐩

𝐓
  k+1, …, n):Propositionσ.29 

• If s:Sentenceσ with no free variables, then s :Propositionσ. 
 

 

  

                                                           
i For i=1,2  

 If x:σi, then ((σ1⦶σ2)[x]):?(σ1⦶σ2) and x=((σ1⦶σ2)[x])↓σi.  

 ∀[τ:Type, z:τ]→ z:?σ1⦶σ2 ⇔ ∃[x:σi]→ z=(σ1⦶σ2)[x] 
ii Type of computable procedures from σ1 into σ2. 

If σ1,σ2:Type, f:([σ1]↦σ2) and x:σ1, then f ∎[x]:?σ2. 

iii If σ1,σ2:Type, f:σ2
𝛔1  and x:σ1, then f[x]:?σ2. 

iv Proposition2
σ2 ≡ PropositionPropositionσ2 

   The type of p[x] means that “self-referential” propositions cannot be constructed in 

Direct Logic. 
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Grammar trees (i.e. expressions and sentences) are defined as follows : 

 Expressions, i.e., an Expressionσ is only by the rules below: 
• ⦅Boolean⦆,⦅ℕ⦆,⦅Type⦆,⦅Theory⦆:ConstantType. 
• ⦅True⦆,⦅False⦆:ConstantBoolean and ⦅0⦆,⦅1⦆:Constantℕ  
• If σ:Type and x:Constantσ, then x:Expressionσ. 
•  If e:ExpressionType, then ⦅Sentencee⦆,⦅Propositione⦆, 

⦅Proofe⦆,⦅Functionse⦆:ExpressionType. 
• If σ:Type and x:Variableσ, then x:Expressionσ. 
• If σ,σ1 to n,τ1 to n:Type, x1 to n:Expressionσ1 to n, y:Expressionσ 

and v1 to n:Variableσ1 to n in y and in each x1 to n
30, then  

⦅Let v1τ1  ≡ x1 , ... , vnτn  ≡ xn
31｡y⦆:Expressionσ. 

• If e1,e2:ExpressionType, then 
⦅e1⦶e2⦆,⦅[e1, e2]⦆,⦅[e1]↦e2⦆,⦅e2

𝐞1⦆:ExpressionType. 
• If σ:Type, t1:ExpressionBoolean, t2, t3:Expressionσ, then 

 ⦅t1 � True⦂ t2 ⍌ False⦂ t3⦆:Expressionσ.32 
• If σ1,σ2:Type, t:Expressionσ2 and x:Variableσ1 in t33, then 

 ⦅[x:σ1]:σ2 → t⦆:Expression𝝈𝟐
𝝈𝟏. 

• If σ1,σ2:Type, e:Expression𝝈𝟐
𝝈𝟏 and x:Expressionσ1, then 

⦅e[x]⦆:Expressionσ2. 
• If σ1,σ2:Type, e:Expression[σ1]↦σ2 and x:Expressionσ1, then 

⦅e∎[x]⦆:Expressionσ2. 
• If σ1,σ2:Type, e:Expression𝝈𝟐

𝝈𝟏 and x:Expressionσ1, then 
⦅e[x]⦆:Expressionσ2. 

• If σ:Type and e:Expressionσ with no free variables, then e :σ. 
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 Sentences, i.e., a Sentence is only by the rules below: 

• If s1:Sentenceσ then, ⦅s1⦆:Sentenceσ. 
• If s1:Sentenceσ and s2:Sentenceσ then 

⦅s1s2⦆,⦅s1s2⦆,⦅s1⇨s2⦆,⦅s1⇔s2⦆:Sentenceσ. 
• If t:ExpressionBoolean, s1,s2:Sentenceσ, then  

⦅t  � True⦂ s1⍌  False⦂ s2⦆:Sentenceσ.34 
• If σ:Type, t1:Expressionσ and t2:Expressionσ, then 

⦅t1=t2⦆,⦅t1⊑t2⦆,⦅t1t2⦆:Sentenceσ. 
• If σ1,σ2:Type, t1:Expressionσ1 and t2:Expressionσ2, then 

⦅t1t2⦆,⦅t1:?t2⦆:Sentenceσ1⦶σ2. 
• If σ1,σ2:Type, x:Variableσ1 in s35 and s:Sentenceσ2,  then 

⦅∀[x:σ1]→ s⦆,⦅∃[x:σ1]→ s⦆:Sentenceσ1⦶σ2. 
• If σ1,σ2:Type, x:Expressionσ1, and p:𝐒𝐞𝐧𝐭𝐞𝐧𝐜𝐞𝛔2

𝛔1, then 

⦅p[x]⦆:Sentence2σ2.i 
• If T:ExpressionTheory, s1 to n:Sentenceσ and 

p:xpressionProofσ , then 

⦅s1, …, sk ├
𝐩

𝐓
 sk+1, …, sn⦆:Sentenceσ.  

                                                           
i Sentence2

σ2 ≡ SentenceSentenceσ2 

The type of ⦅p[x]⦆ means that “self-referential” sentences cannot be constructed in 

Direct Logic.  
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Foundations with both types and sets 
Everyone is free to elaborate [their] own foundations. All that is required 

of [a] Foundation of Mathematics is that its discussion embody absolute 

rigor, transparency, philosophical coherence, and addresses 

fundamental methodological issues. 

[Nielsen 2014] 

 

Classical Direct Logic develops foundations for mathematics by deriving setsi 

from typesii and the Peano/Dedekind axioms for the integers to  encompass all 

of standard mathematics including the reals, analysis, geometry, etc.36 

 

Combining types and sets as the foundation has the advantage of using the 

strengths of each without the limitations of trying to use just one because each 

can be used to make up for the limitations of the other. The key idea is 

compositionality, i.e., composing new entities from others. Types can be 

composed from other types and sets can be composed from other sets. 

 

Functions, graphs, and lists are fundamental to the mathematical foundations 

of Computer Science. FunctionsOfOrderσ (type of functions based on type 

σ) that can be defined inductively as follows: 

    FunctionsOfOrderσ[1] ≡ σσ 

 
   FunctionsOfOrderσ[n+1] ≡  

                         (σ⦶FunctionsOfOrderσ[n])σ⦶FunctionsOfOrderσ[n]
 

  

                                                           
i According to [Scott 1967]:  “As long as an idealistic manner of speaking about 

abstract objects is popular in mathematics, people will speak about collections of 

objects, and then collections of collections of ... of collections. In other words set 

theory is inevitable.” [emphasis in original] 
ii According to [Scott 1967]: “there is only one satisfactory way of avoiding the 

paradoxes: namely, the use of some form of the theory of types... the best way to 

regard Zermelo's theory is as a simplification and extension of Russell's ...simple 

theory of types. Now Russell made his types explicit in his notation and Zermelo 

left them implicit. It is a mistake to leave something so important invisible...” 
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Furthermore, the process of constructing orders of FunctionsOfOrderσis 

exhaustive: 

Axiom for Functions 
      ∀[σ,τ:Type, x:τ] → x:Functionsσ ⇔  

                                                                        ∃[i:ℕ] → x:FunctionsOfOrderσ[i] 

 

Sets can be constructed from functions as follows: 

   ∀[σ:Type] → Setsσ ≡ Booleanσ⦶Functionsσ 

 

The above axiom for sets solved the problem with the use of types in analysis 

mentioned in [Kleene 1952]. 

