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INTRODUCTION
La Reunion Island is an active basaltic shield 

volcano, 220 km in diameter, rising ~7000 m 
from the Indian Ocean fl oor. The island is 
constructed on Paleocene oceanic crust and 
is considered to be the surface expression of a 
hotspot (Duncan, 1990). The submarine fl anks 
of La Réunion are mainly debris avalanche 
deposits (Oehler et al., 2008). Little previous 
attention has been paid to the volcaniclastic 
sedimentation on the slope apron and the adja-
cent abyssal plain.

Studies on volcaniclastic sedimentation dur-
ing the 1980s and 1990s were focused on short-
term, high-amplitude events, such as debris 
avalanches and pyroclastic fl ows (Fisher, 1984; 
Moore et al., 1989; Schmincke and Sumita, 
1998; Masson et al., 2002). Very high-resolution 
studies carried on the submarine fl anks of La 
Palma and El Hierro in the Canary Archipelago 
(Wynn et al., 2000), as well as on Stromboli vol-
cano in the Mediterranean Sea (Kidd et al., 1998; 
Casalbore et al., 2010), have shown evidence of 
sedimentary processes that are not linked with 
giant volcanic landslides. Recent advances on 
source-to-sink processes in volcanic setting 
(Manville et al., 2009) offer a more dynamic 
focus on volcaniclastic sedimentation by putting 
together the nature and dynamics of the volcanic 
products and the environmental setting.

To the authors’ knowledge, no previous stud-
ies have examined the case of a torrential river 
supplying a Quaternary volcaniclastic turbidite 

system. We present here the case of the Cilaos 
deep-sea fan, the sediment source of which is a 
torrential river draining a dormant volcanic cen-
ter on La Réunion. Our objective is to show that 
long-term erosion processes and high sediment 
supply in a volcanic-island setting can also form 
deep-sea fans similar to siliciclastic ones.

We combined acoustic backscatter images 
and swath bathymetry data (Simrad EM12D 

and EM120), 3.5 kHz echosounder profi les, 
and piston cores collected during cruises FOR-
EVER (N/O L’Atalante) and ERODER 1 (N/O 
Beautemps-Beaupré) in 2006. Laser-diffraction 
grain-size analysis and X-ray imaging were 
performed on the cores. Due to the low content 
of bioclasts in our core sampling, radiocarbon 
dates were not conclusive.

SOURCE OF THE VOLCANICLASTIC 
TURBIDITE SYSTEM

The Cilaos deep-sea fan is connected to a 
small drainage basin (360 km2) up to 3000 m 
elevation via the Rivière Saint-Etienne (Figs. 1 
and 2). The river has built an alluvial fan-delta 
no older than 350 ka, with a volume of ~25 km3 
(Saint-Ange, 2009). The river bed is composed 
of poorly sorted, coarse-grained sediments, 
ranging from sands to boulders (Fig. 3). The 
present river outlet is directly connected to a 
submarine valley. There is no shelf in front of 
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Figure 1. Acoustic backscatter images of southwestern part of La Réunion gathered 
during recent cruises FOREVER and ERODER. Red dots indicate location of cores, 
and blue lines indicate location of 3.5 kHz echosounder profi les shown in Figure 5. 
A: Close-up of La Rivière Saint-Etienne valleys. B: Location of Figure 2. Abbrevia-
tions: dad—debris avalanche deposits; dsf—deep-sea fan; vr—volcanic ridges. 
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the alluvial fan (Figs. 1 and 2; Fig. DR1 in the 
GSA Data Repository1), implying almost no 
sediment storage capacity at the coast.

The sediments are transported by annual fl ash 
fl oods linked to the passage of tropical hurricanes 
and storms that increase the river discharge from 
4.6 m3 s–1 up to 1500 m3 s–1, with fl ood velocity 
often higher than 6 m s–1 (SOGREAH, 1998). 
The river discharge doubles for a 10 yr return 
period, and centennial fl oods are estimated to 
reach 5000 m3 s–1 (SOGREAH, 1998). This type 
of fl ow leads to a mean solid load to the ocean 
of ~0.5 × 10−3 km3 in a few days, and for a cen-
tennial fl ood the solid load is estimated around 
1–2 × 10−3 km3 (SOGREAH, 1998). Severity 
of fl ooding is illustrated by the 2007 fl oods 
induced by Hurricane Gamède, during which 
the fl ow reached 2000 m3 s–1 (CGPC, 2007) and 
destroyed a major highway bridge (Fig. 3).

