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ABSTRACT

In the field of ultrasound imaging, resolution enhancement

is an up-to-date challenging task. Many device-based ap-

proaches have been proposed to overcome the low resolu-

tion nature of ultrasound images but very few works deal with

post-processing methods. This paper investigates a novel ap-

proach based on semi-blind deconvolution formulation and

alternating direction method framework in order to perform

the ultrasound image restoration task. The algorithm perfor-

mance is addressed using optical images and synthetic ultra-

sound data for a various range of criteria. The results demon-

strate that our technique is more robust to uncertainties in the

a priori ultrasonic pulse than classical non-blind deconvolu-

tion methods.

Index Terms— Resolution enhancement, deconvolution,

ultrasound, alternating direction method of multipliers.

1. INTRODUCTION

Compared with other medical imaging modalities such as,

e.g., X-ray computed tomography (CT), ultrasound (US)

imaging is a non-invasive, cost-effective, and harmless modal-

ity commonly used in the detection of various pathologies and

in the assessment of blood flow velocity. US imaging has now

become a standard procedure for medical diagnosis such as

breast cancer early detection [1, 2]. However, compared with

other medical imaging modalities such as magnetic resonance

imaging (MRI), the resolution of US images depends on the

working frequency and is very low. Additionally, the resolu-

tion is degraded due to the presence of an intrinsic noise (i.e.,

the speckle), the geometry of ultrasound transducers, and the

system impulse response or point spread function (PSF).

US image resolution improvement is generally achieved

by optimizing the imaging device, e.g., [3, 4]. Because

these techniques are often highly device- and frequency-

dependent, an alternative to perform this task is to con-

sider post-processing resolution enhancement techniques. A

few works have investigated such techniques in US imaging

and the PSF estimation, a key step in the deconvolution ap-

proaches, is still an ongoing challenge.

∗Part of this work has been supported by a Région Midi-Pyrénées grant.

Lately, deconvolution techniques have been extensively stud-

ied in the general image domain to perform the estimation of

a high resolution (HR) image. Early attempts to perform this

task include total variation (TV) deconvolution [5] and com-

plex deconvolution framework [6], but more recent works

have focused on multiple frame super-resolution (SR) [7, 8],

image restoration based on tetrolets shrinkage [9], deconvo-

lution with an inaccurate optical PSF [10], parametric inverse

filtering [11, 12], and blind deconvolution without SR [13].

Among the previously mentioned methods, blind deconvolu-

tion is a category of efficient but challenging approaches since

both the HR image and the unknown blur must be estimated

from the observed image. Depending on the step where the

PSF is computed, these techniques can be classified into dis-

joint or joint estimation methods [14, 15]. In the former class,

the PSF is computed separately from the original image and

is then used as a priori information into an image restoration

task. The latter provides the simultaneous estimation of the

HR image and blur and requires a regularization process us-

ing prior knowledge about the image formation model.

In this paper, we focus on the joint estimation of the US

HR image and blur with partial information about the PSF,

hence the term “semi-blind” deconvolution. The classical

image formation model leads to an ill-posed inverse problem

solved as a semi-blind deconvolution problem for resolution

enhancement. In [16], we have proposed an approach to

solve this resolution enhancement problem in which the PSF

was known. Here, we investigate the realistic unknown PSF

case and the inverse problem resolution must be adapted to

the semi-blind deconvolution formulation. The regulariza-

tion of the subsequent ill-posed problem is achieved using

a combination of L1 and L2 terms. On the one hand, the a

priori on the reflectivity x to be restored is enforced via the

sparsity constraint ||Γx||1, Γ being a linear transform. On

the other hand, the a priori on the PSF is incorporated as the

fidelity-type term ||h − h0||
2
2, where h0 is an initial guess

and h stands for the PSF to be recovered.

Efficient sparsity criteria include, e.g., total variation (TV)

[17] for optical and MRI images and Fourier transform [18]

for US images. Here, we consider the alternating direc-

tion method of multipliers (ADMM) framework, which is a

variant of the classical augmented Lagrangian (AL) method



implementable for optimization problems with separable

structures and linear constraints. Recent literature reports

efficient methods for general image restoration based on the

ADMM approach [19, 20]. In this paper, we perform the

joint estimation of the HR image and the PSF in a semi-blind

deconvolution formulation for resolution enhancement. We

eventually choose to promote piecewise regular solutions of

US images via the edge-preserving TV representation.