 

Sets  provide a convenient way to collect together elements with the following 

axiom.37  

       ∀[s:Setsσ]→ ∀[e:σ⦶Setsσ]→  es  ⇔ s[e]=True 

 

Note that there is no set corresponding to the type Setsℕwhich is an 

example of how types extend the capabilities of sets.38 

 

Natural Numbers, Real Numbers, and their Sets are Unique up to 

Isomorphismi 

 

The following strong induction axiom39 can be used to 

characterize the natural numbers (ℕ40) up to isomorphism 

with a unique isomorphism: 

 

 ∀[P:Propositionℕℕ]→  Inductive[P]⇨ ∀[i:ℕ]→ P[i]  

      where  ∀[P:Propositionℕℕ]→ 

          Inductive[P:Propositionℕℕ]:Proposition2
ℕ ≡  

                                                                         P[0]  ∀[i:ℕ]→ P[i]⇨P[i+1]ii 
 

  

                                                           
i and the isomorphism is unique 

ii Proposition2
ℕ ≡ PropositionPropositionℕ 

Giuseppe Peano 
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The following question arises: What mathematics have been captured in the 

above foundations? 

 

Theoremi (Categoricity of ℕ):41  

∀[M:Modelℕ]→ M≈ℕ, i.e., models of the natural numbers ℕ are 

isomorphic by a unique isomorphism.ii 

 

Theoremiii (Categoricity of ℝ):42  

∀[M:Modelℝ]→ M≈ℝ, i.e., models of the 

real numbers ℝ are isomorphic by a unique 

isomorphism.iv 

 

The following can be used to characterize the real 

numbers (ℝ43) up to isomorphism with a unique 

isomorphism: 

 
∀[S:Setℝ]→  S≠{ }  Bounded[S] ⇨ HasLeastUpperBound[S] 
 where   
    Bounded[S:Setℝ] ⇔ ∃[b:ℝ]→ UpperBound[b, S]  
    UpperBound[b:ℝ, S:Setℝ] ⇔  bS  ∀[xS]→ x≦b 
    HasLeastUpperBound[S:Setℝ]]  ⇔ ∃[b:ℝ]→ LeastUpperBound[b, S] 
    LeastUpperBound[b:ℝ, S:Setℝ] 
                              ⇔  UpperBound[b,S]  ∀[xS]→ UpperBound[x,S] ⇨ x≦b 
 

Theorem (Categoricity of  Setsℕ⦶ℝ):44  

∀[M:ModelSetsℕ⦶ℝ]→ M≈Setsℕ⦶ℝ, i.e., 

models of Setsℕ⦶ℝ are isomorphic by a unique 

isomorphism.v 

 

Setsℕ⦶ℝ (which is a fundamental type of 

mathematics) is exactly characterized axiomatically, 

which is what is required for Computer Science. 

                                                           
i [Dedekind 1888, Peano 1889] 
ii Consequently, the type of natural numbers ℕ is unique up to isomorphism and the 

type of reals ℝ is unique up to isomorphism. 

iii [Dedekind 1888] 
iv Consequently, the type of natural numbers ℕ is unique up to isomorphism and is a 

subtype of reals ℝ that is unique up to isomorphism. 
v Consequently, the type of natural numbers ℕ is unique up to isomorphism and the 

type of reals ℝ is unique up to isomorphism. 

Richard Dedekind 
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Classical Direct Logic is much stronger than first-order 

axiomatizations45 of set theory in that it provides categoricity for 

Setsℕ⦶ℝ. Categoricity is very important in Computer Science so that there 

are no nonstandard elements in models of computational systems, e.g., infinite 

integers and infinitesimal reals. 

 

Theorem (Set Theory Model Soundness): (⊢Setsℕ) ⇨ ⊨Setsℕ 

Proof: Suppose ⊢Setsℕ. The conclusion immediately follows because the 

axioms for the theory Setsℕ hold in the model Setsℕ . 

 

Appendix 2. Historical Background 

The powerful (try to) insist that their statements are literal 

depictions of a single reality. ‘It really is that way’, they tell us. 

‘There is no alternative.’ But those on the receiving end of such 

homilies learn to read them allegorically, these are techniques 

used by subordinates to read through the words of the powerful 

to the concealed realities that have produced them. 

Law [2004] 

 

Gödel was certain 
“Certainty” is far from being a sign of success; it is only a symptom of 

lack of imagination and conceptual poverty. It produces smug 

satisfaction and prevents the growth of knowledge.  

[Lakatos 1976] 

Paul Cohen [2006] wrote as follows of his interaction with 

Gödel:  

His [Gödel's] main interest seemed to lie in discussing 

the “truth” or “falsity” of these questions, not merely 

in their undecidability. He struck me as having an 

almost unshakable belief in this “realist” position, 

which I found difficult to share. His ideas were 

grounded in a deep philosophical belief as to what the 

human mind could achieve. I greatly admired this faith 

in the power and beauty of Western Culture, as he 

put it, and would have liked to understand more 

deeply what were the sources of his strongly held 

beliefs. Through our discussions, I came closer to his point of view, 

Ernst Zermelo 

Kurt Gödel 

 

http://knol.google.com/k/-/-/pcxtp4rx7g1t/mdzs7d/goedel.png
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although I never shared completely his “realist” point of view, that all 

questions of Set Theory were in the final analysis, either true or false.  

 

Chaitin [2007] presented the following analysis: 

Gödel’s proof of inferential undecidability [incompleteness] was too 

superficial. It didn't get at the real heart of what was going on. It was more 

tantalizing than anything else. It was not a good reason for something so 

devastating and fundamental. It was too clever by half. It was too 

superficial. [It was based on the clever construction] “I'm unprovable.” So 

what? This doesn't give any insight how serious the problem is. 

 

Gödel's alleged Mathematical sentence I am not provable.  comes from a 

nonexistent Y fixed point (sometimes called the Diagonal Lemma) that 

doesn't exist because of types. His results were for Principia Mathematica, 

which was intended as the foundation of all of Mathematics. Unfortunately, 

Principia Mathematica had some defects in its types that have been corrected 

in Direct Logic. 