MORPHOLOGY AND NATURE OF THE 
CILAOS TURBIDITE SYSTEM

Feeder Valleys
The Cilaos turbidite system is more than 

280 km long and 100 km wide (Fig. 1). It starts 
at the coast with a set of 2–4-km-wide valleys 

(mean bank elevation ~150 m), which merge 
into a single wider valley at about −3000 m of 
water depth (Figs. 1 and 4). These valleys are 
70 km long and cut into debris avalanche depos-
its older than 500 ka (Oehler et al., 2008). Close 
to the coast, the valley fl oor gradient is ~8°, but 
it decreases quickly to reach 1° at the base of 
the volcanic edifi ce (Fig. 4; Fig. DR1). The high 
backscatter signal from valley fl oors is associated 
with very coarse sands and gravels, as revealed 
by piston core 03 (see Fig. 1 for location).

Morphology of the Fan
The upper part of the fan is characterized 

by fi elds of sediment waves (≥10 m high and 
1 km of wavelength), the crest orientations of 
which are perpendicular to the valley axis. The 
sediment waves developed on slopes ranging 
between 2° and 0.4° (Fig. 4). They fi rst start 
to grow on the western part of the lower valley 

(Figs. 1 and 4), where the height of the fl ank of 
the valley decreases signifi cantly.

The main deep-sea fan is developed at 
~4000–4500 m below sea level (mbsl) on a 
complex abyssal plain morphology shaped by 
northeast-southwest−trending volcanic ridges 
(Fig. 1). The volcanic ridges divide the turbi-
dite system into three parts (western, central, 
and eastern), presenting contrasting backscatter 
acoustic facies.

The eastern and central parts of the fan show 
few distinct architectural elements, mostly short 
channels observed in their upper areas only. In 
contrast, elements such as sediment waves and 
channels are well developed in the western part 
of the fan. Here, the upper fan shows a braided 
channel system (Fig. 1; Fig. DR2), which ends 
quickly or merges into a single channel that 
extends down to the lower part of the turbidite 
system (Figs. 1 and 5). The 3.5 kHz data reveal 

Figure 2. Map of alluvial fan of Rivière Saint-Etienne and bathymetry of upper part 
of slopes (contour interval: 10 m; artifact in drawing of contour lines highlights limit 
between swath and conventional bathymetry data sets). Onshore shaded topogra-
phy was produced using a digital terrain model provided by Institut Géographique 
National (IGN), France. Conventional bathymetry data were provided by Service 
Hydrographique et Océanographique de la Marine (SHOM), France.

Figure 3. Photo of Rivière Saint-Etienne after 
Hurricane Gamède (2007). Note size of boul-
ders (cars for scale).

Figure 4. Topographic profi le along Cilaos turbidite system (vertical exaggeration: 7×) and 
main sedimentary sequences observed along the system: a—gravel beds; b—ripple marks 
and laminated sands; c—laminated sands; d—sandy beds.



it is as big as the siliciclastic fan of the Var 
(16,000 km2) in the Mediterranean Sea, although 
its drainage basin is seven times smaller. The 
size of the fan in relation to its drainage system 
raises the question of rate of sediment supply.

Most hotspot-related volcanic islands in 
tropical or subtropical areas present three main 
similarities: (1) large production of volcanicla-
stic detritus linked to recurrent giant landslides 
(Moore et al., 1989; Masson et al., 2002; Oehler 
et al., 2008), (2) high magmatic production rates 
that frequently bring new material to erosion 
(Duncan, 1990; Schmincke and Sumita, 1998), 
and (3) among the highest worldwide erosion 
rates (Louvat and Allègre, 1997). The maxi-
mum denudation rates of some volcanic islands 
(Gran Canaria: 1.8 m k.y.–1 [Menéndez et al., 
2008]; Kauai: 4 m k.y.–1 [Gayer et al., 2008]; 
La Réunion: 3.4 m k.y.–1 [Louvat and Allègre, 
1997]) are close to those estimated for active oro-
gens (Taiwan: 3–6 m k.y.–1 [Dadson et al., 2003; 
Himalaya: 2–5 m k.y.–1 Burbank et al., 2003]). In 
the case of La Réunion, we propose that the con-
tinuous magmatic activity, which lasted at least 
2 m.y. between 2.1 and 0.012 Ma in the Cilaos 
area (McDougall, 1971; Deniel et al., 1992), 
combined with the high erosion rate were able 
to continuously provide enough material, thus 
explaining the high sediment supply with respect 
to the small size of the drainage basin.

