
HAL Id: hal-01148292
https://hal.science/hal-01148292

Submitted on 4 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Authorization policies: Using Decision Support System
for context-aware protection of user’s private data

Arnaud Oglaza, Romain Laborde, Pascale Zaraté

To cite this version:
Arnaud Oglaza, Romain Laborde, Pascale Zaraté. Authorization policies: Using Decision Support
System for context-aware protection of user’s private data. IEEE International Symposium on UbiSafe
Computing - TrustCom 2013, Jul 2013, Melbourne, Australia. pp. 1639-1644. �hal-01148292�

https://hal.science/hal-01148292
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12520

To link to this article : DOI :10.1109/TrustCom.2013.202
URL : http://dx.doi.org/10.1109/TrustCom.2013.202

To cite this version : Oglaza, Arnaud and Laborde, Romain and
Zaraté, Pascale Authorization policies: Using Decision Support System
for context-aware protection of user's private data. (2013) In: IEEE
International Symposium on UbiSafe Computing - TrustCom 2013, 16
July 2013 - 18 July 2013 (Melbourne, Australia).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12520/
http://oatao.univ-toulouse.fr/12520/
http://dx.doi.org/10.1109/TrustCom.2013.202
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Authorization policies: Using Decision Support

System for context-aware protection of user’s

private data

Arnaud Oglaza, Romain Laborde, Pascale Zaraté

University of Toulouse IRIT UMR 5505, Toulouse, France

{oglaza, laborde, zarate}@irit.fr

Abstract—Nowadays privacy in ambient system is a real issue.
Users will have to control their data more and more in the future.
Current security systems don’t support a strong constraint:
policy writers are non-technical users and not security experts.
We propose in this paper to use Decision Support techniques and
more specifically Multi-Criteria Decision Analysis in the process
of authorization policy writing. This research area provides
techniques to inform and assist non-technical users to write their
own authorization policies following the paradigm of Attribute-
Based Access Control.

Index Terms—privacy; authorization policy writing; decision
support system; attribute-based access control

I. INTRODUCTION

Ambient intelligence defines the world as flooded by elec-

tronic devices and computer. These devices are interconnected,

context aware and have a certain degree of intelligence, in

order to make our daily environment easier. Today, this vision

is not restricted to a closed environment like a house or a

building but could open itself on every connected entities

based on existing network technologies and in particular on

the Internet to form what is called Internet of Things.

The success of such a system requires it to be as transparent

as possible. As consequence, information will be more or

less spontaneously exchanged between various entities to build

their context in order to adapt their behavior (information on

users, on environment, on system’s entities, etc.). However,

as emphasized by ITU in his report on Internet of Things

[1]: “Invisible and constant data exchange between things

and people, and between things and other things, will occur

unknown to the owners and originators of such data. The sheer

scale and capacity of the new technologies will magnify this

problem. Who will ultimately control the data collected by all

the eyes and ears embedded in the environment surrounding

us?” People will have to control the access to their information

in a complex and moving environment. Thus, they will have

to write complex authorization policies themselves.

There exist authorization systems that provide both a very

expressive policy language and adaptable enforcement ar-

chitecture like XACML [2][3]. However, the complexity of

the system to control (i.e. the nature and the number of

security factors to consider) combined to the complexity of the

language (e.g., XACML is a verbose policy language) make

this solution not conceivable.

Several research works have been conducted to simplify the

users’ interaction with their electronic security. For example,

the P3P project (”Platform for Privacy Preferences” [4]) has

defined a standard to simplify users’ data confidentiality poli-

cies of web sites to allow people to understand how web sites

manage their data. These policies are then evaluated according

to users’ preferences by ad-hoc mechanisms. Reaching the

same goal, Kelley et al. [5] have proposed an approach similar

to nutritional labels to represent confidentiality policies of web

sites. Inglesant et al. [6] have proposed a constrained natural

language for the specification of authorization policies. Stepien

et al. [7] have worked on a non-technical notation for XACML

policies.