 

Church/Turing correctly proved inferential incompleteness (sometimes 

called the “First Incompleteness Theorem”) without using a nonexistent 

“self-referential” proposition. The Church/Turing theorem and its proof are 

very robust. 

 

After Church[1935] and Turing[1936] proved inferential undecidabilty of 

closed mathematical theories using computational undecidablityi, Gödel 

claimed more generality and that his results applied to all consistent 

mathematical systems that incorporate Peano axioms. However, when he 

learned of Wittgenstein's devastating proof of inconsistency,46 Gödel retreated 

to claiming that his results applied to the very weak first-order theory of 

natural numbers.47 The upshot is that Gödel never acknowledged that his “self-

referential” propositionii implies inconsistency in mathematics. See further 

discussion below in this article. 

 

Also, the ultimate criteria for correctness in the theory of natural numbers is 

provability using categorical induction [Dedekind 1888, Peano 1889]. In this 

sense, Wittgenstein was correct in his identification of “truth” with 

provability. On the other hand, Gödel obfuscated the important identification 

of provability as the touchstone of ultimate correctness in mathematics. 

 

                                                           
i See proof of inferential undecidablity of closed mathematical theories elsewhere in 

this article. 
ii constructed using Y fixed points exploiting an untyped notation for mathematics 
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von Neumann [1961] had a very different view from 

Gödel: 

  

It is not necessarily true that the mathematical 

method is something absolute, which was 

revealed from on high, or which somehow, after 

we got hold of it, was evidently right and has 

stayed evidently right ever since. 

 

Limitations of first-order logic 
By this it appears how necessary it is for nay man that aspires to true 

knowledge to examine the definitions of former authors; and either to 

correct them, where they are negligently set down, or to make them 

himself.  For the errors of definitions multiply themselves, according as 

the reckoning proceeds, and lead men into absurdities, which at last 

they see, but cannot avoid, without reckoning anew from the beginning; 

in which lies the foundation of their errors... 
[Hobbes Leviathan, Chapter 4]48 

 

It is very important not to confuse Mathematics with first-order logic, which 

was invented by philosophers for their own purposes. It turns out that first-

order logic is amazing weak. For example, first-order logic is incapable of 

characterizing even the Peano numbers, i.e., there are infinite integers in 

models of every first-order axiomatization of the Peano numbers. 

Furthermore, there are infinitesimal real numbers  in models of every first-

order axiomatization of the real numbers.i Of course, infinite integers and 

infinitesimal reals are monsters that must be banned from the mathematical 

foundations of Computer Science. 

 

However, some philosophers have found first-order logic to be useful for their 

careers because it is weak enough that they can prove theorems about first-

order axiomatizations whereas they cannot prove such theorems about 

stronger practical systems, e.g., Classical Direct Logic. For example, there is 

a famous theorem that first-order set theory is too weak to decide 

ContinuumHypothesis49, i.e., ⊬FirstOrderSetAxiomsContinuumHypothesis and 

⊬FirstOrderSetAxiomsContinuumHypothesis.50 However, ContinuumHypothesis 

is still an open problem in Mathematics. That ContinuumHypothesis is an 

open problem is not so important for Computer Science because for subsets 

                                                           
i Likewise, first-order set theory (e.g. ZFC) is very weak. See discussion immediately 

below. 

John von Neumann 
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of reals of that are computablei, the ComputationalContinuumTheoremii 

holds.51 

 

Zermelo considered the First-Order Thesis to be a 

mathematical “hoax” because it necessarily allowed 

unintended models of axioms.52  

 

 

 

[Barwise 1985] critiqued the First-Order Thesisiii as 

follows: 

 

The reasons for the widespread, often uncritical 

acceptance of the first-order thesis are numerous. 

The first-order thesis ... confuses the subject matter of 

logic with one of its tools. First-order language is just 

an artificial language structured to help investigate 

logic, much as a telescope is a tool constructed to 

help study heavenly bodies. From the perspective of 

the mathematics in the street, the first-order thesis is 

like the claim that astronomy is the study of the 

telescope.53 

 

Computer Science is making increasing use of Model 

Analysisiv in the sense of analyzing relationships among the following: 

 concurrent programs and their Actor Model denotations 

 axiom systems and their  models 

 

Having infinite integers and infinitesimal reals in models of axioms can cause 

problems in practical Model Analysis because a computer system can easily 

prove that there are no infinite integers and no infinitesimal reals. 

Consequently, infinite integers and infinitesimal reals are modeling monsters. 

Fortunately, these modeling monsters do not exist in Classical Direct Logic. 

 

  

                                                           
i A real number is computable if an only if its digits are computable. 
ii ℝ has no subset of computable reals whose cardinality is strictly between ℕ and ℝ. 
iii The “First-Order Thesis” is that mathematical foundations should be restricted to 

first-order logic. 
iv a restricted form of Model Checking in which the properties checked are limited to 

those that can be expressed in Linear-time Temporal Logic has been studied 

[Clarke, Emerson, Sifakis, etc. ACM 2007 Turing Award]. 

Jon Barwise 

 

Ernst Zermelo 
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The cut-down-first-order theory FirstOrderPeanoDedekind 

i is too limited 

for Computer Science because of the following: 

 (⊢
FirstOrderPeanoDedekind

) ⇨ ⊢ℕ  

 There are some 0 that are important in Computer Science (see 

immediately below) such that: 
 ⊢ℕ 0 

 ⊬
FirstOrderPeanoDedekind

0 

 

In Computer Science, it is important that the Natural Numbers (ℕ) be 

axiomatized in a way that does not allow non-numbers (e.g. infinite ones) in 

models of the axioms. Unfortunately, every consistent first-order 

axiomatization of ℕ has a model with an infinite integer: 

Theorem: If ℕ is a model of a first-order axiomatization T, then T has a 

model M with an infinite integer. 

 

Proof:  The model M is constructed as an extension of ℕ by adding a new 

element ∞ with the following atomic relationships: 

                              {∞<∞}  (Elementwise[ [m]→ m<∞])[ℕ]ii 

 It can be shown that M is a model of T with an infinite integer ∞. 

 

The infinite integer ∞ is a monster that must be banned from the 

mathematical foundations of Computer Science. 

 

A similar result holds for the standard theory ℝ of real numbers [Dedekind 

1888] compared to a cut-down, first-order theory54, which has models with 

infinitesimals: 

Theorem: If ℝ is a model of a first-order axiomatization T, then T has a 

model M with an infinitesimal. 

Proof:  The model M is constructed as an extension of ℝ by adding a 

new element ∞ with the following atomic relationships:  

                      {∞<∞}  (Elementwise[ [m]→ m<∞])[ℕ]iii  

Defining ε to be 
1

∞
 , it follows that ∀[r:ℝ]→ 0<ε<

1

𝑟
.  It can be shown 

that M is a model of T with an infinitesimal ε, which is a monster that 

must be banned from the mathematical foundations of Computer 

Science. 