2. NON-BLIND DECONVOLUTION FRAMEWORK

AND RELATED WORK

2.1. Image Formation Model

Under the assumption of weak scattering conditions, the clas-

sical interaction between the acoustic field and examined tis-

sues is linear [1, 2, 21, 22] and the 2-D ultrasound image for-

mation model is given by

y = Hx+ n (1)

where y ∈ R
n is the vertical concatenation of n1 acquired ra-

dio frequency (RF) signals of length n2 (also known as “lex-

icographical notation”) with n = n1 × n2, xn ∈ R
n denotes

the tissue reflectivity function (TRF) to be recovered using the

same vertical concatenation as for y, H ∈ R
n×n stands for

the 2-D spatially invariant point spread function (PSF) matrix,

and n ∈ R
n is the noise. Under circular boundary conditions,

H is a circulant matrix with respect to its first row, i.e., a

zero-padded vectorized kernel h ∈ R
n of the ℓ = ℓ1 × ℓ2 co-

efficients built from the 2-D PSF, with ℓ1 ≤ n1 and ℓ2 ≤ n2.

The n2 coefficients of H are thus entirely determined by the

ℓ non-zero elements of h.

Taking into account the low resolution (LR) nature of y

for the so-called SR image restoration [7], we introduce in (1)

a matrix S modelling the loss of information on the observed

signal [19]. The image formation model can thus be rewritten

as

y = SHx+ n (2)

with x ∈ R
m the resized HR image, H ∈ R

m×m the PSF

matrix with the corresponding zero-padded vectorized kernel

h ∈ R
m, and S a n × m (n ≤ m) downsampling matrix of

range sr in each dimension, containing ones and zeros only

[19]. Namely, if n = n1 × n2, then m = s2r × n = m1 ×m2

with m1 = sr × n1 and m2 = sr × n2.

2.2. Inverse Problem Formulation

When H is known, the estimation of x can be formulated in a

first attempt as the following minimization problem

min
x∈Rm

||y − SHx||
2

2
. (3)

However, problem (3) is not well-posed since the uniqueness

of the solution is not guaranteed. In order to perform its esti-

mation, we need additional information about x such as, for

instance, TV criterion a priori. In this case, the estimation

problem within the super-resolution framework becomes

min
x∈Rm

|||Γx|||
1

s.t. ||y − SHx||
2

2
≤ α (4)

or in its equivalent unconstrained form

min
x∈Rm

||y − SHx||
2

2
+ τ |||Γx|||

1
. (5)

Γ is a linear transform, e.g., the gradient operator ∇ (TV a

priori), and τ and α are positive real numbers measuring the

trade-off between the fit to y (data fidelity) and the amount of

regularization.

Note that since we chose circular boundary conditions, H is

a block-circulant matrix and can hence be diagonalized by

Fourier transform (as well as Γ for instance in the TV case).

2.3. Alternating Direction Method of Multipliers

The solution of (5) can be efficiently computed within the AL

framework [16, 19]. Let us consider the general problem

min f1(u) + f2(v)
s.t. u ∈ U , v ∈ V, Au+Bv = c

(6)

where A ∈ R
p×q1 and B ∈ R

p×q2 are given matrices, c ∈ R
p

is a given vector, U ⊆ R
q1 and V ⊆ R

q2 are given convex sets,

f1 : U → R and f2 : V → R are closed convex functions.

Given an initial λ0, the ADMM method approaches the so-

lution of the original problem (6) by iteratively solving the

following problem














uk+1 ∈ argmin
u∈U

L(u,vk,λk)

vk+1 ∈ argmin
v∈V

L(uk+1,v,λk)

λk+1 = λk + β(Auk+1 +Bvk+1 − c)

(7)

where L(u,v,λ) denotes the AL function of (6) with λ ∈ R
p

the Lagrangian multiplier attached to the linear constraints,

and β ∈ R
∗
+ is the penalty parameter for the violation of

these constraints. Our problem (4) fits the framework (6) by

choosing u = x, v = vect ([Γx Hx]) , f1(u) = 0, f2(v) =

|||Γx|||
1
+ χZ(Hx), A =

[

ΓT HT
]T

,B = −I3m and c =

03m. I3m is the 3m × 3m identity matrix, 03m stands for a

zero vector of length 3m, vect (·) denotes the vertical vector-

ization operation, and χZ is the indicator function of the set

Z =
{

z ∈ R
m, z = Hx, ||y − Sz||

2

2
≤ α

}

. Note that in our

case, q1 = m and q2 = p = 3m.