Although facilitating the understanding of how entities will

use users’ data (e.g. P3P) and making authorization policy

language more human readable are mandatory, the global

authorization policy writing process involving people should

consider the following requirements:

• Req1: Users won’t spend too much time configuring their

devices before using it. The classical authorization policy

writing process, which consists in 1) risk analysis, 2) pol-

icy specification, then 3) service usage, isn’t acceptable

any more. It has to be improved in order to take into

account non-technical users.

• Req2: Users shouldn’t be bothered by too many questions

like ”application XYZ wants to access to your calendar”

when they use their devices. Interaction with users should

consider users preferences to limit the interactions.

Decision Support Systems (DSS) is a research area that

focuses on informing the decision maker and giving him

tools and methods to model and understand the decision

and give then point of solution. New trends in DSS design

aim at taking into account the context of the user and the

decision. For example, EUREKA [8] is a recommendation

system for television that 1) analyses what and how people

watch television to dynamically set up the users’ preferences

and 2) proposes adapted TV programs that people are expected

to like. We believe DSS can allow users to write access

control rules more interactively while controlling the number

of interaction, for avoiding users bothering. The goal of this

article is to explain how Decision Support Systems and more

specifically Multi Criteria analysis can facilitate the writing of

authorization policies.

The rest of this article is organized as follows. Section

2 presents evolution of access-control models. Section 3 in-

troduces Decision Support Systems. Section 4 presents our

approach on using decision support techniques for writing

authorization policies interactively. Section 5 describes the

implementation of our prototype. Discussion and future work

are given in section 6. Finally, we conclude in section 7.

II. ACCESS CONTROL POLICY MODELS

Access control models consider three main entities: the

subjects, the objects and the permissions. Subjects are users or

applications who can perform actions in the system. Objects

are resources or services that subjects want to access. Permis-

sions determine how subjects can access resources. Even if

these three entities appear in all models, their representation

has evolved over time to adapt to requirements of modern

systems. From mandatory and discretionary access control to

attributes based models, we will see that the more their power

of expression increases, the more the difficulty to write policies

for non-technical users increases too.

A. Discretionary and Mandatory Access Control

Discretionary access control (DAC) is presented by TCSEC

(Trusted Computer System Evaluation Criteria) as ”a means

of restricting access to objects based on the identity of

subjects and/or groups to which they belong. The controls

are discretionary in the sense that a subject with a certain

access permission is capable of passing on that permission

(perhaps indirectly) to any other subject (unless restrained by

mandatory access control)”. Rules are described by a triplet

<user, object, action>. Each object in the system has an

owner who determines the access control policy for his objects.

This approach is adapted to non-technical users because policy

rules are simple. However, such policies can’t handle modern

security requirements such as contextual information.

Unlike DAC, Mandatory Access control (MAC) doesn’t let

users choose permissions of resources. An administrator is in

charge of building policies. Users and objects are grouped in

different levels of security. The objective is to avoid informa-

tion leaks by prohibiting access for a user of a certain level

for an object of an upper level. This kind of policies requires

a specification step before using the system for defining the

security levels. This task isn’t effortless. For example, security

levels in the Bell-Lapadula model [9] are a combination of

classification levels and compartments.

B. Role-Based Access Control

The concept of Role-Based Access control (RBAC) ap-

peared in the nineties at the same time than multi-users appli-

cations [10]. A role represents a job function in the context

of an organization. Assigning permissions to roles instead of

users has considerably simplified permissions management as

the number of users has grown. A single user can have multiple

roles and can even switch between them depending on the

actions he wants to perform.

However, RBAC doesn’t take into account the environment

or the situation of a user. As consequence, extensions of RBAC

have been proposed to overcome this issue [11]. For example,

GRBAC allows defining environment roles [12]. The model

is able to capture the state of the world and described it

with variables. Conditions are made with these variables and

are used to activate or not the environment rules. This gives

administrators the ability to elaborate several rules for the same

resources but in different context.

With RBAC and its extensions, an administrator can manage

a big amount of users and some contextual information. But

an expert administrator is required for writing such policies. In

fact, creating a role hierarchy can be a hard task when using

a role engineering methodology is mandatory [13].

C. Attribute-based Access Control

Roles aren’t always efficient in a dynamic, open and

context-aware system to structure authorization policies. A

new model based on attributes (ABAC) has been proposed.