 

                                                           
i with cut-down first-order Peano axioms 
ii Elementwise[f] = [s]→ {f[x] | xs} 

iii Elementwise[f] = [s]→ {f[x] | xs} 
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On the other hand, since it is not limited to first-order logic, Classical Direct 

Logic characterizes structures such as natural numbers and real numbers up to 

isomorphism.i  

 

Of greater practical import, that a computer provides service i.e.  

∃ [i:ℕ]→  ResponseBefore[i] cannot be proved in a first-order theory. 

 

Proof:  In order to obtain a contradiction, suppose that it is possible to 

prove the theorem that computer server provides serviceii in a first-

order theory T.  

Therefore the following infinite set of propositions is inconsistent:iii  

             (Elementwise[ [i:ℕ]→ ResponseBefore[i] ])[ℕ].  

By the compactness theorem of first-order logic, it follows that there 

is finite subset of the set of propositions that is inconsistent. But this 

is a contradiction, because all the finite subsets are consistent since 

the amount of time before a server responds is unbounded, i.e.,  

               (∄ [i:ℕ]→ ⊢
T
  ResponseBefore[i]). 

 

The above examples illustrate the following fundamental limitation of first-

order theories: 

 

In a first-order theory T, it is impossible to have both of the following for a 

predicate P: 

 ∄ [i:ℕ]→ ⊢
T
 P[i]iv 

 ⊢
T
 ∃ [i:ℕ]→ P[i] 

 

Proof:  Suppose that it is possible for both of the above to hold in a first-

order theory T. Therefore the following infinite set of propositions is 

inconsistent:55 

                 (Elementwise[ [m:ℕ]→ P[m] ])[ℕ] 

By the compactness theorem of first-order logic, it follows that there is 

finite subset of the set of propositions that is inconsistent. But this is a 

contradiction, because all the finite subsets are consistent. 

 

  

                                                           
i proving that software developers and computer systems are using the same structures 
ii ∃ [i:ℕ]→ ResponseBefore[i] 
iii i.e. in classical notation:  { ResponseBefore[i] | i:ℕ} 
iv i.e. ∀[i:ℕ]→ ⊬

T
 P[i] 
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As a foundation of mathematics for Computer Science, Classical Direct Logic 

provides categorical56 numbers (integer and real), sets, lists, trees, graphs, etc. 

which can be used in arbitrary mathematical theories including theories for 

categories, large cardinals, first-order axiomatizations, etc. These various 

theories might have “monsters” of various kinds. However, these monsters are 

not imported into the foundations of Computer Science. 

 

Computer Science needs stronger systems than provided by first-order logic 

in order to weed out unwanted models. In this regard, Computer Science 

doesn’t have a problem computing with “infinite” objects (i.e. Actors) such as 

π and uncountable sets such as the real numbers ℝ.57  

 

Of course some problems are theoretically not computable. However, even in 

these cases, it is often possible to compute approximations and cases of 

practical interest.i 

  

The mathematical foundation of Computer Science is very different from the 

general philosophy of mathematics in which infinite integers and infinitesimal 

reals may be of some interest. Of course, it is always possible to have special 

theories with infinite integers, infinitesimal reals, unicorns, etc. 

 

Provability Logic 

One kind of Provability Logic (called PL) is a cut-down theory of deduction 

that has been used to investigate provability predicates for languages that 

allow “self-referential” propositions [Verbrugge 2010].  

 

Because it is first-order, PL is very weak; even for proving theorems about 

integers. Also, PL makes the assumption that there are only countably many 

propositions58 and that for every proposition , there is an integer 
PL

 such 

that ⇔ 
PL

 
PL

. 

 

  

                                                           
i e.g. see Terminator [Knies 2006], which practically solves the halting problem for 

device drivers 
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In formulating his results, [Löb 1955] proposed the following provability 

conditions that became the basis of Provability Logic:i 

1. (⊢
PL 

) ⇨ ⊢
PL 

⊢
PL 

 

2. ⊢
PL 

 ((⊢
PL

 (⇨)) ⇨ (( ⊢
PL 

) ⇨ ⊢
PL 

))) 

3. ⊢
PL

 ((⊢
PL

 ) ⇨ ⊢
PL

 ⊢
PL

 ) 
Using “self-referential” propositions, [Löb 1955] proved the following:59  

          (⊢
PL

 ((⊢
PL

 )⇨)) ⇨ ⊢
PL

 .  
 

However, PL is a very weak theory of deduction. For example, the principle 

of natural deduction below called “Soundness” in Direct Logic that allows 

theorems to be used in subarguments is not allowed in PL:60 

(⊢ )⇨ 

 

Note that the rule of Soundness [i.e. (├ Φ)⇒Φ does not involve any coding 

of propositions as integers. It is highly desirable for computer systems to be 

able to reason about the mathematical foundations of Classical Direct Logic 

using Classical Direct Logic. Unlike PL, Classical Direct Logic does not 

require complex circumlocutions (involving coding into integers) that obscure 

what is going on. 

 

In summary, Provability Logic (although a useful historical development step) 

is too cumbersome and fragile to serve in the mathematical foundation of 

Computer Science. 

 

Inadequacies of Tarskian Set Models 
Tarskian Set Models61 are inadequate for foundations of Computer Science 

for they are inadequate to characterize direct inference used by systems to 

reason about their own inference capabilities.ii 

 

But the most fundamental limitation of Tarskian Set Models is that large 

information theories of practice have no models because they are 

pervasively inconsistent.  

 

  

                                                           
i His formulation actually used the convoluted coding of propositions into integers.  
ii E.g. the theorems in this article. 
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Church's Paradox 
 

in the case of any system of symbolic logic, the set of all provable theorems 

is [computationally] enumerable...  any system of symbolic logic not 

hopelessly inadequate ... would contain the formal theorem that this same 

system ... was either insufficient [theorems are not computationally 

enumerable] or over-sufficient [that theorems are computationally 

enumerable means that the system is inconsistent]... 

    This, of course, is a deplorable state of affairs... 

    Indeed, if there is no formalization of logic as a whole, then there is no 

exact description of what logic is, for it in the very nature of an exact 

description that it implies a formalization. And if there no exact 

description of logic, then there is no sound basis for supposing that there 

is such a thing as logic. 

[Church 1934]62 

 

[Church 1932, 1933] attempted basing foundations entirely on untyped 
higher-order functions, but foundered because contradictions emerged 
because  
1. His system allowed “self-referential” propositions [Kleene and Rosser 

1935]  
2. He believed that theorems must be computationally enumerable. 