3. PROPOSED SEMI-BLIND DECONVOLUTION IN

ULTRASOUND IMAGING

3.1. Point Spread Function in Ultrasound Imaging

Estimation of the US PSF is a fundamental step in both the

joint and disjoint estimation approaches. Even slight inac-

curacies may cause a severe loss in the restoration perfor-

mance [6]. In US imaging, a rough estimate of the PSF can



be directly computed from the RF image based on the min-

imum phase assumption by inversely mapping a subset of

the positive-indexed signal components in the cepstrum signal

(i.e., homomorphic filtering) [23, 24]. The PSF can further-

more be considered space-invariant on small enough image

segments. Thus, given an initial guess on h (for instance us-

ing the homomorphic filtering method), we propose to over-

come the PSF estimation inaccuracies via a robust semi-blind

deconvolution framework which consists in performing the

estimation of the PSF coefficients jointly with the ones of the

HR image.

3.2. Joint estimation of the PSF and the HR image

Taking into account both the semi-blind deconvolution and

the regularization aspects, we propose to reformulate the esti-

mation problem (5) as follows

min
x∈Rm,h∈Rℓ

||y − SHx||
2

2
+ τ |||Γx|||

1
+ γ||h− h0||

2

2
(8)

where h0 is the initial estimate of the PSF and γ, τ are reg-

ularization coefficients. Note that a similar L2 fidelity term

attached to h has already been used in a former work related

to array calibration [25]. Rather than solving this concurrent

minimisation problem, we decompose (8) as a sequential al-

ternating minimization problem with respect to x and h.

It is worth noting that the cost function in (8) is strictly con-

vex with respect to x or h but may not be jointly convex with

respect to (x, h). The accuracy of the initial estimates x0 or

h0 may therefore affect the performance. However, in our

experiments, the initialization stage was accurate enough to

provide satisfactory results in terms of convergence.

Given an initial h0 (or equivalently H0), our algorithm can

then be iteratively computed until convergence as follows

xk+1 = argmin
x∈Rm

||y − SHkx||
2

2
+ τ |||Γx|||

1 (9a)

hk+1 = argmin
h∈Rℓ

||y − SXkPh||
2

2
+ γ||h− h0||

2

2 (9b)

where P ∈ R
m×ℓ is a simple structure matrix mapping the ℓ

coefficients of the PSF kernel h to a m length vector so that

Hkx = XkPh. Xk ∈ R
m×m is a circulant matrix with the

same structure as Hk where the circulant kernel is xk ∈ R
m.

3.3. Details of Implementation

On the one hand, at iteration k + 1, when hk is known, the

solution of (9a) is given in Section 2.3. A detailed imple-

mentation of this stage when Γ = ∇ can be found in [16].

It involves pointwise fast Fourier transform (FFT) inversion,

soft-thresholding and projection operations which can be ef-

ficiently computed. On the other hand, when xk is known,

Eq. (9b) is a regularized least square problem and its solution

can be written as [25]

hk+1 =
[

(SXkP)T (SXkP) + γI
]−1[

(SXkP)Ty + γh0

]

(10)

(a) Original HR image (b) Input LR image

(c) Non-blind formulation (d) Semi-blind formulation

Fig. 1. Result of semi-blind deconvolution-based resolution

enhancement compared with the non-blind case. Input image

is a 30× 30 pixel detail of the “Lena” image. Parameters are

sr = 2, α = 0.01, β = 0.2 and γ = 4× 106.

where I is an identity matrix of size ℓ × ℓ. Each of the four

terms in (10) can be estimated efficiently. (SXkP)Ty can be

computed as the mapping through P of ℓ coefficients of the

convolution of the m length vectors x and STy. The matrix

(SXkP)T (SXkP) can be assembled with ℓ × ℓ coefficients

properly selected from the n × n matrix (SXk)
T (SXk),

which is a cross-correlation matrix of all the sr factor down-

sampled images, namely, the set
{

Sxk
i
}

, 0 ≤ i ≤ n − 1,

with xk
i the circular shift of xk by i elements.

Note that the first part of (10) is the inversion of a ℓ×ℓ matrix

(SXkP)T (SXkP) regularized by γI, where γ is a parameter

involved in both a diagonal loading process and a fit to h0.