The administrator is no longer required to add user one by one

but it is still necessary to specify attributes and to define access

rules. Attributes can be used to detail users but also resources

or the environment. All these elements can define the context

of a situation. Context is any information that can be used to

characterize the situation of an entity. An entity is a person,

place, or object that is considered relevant to the interaction

between a user and an application, including the user and

applications themselves [14]. For example, security rules in

CABAC (Contextual Attribute Based Access Control [15])

are described by a tuple <Action, UserAttr, ObjAttr, EnvAttr,

TransacAttr, Perm>. Flexibility is increased for administrators

who do no longer assign permissions to roles but to contextual

situations.

This model is interesting as fine-grained constraints on

contextual information can be specified. It allows writing

complex and accurate rules. But thinking that non-technical

users can write their own security rules based on such models

is illusory. Thus, we propose to support users in this very

complex task through DSS development.

III. DECISION SUPPORT SYSTEM

Nowadays, it is common to have to take hard decisions.

Making a good choice requires to be well informed about this

decision. In order to help the decision maker, DSS propose

tools and techniques. The goal of these systems isn’t to make

decisions instead of the decision maker but to interactively

design the decision between the user and the system. The

DSS informs the user about his possibilities and guides him

during the solving problem process. Several techniques are

used for developing DSSs [16]. One of these is based on the

analysis of the decision to make on several aspects. These

aspects are called criteria and the corresponding area is called

Multi-Criteria Decision Analysis (MCDA).

When people have to make a decision, it is generally

possible to analyze this decision along several criteria. Multi-

criteria Decision analysis proposes tools to analyze and un-

derstand this decision based on multiple criteria. Information

and assistance are provided to the decision maker in order

to capture his preferences. These preferences are represented

by a numeric function called the utility function [16]. Using

this function in the context of Recommender Systems allows

assigning scores to choices in order to rank these choices

from the less desirable to the most desirable. Before building

the function, two conditions need to be verified. Preferences

of the decision maker must be numerically representable and

the multi-criteria function must be decomposable into single-

criteria functions. A multi-criteria utility function has the

following form:

∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ X (1)

x < y ⇔ u(x1, x2, x3) ≥ u(y1, y2, y3) (2)

Where x, y are choices, xi, yi are criteria and X the

set of alternatives. Each choice implies one or multiple

consequences. Decisions are then classified according to the

knowledge of the decision maker. The decision maker’s knowl-

edge is ordered in three categories from complete knowledge

to complete ignorance. When the decision maker has full

knowledge, he knows what will be the consequences of any

action. In this case, the environment is deterministic and this

decision is called decision under certainty. When there isn’t a

total knowledge of the situation, one action can lead to many

consequences. Each of these consequences has a probability

of happening. It is called decision under risk. Finally, when

the decision maker has no idea of what can happen, each

action can have multiple consequences but he can’t estimate

the probability of occurring. This model is called decision

under uncertainty.

As explained previously, it is necessary to be able to decom-

pose multi-criteria function into single-criteria function, easier

to encode. Then encoding these functions allows assigning

score to each function. Encoding is performed by aggregation

function. They are used to combine several numerical values

and for the result to take into account user’s preferences.

An aggregation function can be a very simple mathematical

function like a weighted mean or more complex like a Choquet

integral that is used to take into account relationships among

criteria [17].

Choices Criteria Preferences Scores

Decomposition Aggregation

X " " XX ""

!! !

!! !!!!

!! !

!!!!!!!!!!!

Fig. 1. Decision Support System Diagram

In summary DSS supplies tools to users in order to simplify

their decision-making. Everything starts with choices. These

choices are decomposed into criteria, easier to deal with. These

criteria describe the choice and will allow the system to un-

derstand the reason of the user’s choice. Then the system uses

these criteria and an utility function to numerically represent

the user’s preferences. Finally preferences are aggregate by a

function to build the score that is needed to take the decision.

These scores are useful to propose choices to users following

their preferences and what criteria are important for them.