 
Our proposal is to address the above issues as follows: 
1. Not providing for the construction of “self-referential” propositions in 

mathematics 
2. Mathematics self proves that it is “open” in the sense that theorems are 

not computationally enumerable (i.e. not “closed”).i 

 

Curry and Löb Paradoxes 
An example of a “self-referential” proposition is I am not provable. that was 

used by in [Gödel 1931].63 Unfortunately, allowing construction of “self-

referential” propositionsii results in contradictions [Wittgenstein 1937].64 

 

  

                                                           
i In other words, the paradox that concerned Church (because he thought that it could 

mean the demise of formal mathematical logic) has been transformed into 

fundamental theorem of foundations! 
ii using Y fixed point operators exploiting an untyped sentences for mathematics 
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For example the following paradoxes prove every proposition using “self-

referential” propositions:65 

 Curry’s Paradox [Curry 1941]: Suppose that Ψ:Proposition. 

     DiagonalΨσ[Φ:Propositionσ]:Nonexistent  ≡ 

                                                                                          DiagonalΨ[Φ]├ Ψ 

            // illegal definition because Diagonal cannot be strongly typed 

     CurryΨ:Nonexistent  ≡  DiagonalΨ[CurryΨ] 

1) CurryΨ ⇔ (CurryΨ├  Ψ)             // definition of CurryΨ 

1) ├  (CurryΨ├  CurryΨ)                    // idempotency 

2) ├  (CurryΨ├  (CurryΨ├ Ψ))          // substituting 1) into 2) 

3) ├  (CurryΨ├ Ψ)                             // contraction 

4) ├ CurryΨ                                                              // substituting 1) into 4) 

5) ├ Ψ                                                                            // chaining 4) and 5) 

 

 Löb’s Paradox [Löb 1955]:66 Suppose that Ψ:Proposition.  

DiagonalΨσ:[Φ:Propositionσ]:Nonexistent ≡ 

                                                                                        (├ DiagonalΨ[Φ] )├ Ψ 
            // illegal definition because Diagonal cannot be strongly typed 

     LöbΨ:Nonexistent  ≡  DiagonalΨ[LöbΨ] 

1) LöbΨ ⇔  ((├  LöbΨ) ├ Ψ)                // definition of LöbΨ 

2) ├  ((├  LöbΨ) ├  LöbΨ)                      // soundness 

3) ├ ((├  LöbΨ) ├  ((├  LöbΨ) ├ Ψ))      // substituting 1) into 2) 

4) ├ ((├ LöbΨ) ├ Ψ)                              // contraction 

5) ├ LöbΨ                                                                           // substituting 1) into 4) 

6) Ψ                                                                                         // chaining 4) and 5) 

 

Of course, it is completely unacceptable for every proposition to be provable 

and so measures must be taken to prevent this. 
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Berry's Paradox 
Berry’s construction [Russell 1906] can be formalized using: 

 Least[s] is the smallest integer in the nonempty set of integers s 

 Length[e] is length of expression e.  

 Characterize[e:ExpressionPropositionℕℕ
, 

                          k:ℕ]:Proposition2
ℕ ≡   

            ∀[x:ℕ]→ e [x] ⇔ x=k 
Consider the following definition: 

  BExpression:ExpressionProposition3
ℕ  ≡    

         ⦅[n:ℕ]→  ∀[e:ExpressionPropositionℕℕ
]→  

                                         ⦅Length[e]<1000⇨Characterize[e, n]⦆67 

  Note that 

o {e:ExpressionPropositionℕℕ
 | ⊨ℕ Length[e]<1000} is finite. 

Therefore, {n:ℕ | ⊨ℕ ∃[e:ExpressionPropositionℕℕ
]→ 

                                             Length[e]<1000  Characterize[e, n]} 

is finite. 

o Length[BExpression]<1000. 

Consider the following set:  

                   BSet:Setℕ ≡ {n:ℕ | ⊨ℕ  Characterize[BExpression, n]} 

      Note that the definition of BSet is illegal because BExpression is not of 

             type ExpressionPropositionℕℕ
 

       Note that BSet is nonempty and Length[BExpression]<1000. 

 

1. BNumber:ℕ ≡ Least[BSet]                                          

2. ⊨ℕ  Characterize[BExpression, BNumber]68    

3. ⊨ℕ  ∀[x:ℕ]→ BExpression [x] ⇔  x=BNumber69     

4.   ⊨ℕ  BExpression [BNumber] ⇔  BNumber=BNumber70 

5. ⊨ℕ  BExpression [BNumber] 

6. ⊨ℕ  ⦅[n:ℕ]→   ⦅∀[e:ExpressionPropositionℕℕ
]→  

                                  Length[e]<1000 ⇨ Characterize[e, n]⦆⦆ [BNumber]  71  

7. ⊨ℕ  ∀[e: ExpressionPropositionℕℕ
]→ 

                                                     Length[e]<1000 ⇨Characterize[e, BNumber] 

8. ⊨ℕ  Length[BExpression]<1000 

                                                       ⇨ Characterize[BExpression, BNumber]72 

9.  ⊨ℕ  Characterize[BExpression, BNumber]73 
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Sociology of Foundations 
 

“Faced with the choice between changing one’s mind and proving that 

there is no need to do so, almost everyone gets busy on the proof.”  

John Kenneth Galbraith [1971 pg. 50] 

 

Max Planck, surveying his own career in his Scientific Autobiography 

[Planck 1949], sadly remarked that ‘a new scientific truth does not 

triumph by convincing its opponents and making them see the light, but 

rather because its opponents eventually die, and a new generation 

grows up that is familiar with it.’  [Kuhn 1962] 

 

The inherently social nature of the processes by which principles and 

propositions in logic are produced, disseminated, and established is illustrated 

by the following issues with examples:74 

 

 The formal presentation of a demonstration (proof) has not lead 

automatically to consensus. Formal presentation in print and at several 

different professional meetings of the extraordinarily simple proof in 

this paper have not lead automatically to consensus about the theorem 

that “Mathematics is Consistent”. New results can sound crazy to those 

steeped in conventional thinking. Paradigm shifts often happen because 

conventional thought is making assumptions taken as dogma.  As 

computer science continues to advance, such assumptions can get in the 

way and have to be discarded. 

 There has been an absence of universally recognized central logical 

principles. Disputes over the validity of the Principle of Excluded 

Middle led to the development of Intuitionistic Logic, which is an 

alternative to Classical Logic. 

 There are many ways of doing logic. One view of logic is that it is 

about truth; another view is that it is about argumentation (i.e. proofs).75  
 Argumentation and propositions have be variously (re-)connected 

and both have been re-used. Church's paradox is that assuming 

theorems of mathematics are computationally enumerable leads to 

contradiction. In this papers, the paradox is transformed into the 

fundamental principle that “Mathematics is Open” (i.e. it is a theorem of 

mathematics that the theorems of mathematics are not computationally 

enumerable) using the argument used in Church's paradox. 