High values of γ will result in an estimation of h close to the

initial PSF h0 while small values of γ will let the estimation

mainly rely on the data fidelity term.

4. EXPERIMENTS, RESULTS AND DISCUSSION

4.1. Optical Images

To get a better insight into the algorithm performance, we first

address the restoration of an optical synthetic image where the

degradation process (e.g., the additive noise and the PSF) is

known. Fig. 1 gives an example of such an experiment, where

a 30×30 pixel block of the “Lena” image was processed in the

known PSF (with the true h), non-blind viz initial guess (with

h0), and semi-blind (with hk when convergence is reached)



Fig. 2. Algorithm performance addressed in terms of (left)

PSNR, (middle) SSIM, and (right) PSF mean-square error.

10 iterations of (9) are often enough.

deconvolution cases. Note that the true PSF h and its initial

guess h0 have both a Gaussian shape but different standard

deviations (respectively σ = 1.25 and σ0 = 3.75). As can be

seen, the fine details of the eye structure are better recovered

in the semi-blind formulation. Though not depicted here due

to page limitation, it was observed that the final estimate hk

is much closer to the true PSF than h0 in terms of visual in-

spection and mean-square error (MSE).

Performance and convergence of the algorithm (9) is evalu-

ated in Fig. 2 using classical criteria such as peak signal-to-

noise ratio (PSNR), structural similarity (SSIM) [26] and rel-

ative PSF mean-square error. Compared with the non-blind

case (i.e., when k = 0), significant improvements are ob-

servable with respect to all criteria. Computation time for the

semi-blind deconvolution (9) of this image is approximately 2
seconds with a Matlab implementation and a 2.4 GHz desktop

computer.

4.2. Synthetic Ultrasound Data

We investigate in this section the processing of simple US

synthetic data simulated with a realistic PSF. A synthetic US

signal was generated with the FIELD II software [21]. The

true PSF h has a central frequency of f = 3 MHz whereas

the input PSF h0 central frequency was set to f0 = 3.1 MHz

in order to model the PSF estimation error. The sampling fre-

quency is set to fs = 30 MHz. The signal to be restored

consists of 5 single scatterers, shown by the vertical lines in

Fig. 3.

Computation time of the proposed method is about 1 sec-

ond. Note that in the non-blind case, the deconvolution of US

data with an inaccurate PSF provides results often worse than

the raw input data. Our semi-blind deconvolution technique

(9) for resolution enhancement always provides results better

than the non-blind deconvolution approach, as can be seen in

Fig. 3. The axial resolution enhancement of our method is

evaluated in Table 1 in terms of full width at half maximum

(FWHM) and resolution gain (RG) defined in [11]. RG was

defined by the ratio between the number of samples of the

normalized autocorrelation function with values higher than

Fig. 3. Resolution of US scatterers (vertical lines) with a sim-

ulated RF signal. Figure shows (top row) the input signal,

(middle row) the non-blind and (bottom row) the semi-blind

deconvolutions. Results are displayed in RF (left column)

and B-mode (right column) representations. Parameters are

sr = 1, α = 0.5, β = 0.1 and γ = 2× 102.

Table 1. Performance of our method in terms of full width

at half maximum (FWHM) and resolution gain (RG) [11].

Input Non-blind Semi-blind

image deconvolution deconvolution

FWHM 24 10 8

RG 1.00 0.34 2.78

0.75, computed for the envelope input signal, and that for the

deconvolved output signal.

Both criteria show significant improvements compared with

the non-blind deconvolution approach. Furthermore, the two

scatterers in the middle part of the original signal are recov-

ered, demonstrating an improved spatial resolution.

5. CONCLUSION

In this paper, we have proposed an algorithmic framework

for semi-blind deconvolution-based resolution enhancement.

The technique consists in the joint estimation of the origi-

nal image and blur. Prior knowledge about the PSF and the

image is incorporated via regularization techniques. Interest-

ingly, the algorithm can be implemented in a computation-

ally efficient manner. Performance and robustness have been

currently assessed on optical images and synthetic US data

through qualitative and quantitative criteria. It was shown

that our approach leads to resolution improvement and pro-

vides the recovery of close scatterers in the case of simple US

data. The results are promising and will be extended to more

realistic US images and to real in vivo data in a future work.
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