IV. OUR PROPOSAL

As part of the French ANR project INCOME (Multi-Scale

Context Management Software Infrastructure for the Internet

of Things), we begin to work on an authorization system for

ambient system in charge of the protection of users’ private

data. One of the main constraint is that the authorization

system should be adapted to non-technical users. These users

aren’t security experts and won’t use the system if they can’t

exploit it immediately. At the same time, ambient systems

imply to consider contextual information that will lead to

write complex security policies. Our idea is neither to provide

a new access control policy model, nor a new authorization

system. We want to define a DSS that helps non-technical

users to take advantage of such systems. In a classic XACML

!"!#

!$!# !%&'()#

Request

Permit

Deny

N/A R
e
q
u
e
s
t

(Name=John
Action=Read

Location=Home
Resource=File A)

(Name=John !!
Location=Home

Resource = File A) => PERMIT

Response
!"

#

Fig. 2. Example of XACML Model

system (Figure 2), the user must first write policies (step 1).

Afterward, every access request to a protected resource is

caught by the Policy Enforcement Point (PEP) (step 2). In

our example, the request consists in four criteria: the name of

the requester, the action to be performed, the current location

of the requester and the target resource. The PEP converts all

this criteria to a request readable by an XACML system and

sends it to the Policy Decision Point (PDP). The PDP looks

in its policy database if there is a policy corresponding to the

criteria. In our case, one policy exists with three criteria: the

name, the location and the resource. Finally, the PDP sends

the decision to the PEP who translates it into the application

specific language (step 3). When looking at XACML systems,

the PDP has three possible decisions: Permit, Deny or Not-

Applicable. NotApplicable means there is no rule to take a

decision. When the decision is NotApplicable, the PEP doesn’t

know what to do. To avoid this situation, there is often a

default rule in the policy database that denies any unspecified

access or, PEP implements response NotApplicable like Deny.

This approach doesn’t respect neither requirement 1 nor re-

quirement 2. The user has to analyze security to write complex

authorization rules before using its system. In addition, he

can’t be informed about denied accesses if there is a default

rule that denies any access. A DSS can setup an interaction

with the user to help him write the missing rule interactively.

If we look at our example, the request says that John is at

home and wants to read file A. If the owner of file A accepts

this request and other requests where John is always at home

and wants to perform any action on file A, the DSS has to

understand that the criterion action isn’t relevant for the owner.

It won’t be interesting to propose a rule for each action John

wants to perform on file A when he is at home. What really

matters for the owner of the file A is that the requester is

John and he is at home when he wants to act on the file. So

the DSS has to propose a rule with only three criteria: the

requester (John), the location (home) and the resource (file

A).

&*+,*-.# '!'#

'"'#'/01)2#

&*-3/4-*#
(Name=John !
Action=Read !

Location=Home !
Resource=File A)

R
e

q
u

e
s
t P

e
rm

it/D
e

n
y

!

$

%

e
n

y

&

''

yy

"%%#

P
o
lic

y
 p

ro
p
o
s
a
l

N
e

w
 P

o
lic

y

(

)

'
*
56

1.7
"
*
4
2
7
(
7
$
#

*

Fig. 3. Architecture of our model

In our approach, the user doesn’t have to prefill the pol-

icy database. The user can create policies like an ordinary

XACML system but the database can also be empty at the

beginning. The system starts with the reception of a request

(Figure 3) (step 1). If the PDP finds one authorization rule

that matches all the criteria of the request or a subset, it will

take the appropriate decision (Permit or Deny) like an ordinary

authorization system (step 2). But if no rule is found by the

PDP, it sends back to the PEP the response NotApplicable. At

this point, our approach differs from a usual XACML system.

Whenever the PEP receives the response NotApplicable, it

hands over to the DSS. First the DSS calculates the score of the

request (step 3). This score allows the DSS to choose between

two behaviors. The first one is when the score provides enough

assurance about the user’s preferences. In that case, the DSS

proposes to the user to write a new rule. The second behavior

appears when the score doesn’t give enough sureness. Then

the DSS interacts with the user, informs him precisely of the

request and asks for a decision.