 New technological developments have cast doubts on traditional 

logical principles. The pervasive inconsistency of modern large-scale 
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information systems has cast doubt on classical logical principles, e.g., 

Excluded Middle.76 

 Political actions have been taken against views differing from the 

Establishment Philosophers. According to [Kline 1990, p. 32], 

Hippasus was literally thrown overboard by his fellow Pythagoreans 

“…for having produced an element in the universe which denied 

the…doctrine that all phenomena in the universe can be reduced to whole 

numbers and their ratios.” Fearing that he was dying and the influence 

that Brouwer might have after his death, Hilbert firedi Brouwer as an 

associate editor of Mathematische Annalen because of “incompatibility 

of our views on fundamental matters”77 e.g., Hilbert ridiculed Brouwer 

for challenging the validity of the Principle of Excluded Middle. 

     Philosophers celebrated Gödel's writings because their jobs depended 

on adherence to the first-order dogma. Since philosophers couldn't prove 

anything significant about practical mathematical theories, they cut them 

down to unrealistic first-order theories where results could be proved 

(e.g. compactness) that did not hold for practical mathematical theories. 

In the famous words of Upton Sinclair:  

“It is difficult to get a man to understand something,  

when his salary depends on his not understanding it.” 

     Establishment Philosophers have often ridiculed dissenting views and 

attempted to limit their distribution by political means.78 Electronic 

archives and repositories that record precedence of scientific publication 

in mathematical logic have censoredii submissions with proofs such as 

those in this article.  

                                                           
i in an unlawful way (Einstein, a member of the editorial board, refused to support 

Hilbert's action) 
ii while refusing to provide any justification for the censorship other than 

administrative fiat 
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Appendix 3.  Classical Natural Deduction 
Below are schemas for nested-box-style Natural Deductioni for Classical 

Mathematics:  

 

  

                                                           
i Evolved from classical natural deduction [Jaśkowski 1934]. See history in Pelletier 

[1999]. 
 

 

        Ψ      i hypothesis

 
           ...

           Φ    i inference   

Ψ⇨Φ        i conclusion   

Ψ               i premise

... 

Ψ⇨Φ       i premise

...

Φ               i conclusion

ΨΦ              i premise
…

Ψ├
 
 Θ              i premise

... 

Φ├
 
 Θ              i premise

...

Θ                    i conclusion

Ψ                i premise

…

ΨΦ         i conclusion

Ψ                 i premise
…

ΨΦ            i premise
…

 

Φ                    i conclusion

(Ψ├ Φ)├
 

(Ψ⇨Φ)

Ψ ├
  

(ΨΦ)

(ΨΦ),  (Ψ├ Θ),  (Φ├ Θ) ├
  

Θ 

Ψ,  (Ψ⇨Φ) ├
  

Φ

 

Ψ,  (ΨΦ) ├
   

Φ

 Introduction  Elimination

 Cases

Ψ                i premise
…

Φ               i premise
...

ΨΦ         i conclusion

ΨΦ        i premise
…

Ψ                i conclusion
…

 

Φ               i conclusion

Ψ, Φ ├
  

(ΨΦ)
 

 (ΨΦ) ├
   

Ψ, Φ

 Introduction  Elimination

(├ Ψ) ⇨
 

Ψ

Soundness

(Φ├
 

Ψ) ⇔
 

(├
 

(Φ├
 

Ψ))

Adequacy 

 

    Ψ                    i hypothesis

 
      ...

     ΦΦ       i inference   

Ψ                      i conclusion   

(Ψ├ (ΦΦ))├
 

Ψ

Proof by Contradiction

⇨ Introduction ⇨ Elimination
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End Notes 

 

 

 

 

1 [White 1956, Wilder 1968, Rosental 2008] 
2 The principle of soundness is fundamental to Mathematics going back at 

least to Euclid. 
3 There seem to be no practical uses for “self-referential” propositions in the 

mathematical foundations of Computer Science. 
4 Mathematical foundations of Computer Science must be general, rigorous, 

realistic, and as simple as possible. There are a large number of highly 

technical aspects with complicated interdependencies and trade-offs. 

Foundations will be used by humans and computer systems. Contradictions 

in the mathematical foundations of Computer Science cannot be allowed 

and if found must be repaired. 

     Classical mathematics is the subject of this article. In a more general 

context: 

 Inconsistency Robust Direct Logic is for pervasively inconsistent 

theories of practice, e.g., theories for climate modeling and for 

modeling the human brain. 

 Classical Direct Logic can be freely used in theories of Inconsistency 

Robust Direct Logic. See [Hewitt 2010] for discussion of 

Inconsistency Robust Direct Logic. Classical Direct Logic for 

mathematics used in inconsistency robust theories. 
5 Soundness means: 

 A theorem of Mathematics can be used anywhere including in 

inconsistency robust inference 

 A theorem of Mathematics can be used in a step of a sub-proof to 

prove a theorem in Mathematics regardless of the assumptions of the 

sub-proof. 
6 Note that this theorem is very different from the result [Kleene 1938], that 

mathematics can be extended with a proposition asserting its own 

consistency.  
7 Many of today's most prominent philosophers and logicians have cast 

doubt on the correctness of the proof. 
8 The definition of inconsistency, i.e.,  

         Consistent⇔∃[Ψ:Proposition]→├ (ΨΨ) 

   is not about numbers. Consistent with the general practice in Computer 

Science, there is no way to identify propositions with integers.  
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9 A prominent logician referee of this article suggested that if the proof is 

accepted then consistency should be made an explicit premise of every 

theorem of classical mathematics! 
10 As shown above, there is a simple proof in Classical Direct Logic that 

Mathematics (├) is consistent. If Classical Direct Logic has a bug, then there 

might also be a proof that Mathematics is inconsistent. Of course, if a such 

a bug is found, then it must be repaired. 

     Fortunately, Classical Direct Logic is simple in the sense that it has just 

one fundamental axiom: 

∀[P:Propositionℕℕ]→ Inductive[P]⇨ ∀[i:ℕ]→ P[i]  

      where ∀[P:Propositionℕℕ]→  

                         Inductive[P:Propositionℕℕ]:Proposition2
ℕ ≡  

                                      P[0]  ∀[i:ℕ]→ P[i]⇨P[i+1] 
   Of course, Classical Direct Logic has machinery in addition the above 

axiom that could also have bugs. 

       The Classical Direct Logic proof that Mathematics (├) is consistent is 

very robust. One explanation is that consistency is built in to the very 

architecture of classical mathematics because it was designed to be 

consistent. Consequently, it is not absurd that there is a simple proof of the 

consistency of Mathematics (├) that does not use all of the machinery of 

Classical Direct Logic. 