The first behavior applies when the system is sure enough

of the user preferences corresponding to criteria contained in

the request. The system will interact with the user to help him

write a new authorization rule. The system makes a policy

proposal in an understandable sentence for the user who can

accept it, change some values of the criteria or refuse it (step

4). If the user accepts to write a new authorization rule, the

DSS takes this policy and adds it to the PDP policy database

(step 5). Next time a request corresponding to the criteria of

this policy will be made, the system will take the decision

without questioning the user.

The second behavior applies when the system hasn’t enough

assurance about preferences concerning the request’s criteria.

The system must therefore learn more about them and makes

an interaction phase with the user. The request is explained in

an understandable sentence for the user and he is asked if he

agrees or not in sharing the resource (step 6). The decision

(Permit or Deny) is sent to the DSS which uses it to update

all the criteria used by the request (step 7). Then, whatever the

behavior is, when the decision is taken, the DSS sends it to

the PEP which translates it to an application compliant form

for applying the decision (step 8).

We base our work on A. Martin’s research on a generic

recommendation system and uses multi-criteria analysis [18].

In this approach, generic criteria are used to describe and man-

age recommendation objects proposed to users. Each user has

profiles, one for each kind of items. An interactive approach

is adopted that alternates phases of calculation and phases

of dialog with the decision maker to propose him a ranked

list of recommendations. The system has been tested through

an online bookstore application and has showed interesting

results.

In our case user’s preferences are described by criteria. All

criteria represent contextual information. We define contextual

information as all information of a request that can be used for

authorization decision and also the decision. There are seven

types of criteria:

• What information is requested

• What action is requested

• When the request has been made

• Where is the resource or the owner or the requester

• Who is requesting information

• Why information is requested

• How will information be retained

In order to have a first representation of the user preferences,

the system needs an initialization. Users have to answer

questions relating the security of their personal data in real-

life situations. Users have multiple choices for answering each

questions. Each answer will be converted into a score on one or

more criteria in a way that, at the end of the questioner, all of

the criteria will be initialized. As seen in the introduction, users

won’t spend too much time configuring the system (Req1), so

the questioner shouldn’t be too long or the user won’t complete

it or won’t be careful until the end. But the initialization

must cover all the aspect of users preferences. The better the

initialization is, the faster the system will converge to relevant

preferences and will propose suitable policies to the user. And

if the system converges quickly, it won’t have to bother users

with too many interactions with them (Req2). After this first

step, the system is ready to use anytime a request is receive.

Each time a request is received, the system builds its score.

Uncertainty Zone

Safe Zone

Safe Zone

0

5

10

20

15

Fig. 4. The three different zones

The score of the request is a weighted average of all criteria

and combination of criteria. This will allow the system to

understand what criterion is really important for the user in

a request. There are three different zones in the range of the

score for two different kinds of zone (Figure 4). The first kind

is the uncertainty zone where the system has to ask the user

in order to take the decision, the second kind is a zone where

the system is sure enough of the user’s preferences and can

take the decision itself. A request’s score is between 0 and

20, the higher the score is, the less the user is reluctant to

share his private information. The first zone between 5 and

15 is the uncertainty zone. In this zone, the system isn’t sure

enough of what the user wants so it will ask the user to take

the decision in order to improve knowledge of preferences.

The second zone is between 0 and 5 and is the deny zone.

When a score is in this zone, the system becomes sure of the

user preferences, the system knows that the user doesn’t want

to share data in this context so it will propose the first time the

user to write a policy and when the policy is added to the PDP

policy database, it will take the Deny decision itself without

having to interact with the user. The last zone is between 15

and 20. This last zone works like the deny zone except that if

the system has to take itself the decision, it will be permitted.

In these two zones, when a decision is taken directly by the

system, all criteria will be updated (a slight decrease when the

request ended in a Permit, a slight increase when the request

ended in a Deny) to avoid being stuck indefinitely in this zone.

Because user preferences can change, the system has to pass

regularly in the uncertainty zone to confirm or affirm these

preferences.

When a request is received and no policy fits for its criteria,

the system builds the score of the request. If the score is in

the deny or permit zone, the system suggests an authorization

policy to the user and if the user accepts the policy, it will be

added to the policy database and the decision can be taken. If

the score of the request is in the uncertainty zone, the system

can’t take the decision and informs the user of what happen

so he can take a decision. The decision is just “yes I agree

to share these information with the requester” or “no I don’t

want to share these information with the requester”. After that

answer, the system updates all the request criteria’s.