       In reaction to paradoxes, philosophers developed the dogma of the 

necessity of strict separation of “object theories” (theories about basic 

mathematical entities such as numbers) and “meta theories” (theories about 

theories). This linguistic separation can be very awkward in Computer 

Science. Consequently, Direct Logic does not have the separation in order 

that some propositions can be more “directly” expressed. For example, 

Direct Logic can use ├├Ψ to express that it is provable that P is provable in 

Mathematics. It turns out in Classical Direct Logic that ├├Ψ holds if and 

only if ├Ψ holds. By using such expressions, Direct Logic contravenes the 

philosophical dogma that the proposition ├├Ψ must be expressed using 

Gödel numbers. 
11 Classical Direct Logic is different from [Willard 2007], which developed 

sufficiently weak systems that “self-referential” sentences do not exist. 
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12 Subsequent further discussion of Wittgenstein's criticism of Gödel’s 

writings has unfortunately misunderstood Wittgenstein.  

       For example, [Berto 2009] granted that proof theoretically if P⇔⊬P, 

then: 

1) ⊢⊬P 

However, the above has proof consequences as follows: 

2) ⊢P because (⊬P)⇔P in 1) above 

3) ⊢⊢P because of 2) above 

4) ⊢P because (⊢P)⇔P in 3) above 

Of course, 2) and 4) are a manifest contradiction in mathematics that 

has been obtained without any additional “‛semantic’ story” that 

[Berto 2009] claimed is required for Wittgenstein's argument that 

contradiction in mathematics “is what comes of making up such 

[“self-referential”] sentences.” [Wittgenstein 1956, p. 51e] 
13 specified by axioms [Dedekind 1888, Peano 1889] that characterize them 

up to a unique isomorphism  
14 Consequently there is no need to introduce a special kind of set called a 

“class” that was introduced as a patch for set theory by von Neumann. 
15 The Computational Representation Theorem [Clinger 1981; Hewitt 2006] 

characterizes computation for systems which are closed in the sense that 

they do not receive communications from outside: 

The denotation DenoteS of a closed system S represents all the 

possible behaviors of S as15  

  DenoteS = 𝐥𝐢𝐦𝐢𝐭
𝒊→∞

 ProgressionS
i 

          where  ProgressionS
i⇾ ProgressionS

i+1 

In this way, S can be mathematically characterized in terms of all its 

possible behaviors (including those involving unbounded 

nondeterminism). 

The denotations of the Computational Representation Theorem form the 

basis of procedurally checking programs against all their possible 

executions. 
16 e.g. [Shulman 2012, nLab 2014] 
17 [cf. Church 1934, Kleene 1936] 
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18 Proof [Church 1935, Turing 1936] (This proof is a replacement for the incorrect 

proof in [Gödel 1931]): 
       Otherwise, provability in classical logic would be computationally decidable 

because 

       ∀[p:Program, x:ℕ]→ Halt[p, x] ⇔ ⊢ Halt[p, x] 

where Halt[p, x] if and only if program p halts on input x.  If such a ChurchTuring did 

not exist, then provability could be decided by enumerating theorems until the 

proposition in question or its negation is encountered. 

         Note the following important ingredients for the proof of inferential 

undecidability of a consistent, closed mathematical theory: 

 Closure (computational enumerability) of theorems of a mathematical theory 

to carry through the proof. 

 Consistency (nontriviality) to prevent everything from being provable 
19 Zermelo in a 1931 letter to Gödel pointed out that in the mathematical 

theory ℕ, there are uncountably many true but unprovable propositions 

because 

 there are uncountably many true propositions in {x=x | x:Booleanℕ } 

 theorems of ℕ are countable. Consequently, here is some 

x0:Booleanℕ such that  ⊨ℕ x0= x0 and ⊬ℕ  x0= x0. 
20 Let Setsℕ be the closed mathematical theory with axioms for ℕ and 

Setsℕ in this article.  Consequently, (├SetsℕΨ)⇒ ├Ψ.  Theorems of 

Setsℕ are computational enumerable and it is computationally decidable 

whether or not a proof is correct in Setsℕ 

      Of course, both of the following hold:  

• ⊬SetsℕChurchTuringSetsℕ 

• ⊬SetsℕChurchTuringSetsℕ 
21 Consequently, there can cannot be any escape hatch into an unformalized 

“meta-theory.” 
22 The claim also relied on Gödel's “self-referential” proposition. 
23 Formal syntax was invented long after [Gödel 1931]. 
24 emphasis in original 
25 True≠False 

     ∀[x:Boolean]→ x=True  x=False 
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26 The natural numbers are axiomatised as follows where Successor is the 

successor function: 

 0:ℕ 
 Successor:ℕℕ 
 ∀[i:ℕ]→  Successor[i]≠0 
 ∀[i, j:ℕ]→  Successor[i]= Successor[j] ⇒ i=j 

 ∀[P:Propositionℕℕ]→  Inductive[P]⇒ ∀[i:ℕ]→  P[i] 
   where  

            ∀[P:Propositionℕℕ]→   

                  Inductive[P:Propositionℕℕ]:Proposition2
ℕ ≡  

                                                         P[0]  ∀[i:ℕ]→  P[i]⇒P[Successor[i]] 
27 type of 2-element list with first element of type σ1 and with 

second element of type σ2 

28 if t then 1  else 2 

29 1, … and k  infer 1, …, and n 

30 if present 
31 parameterized mutually recursive definitions of v1 to nτ1 to n   
32 if t1 then t2  else t3 
33 if present 
34 if t then s1 else s1 
35 if present 
36 [Church 1956; Boolos 1975; Corcoran 1973, 1980]. Also, Classical Direct 

Logic is not a univalent homotopy type theory [Awodey, Pelayo, and 

Warren 2013]. 
37 Setσ is the type of a set of type σ, Setsσ is the type all sets of 

sets over type σ, and Domainσ=σ⦶Setsσ  with the following 
axioms: 

{ }:Setσ                                        // the empty set { } is a set 

∀[x:σ]→  {x}:Setσ                      // a singleton set is a set 

∀[s:Setsσ]→  ⋃s:Setsσ       // all elements of the subsets of a set is a set 

∀[x:σ]→  x{ }                                   // the empty set { } has no elements 
∀[s:Setσ, f:𝛔𝛔] → (Elementwise[f])[s]:Setσ     
                                                               // the function image of a set is a set 

∀[s:Setσ, p:Booleanσ] → s↾p:Setσ  
                                                            // a predicate restriction of a set is a set 

∀[s:Setσ]→ { }s                                    // { } is a subset of every set 

∀[s1,s2:Setσ]→  s1=s2 ⇔(∀[x:σ]→  xs1 ⇔xs2) 

∀[x,y:σ]→  x{y} ⇔x=y 

∀[s1,s2:Setσ]→  s1s2 ⇔ ∀[x:σ]→  xs1 ⇒ xs2 

 
 



 

 

 

 

 

 

 

 

   

53 

                                                                                                                                        