The addition of the DSS allows to understand user’s behav-

ior and what matters him for taking his decision. Returning

to our request’s example where John wants to read the file

A while he is at home. If John makes several requests while

he is at home where he wants to read or write on file A.

Suppose the owner of file A always accepts the requests, the

criterion corresponding to his home location (where), the file A

(what resource) and John (who) are going to increase quickly.

Because the action write or read differs from one to another

request, the criteria concerning these actions (what action) are

going to increase slower than the other and because we use

all combination of criteria in the score of the request, here,

the combination <who, what resource, where> who is always

the same is going to have quickly a higher score than all other

combination containing the action. When enough requests will

be made to be sure of the user’s preference, the system will

propose a policy where John can make any action to file A

when he is at home. Thus the system won’t ask the user to

write two policies, one for him to read and the other to write

on file A. It reduces the number of interactions needed with

the user, the system is more consistent with the requirement

2.

V. IMPLEMENTATION

In order to make experiments, we have implemented a pro-

totype of our system. We have chosen to rely on Android [19].

Android is the world’s most used mobile platform designed

to be open. However Android doesn’t permit dynamic access

control during runtime. We had to modify the source code of

the operating system in order to allow our system to work. All

installed applications in Android have a set of permissions.

Permission allows an application to access to one or many

resources. All permissions for an application are defined in a

file called manifest and are granted at installation. Permissions

are only revoked when an application is deleted. Thus, a user

can’t change permissions once the application is installed. In

addition, the only way to deny a subset of the permissions

requested by an application is to not install it.

Fig. 5. Example of a policy proposal interaction

Our system needs to control and modify permissions during

runtime. Because the Android SDK doesn’t provide tools for

that, we had to get into the source code of the operating system

and change some part of it. Each time a request for a resource

is made by an application, Android checks if this application

has the permission in its manifest, the main modification we

made was to check before if our system has revoked this

permission. This isn’t the only modification we made in the

source code, we also added calls to application for interactions

with the user so when a request for a resource is made and no

policy is compatible with it, a new window pops up to inform

the user of the request and asking him to allow or deny the

sharing . Interaction with user is also needed when the score

of the request enters in the deny or permit zone, this time the

system helps the user write a policy (Figure 5). For more ease,

we also included all the calculus part in the source code so

just after the interception of the request, its score is calculated

and the system can take the decision or hand it over to the

user. When the decision has been taken, the criteria’s update

phase is also done in the source code.

In the end, only interactions with the user and the XACML

part is done on the application side. For the prototype, we

have used the Sun XACML implementation. The request is

sent to an application where an instance of a PEP is installed.

The PEP translates it in an XACML format and sends it to

the PDP who is also installed on the application side. For

the moment, only three kinds of criteria are exploited: The

What is the permission requested, the Who is the PID of the

process making the request and the When is the time the

request is made. The PID of each process is linked to the

name of applications because a same process has a new PID

at each new execution. To easily test the prototype, we use the

android emulator who provides a lot of tools for debugging

and monitoring.

VI. CONCLUSION AND FUTURE WORK

Users will have to control their data more and more in

the future. Current security systems do not support a strong

constraint: policy writers are non-technical users and not

security experts. Our goal is to help these non-technical users

to write their own authorization policies. Users should be

aware of what is performed on their data. As consequence,

security systems should inform and assist users to write their

own authorization policies. Our idea is to make benefit of

Decision Support Systems to help users in this task. We have

introduced in this paper Decision Support Systems and more

precisely Multi-Criteria Decision Analysis. We have presented

how this research area suits this security issue.