∀[x:σ; s1,s2:Setσ]→  xs1s2 ⇔ (xs1  xs2) 

∀[x:σ; s1,s2:Setσ]→  xs1s2 ⇔ (xs1  xs2) 

∀[x:Domainσ; s:Setsσ]→ x⋃s ⇔ ∃[s1:Setsσ]→ xs1 s1s 

∀[y:σ; s:Setσ, f:𝛔𝛔] →  y(Elementwise[f])[s] ⇔ ∃[xs] → f[x]=y 
∀[y:σ; s:Setσ, p:Booleanσ]  →    ys↾p ⇔ ys  p[y]  

38 I.e., ∄[s:Setsℕ, σ:Type]→  ∀[x:σ]→  xs  ⇔ x:Setsℕ 
39 [Dedekind 1888, Peano 1889] 
40 ℕ is identified with the type of natural numbers 
41 [Dedekind 1888, Peano 1889] 
42 [Dedekind 1888] 
43 ℝ is identified with the type of natural numbers 
44 cf. [Zermelo 1930]. 
45 The Continuum Hypothesis remains an open problem for Direct Logic 

because its set theory is very powerful. The forcing technique used to prove 

the independence of the Continuum Hypothesis for first-order set theory 

[Cohen 1963] does not apply to Direct Logic because of the strong 

induction axiom [Dedekind 1888, Peano 1889] used in formalizing the 

natural numbers ℕ. 
        Of course, trivially, 

(⊨DomainℕContinuumHypothesis)(⊨DomainℕContinuumHypothesis) 

where Domainσ=σ⦶Setsσ. 
46 [Wittgenstein in 1937 published in Wittgenstein 1956, p. 50e and p. 51e] 
47 [Wang 1997] pg. 197. 
48 In 1666, England's House of Commons introduced a bill against atheism 

and blasphemy, singling out Hobbes’ Leviathan. Oxford university 

condemned and burnt Leviathan four years after the death of Hobbes in 

1679. 
49 There is no subset of ℝ whose cardinality is strictly between ℕ and ℝ. 
50 [Cohen 2006]  Cohen's proof was a great achievement in spite of the 

weakness of his theorem. 
51 because the computable real numbers are enumerable. 
52 [Zermelo 1930, van Dalen 1998, Ebbinghaus 2007] 
53 First-order theories fall prey to paradoxes like the Löwenheim–Skolem 

theorems (e.g. any first-order theory of the real numbers has a countable 

model). First-order theorists have used the weakness of first-order logic to 

prove results that do not hold in stronger formalisms such as Direct Logic 

[Cohen 1963, Barwise 1985]. 
54 e.g. the theory RealClosedField [Tarski 1951] 
55 i.e. in classical notation:  {P[m]  | m:ℕ} 
56 unique up to isomorphism via a unique isomorphism 
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57 Rejection of the First-Order Thesis resolves the seeming paradox between 

the formal proof in this article that Mathematics formally proves its own 

consistency and the formal proof that ‘Every “strong enough” formal 

system that admits a proof of its own consistency is actually inconsistent.’ 

[Paulson 2014].  Although Mathematics is “strong enough,” the absence of 

“self-referential” propositions (constructed using a Y fixed point on  

untyped sentences for Mathematics) blocks the proof of inconsistency to 

which Paulson referred.  
58 Unlike Direct Logic, which is more expressive because propositions are not 

countable. 
59 As pointed out elsewhere in this paper, in the more powerful system of 

Direct Logic, Löb's theorem when generalized to all of mathematics turns 

into a paradox because Direct Logic has the Principle of Integrity that in 

mathematics: (⊢)⇨, which does not result in the same proof of 

contradiction because “self-referential” propositions are not allowed in 

Direct Logic. 
60 If the principle were allowed, then PL would be inconsistent because every 

sentence would be provable in PL by Löb's theorem. 
61 [Tarski and Vaught 1957] 
62 Statement of Church's Paradox 
63

 Unfortunately, in formalizing Gödel's proof, [Shankar 1994] and [O'Connor 

2005] followed Gödel in using integers to code “self-referential” sentences 

using Y fixed points (using untyped sentences for mathematics). 
64 See Historical Appendix. The Liar Paradox [Eubulides of Miletus] is an 

example of using untyped sentences to derive an inconsistency as follows: 

   Diagonalσ[Φ:Propositionσ]:Nonexistent ≡  Diagonal[Φ] 

            // illegal definition because Diagonal cannot be strongly typed 

   Liar:Nonexistent  ≡  Diagonal[Liar]  
1) Liar ⇔  Liar         // definition of Liar 

2) Liar                     // proof by contradiction from 1) 

3) Liar                       // chaining 1) and 2) 
65 In Direct Logic, Y fixed points on propositions cannot be shown to be 

propositions and consequently the proofs are not valid for the following 

reason: 

   The Y fixed point operator cannot be defined using Direct Logic:  

  Helperσ[f:σσ]:Nonexistent ≡   ([x:Nonexistent]:σ  →  f[x[x]]) 

  Yσ[f:σσ]:Nonexistent ≡ (Helperσ[f])[Helperσ[f]] 
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66 Recently, [Yanofsky 2013 page 328] has expressed concern about Löb’s 

paradox: 

we must restrict the fixed-point machine in order to avoid proving 

false statements [using Löb's argument]. Such a restriction might 

seem strange because the proof that the fixed-point machine works 

seems applicable to all [functions on sentences in an untyped syntax 

of sentences]. But restrict we must. 

Yanofsky solved the above problem posed by Löb’s paradox using systems 

of logic that are so weak that they cannot abstract their own sentences. 

Unfortunately, such weak systems are inadequate for Computer Science. 

Instead of weakening, Direct Logic adopted the strategy of barring “self-

referential” propositions by using a types for mathematics that does not 

allow the Y fixed-point machinery for sentences. 
67 Note that Length[BExpression]<100 
68 using definition of BNumber 
69using definition of Characterize 
70 substituting BNumber for x 
71 using definition of BExpression 
72 substitution of BExpression for e 
73 Contradicting step 2. 
74 cf. [Rosental 2008] 
75 According to [Concoran 2001]: 

“after first-order  logic had been isolated and had been assimilated 

by the logic community, people emerged who could not accept the 

idea that first-order logic was not comprehensive. These logicians 

can be viewed not as conservatives who want to reinstate an 

outmoded tradition but rather as radicals who want to overthrow an 

established tradition.” 

Types helped establish the foundations of higher-order logic in Computer 

Science. 
76 for discussion see [Hewitt 2010] 
77 Hilbert letter to Brouwer, October 1928 
78 e.g. “The problem with such papers [critiquing Establishment doctrine] is 

that casual readers will use them to criticize and maybe stop future funding 

...” [Berenji, et. al., 1994] 
 