We have presented in this paper our model and a first version

of a prototype. This prototype that only considers three kinds

of criteria must be completed. Future context aware system

requires to handle geographic and temporal criteria. The bigger

the number of criteria is, the more the analysis of these

criteria will be (deducing their relationship, taking into account

their diversity, etc). As a consequence, more powerful Multi-

Criteria Decision Analysis are required, such as the Choquet

integral. Initialization is a very important step of the system

that can help preferences to converge faster and thus bother

the user less often. We are currently working on a user study

concerning the initialization. We want to analyze what kind

of initialization will give us the best first representation of

the users preferences. In order to do that, we have prepared a

survey where users are first asked to answer questions putting

them in real life situations. Each of these questions is related

to one or more context element like a type of resource, time or

location. After that, we ask users to tell us if they are willing

to share some kind of resource. We use sliders that goes to “I

dont want to share this resource, no matter what” to “I want

to share this resource in any case” . After these two steps,

we compare results and if some results are totally different in

the two version, a third step begin and asks the user what he

really means. This study will help us to know what type of

initialization give the best results between the questionnaire

and sliders.

REFERENCES

[1] ITU Internet Reports 2005, ”The internet of Things”, 7th edition, 2005.
[2] OASIS XACML committee, ”eXtensible Access Control Markup

Language (XACML) Version 2.0”, URL: http://www.oasis-
open.org/committees/xacml/, last access may 2013.

[3] Cheaito, M., Laborde, R., Barrere, F., Benzekri, A. ”A deployment

framework for self-contained policies”, (2010), Network and Service
Management (CNSM).

[4] W3C (2011). The platform for privacy preferences project (p3p).
http://www.w3.org/P3P/, last access may 2013.

[5] Kelley, P.G., Cesca, L., Bresee, J., Cranor, L.F. (2009). Standardizing
privacy notices: an online study of the nutrition label approach. CHI ’10
Proceedings of the 28th international conference on Human factors in
computing system.

[6] Inglesant, P., Sasse, M.A., Chadwick, D., Shi, L.L. Expressions of ex-
pertness: the virtuous circle of natural language for access control policy
specification. (2008). SOUPS ’08 Proceedings of the 4th symposium on
Usable privacy and security.

[7] Stepien, B., Matwin, S., Felty, A., Advantages of a non-technical
XACML notation in role-based models, in International Conference on
Privacy, Security and Trust (PST), pp. 193-200, 2011.

[8] EUREKA. url: http://www.canalsat.fr/pid1358-guide-tv-presentation-
eureka.html, last access may 2013.

[9] Bell, D., LaPasula, L., ”Secure Computer Systems : Mathematical
Foundations”, Technical Report MTR-2547, Vol 1, MITRE Corporation,
1973.

[10] Sandhu, R., Coyne, E., Feinstein, H., & Youman, C. (1996). Role-based
access control models. Computer, 38-47.

[11] Covington, M., Fogla, P., Zhan, Z., & Ahamad, M. (2002). A context-
aware security architecture for emerging applications. (2002). Computer
Security Applications Conference. Proceedings. 18th Annual, pp. 249-
258.

[12] Covington, M., Long, W., Srinivasan, S., Dey, A., Ahamad, M., &
Abowd, G. (2001). Securing context-aware applications using environ-
ment roles. Proceedings of the sixth ACM symposium on Access control
models and technologies, pp. 10-20.

[13] G. Neumann and M. Strembeck. A scenario-driven role engineering
process for functional RBAC roles, proc. of the 7th ACM Symposium
on Access Control Models and Technologies, pp 33-42, 20

[14] Dey, A. (2001). Understanding and using context. Personal and ubiqui-
tous computing.

[15] Covington, M., & Sastry, M. (2006). A contextual attribute-based access
control model. On the move to meaningful Internet systems 2006: OTM
2006 workshops, pp. 1996-2006.

[16] Bouyssou, D., Dubois, D., Pirlot, M., & Prade, H. (2006). Concepts et
méthodes pour l’aide la dcision 3. Lavoisier.

[17] Grabisch, M. Modelling data by the Choquet integral (2003). Informa-
tion fusion in data mining; pp. 135-148.

[18] Arnaud Martin, Pascale Zaraté, Guy Camilleri. Evolution of multicriteria
users’ profiles by adaptive machine learning for decision support. In:
Multicriteria Decision Making (MCDM 2011), june 2011.

[19] Android. url: http://www.android.com/, last access may 2013.