This explanation highlights the fact that long-
term erosion processes account for a signifi cant 
part of the volcaniclastic sediment output, and in 
the case of La Réunion, for the most signifi cant 
part of the late Quaternary.

Sediment Transfer to the Basin
The drainage basin and the alluvial fan com-

bined represent an area of 445 km2. This value 
implies that the sediment storage capacity 
onshore represents only ~3% of the entire sys-
tem. In view of the low storage capacity (Figs. 1 
and 2), the high erosion rate, and the river dis-
charge, the sediments cannot stay a long time 
onshore and are most likely transferred to the 
basin during fl ood events related to storm rain-
fall. Because the river is permanently connected 
with the submarine valley, there is no problem 
of accommodation due to the sea-level drops or 
rises, as they do not signifi cantly impact the sed-
iment transfer to the deep sea. All these param-
eters, together with the island’s steep submarine 
upper slopes (Fig. 4) and the well-developed 
valleys cut into the debris avalanche deposits, 
provide an effi cient transfer mechanism for 
volcaniclastic sediments from subaerial regions 
to the abyssal plain. The recurrent rhythmic 
sequences observed in cores and the obvious 
channel systems indicate that turbidity currents 
arrive frequently in the upper part of the fan. 
The resulting sediment deposits do not show 
the characteristic signatures of turbidites related 
to giant volcanic landslides as identifi ed for 

other volcanic islands such as Canary Islands 
and Hawaiian Islands. In those areas, sediment 
record shows stacked subunits within a single 
thick turbidite bed (>1 m), indicating multiple 
stages of failure (Garcia and Hull, 1994; Wynn 
and Masson, 2003). This difference implies 
another mechanism for sediment transport than 
the catastrophic giant slopes failures.

In the case of La Réunion, the magnitude 
of river fl oods suggests that hyperpycnal fl ows 
contributed signifi cantly to the development and 
the feeding of the Cilaos turbidite system. This 
hypothesis is also supported by the braided plain 
observed in the upper western part of the fan, 
the growth and development of which required a 
sustained fl ow, with high discharge and predom-
inance of bed-load material (Hesse et al., 2001). 
The hypothesis of hyperpycnal fl ow feeding a 
turbidite basin has also been proposed in Ice-
land, where turbidites related to Jökulhlaup 
events are considered to have been a signifi cant 
source of sediment to the Iceland Basin over the 
past 3 m.y. (Elliott and Parson, 2008). In addi-
tion, considering the high bed-load river type 
of La Rivière Saint-Etienne, small failures can 
occur immediately seaward of the main river 
mouth and secondary channels, as described for 
Squamish delta in British Columbia and similar 
settings (Piper and Normark, 2009).

CONSEQUENCES FOR 
VOLCANICLASTIC SEDIMENTATION 
MODELS

The existence of hyperpycnal fl ows feeding a 
volcaniclastic deep-sea fan introduces the idea 
of a gradual evolution of volcaniclastic sedi-
mentation similar to the siliciclastic model. This 
model contrasts with the idea of catastrophic 
sedimentation related to fl ank collapses and 
pyroclastic fl ows. Following classifi cations 
made for turbidite systems by Richards et al. 
(1998) and Piper and Normark (2001), Cilaos 
is classifi ed as a sand-rich system. Commonly, 
sand-rich systems are found in active tectonic 
settings, such as along the California margin 
or in the Gulf of Corinth (Piper and Normark, 
2001). Space available for development of fans 
in these settings is reduced, so they tend to be 
thicker rather than wide (Richards et al., 1998; 
Piper and Normark, 2001). In these classifi ca-
tions, the Cilaos deep-sea fan represents an alter-
native model and shows a simple and predict-
able pattern, as (1) it formed in an open-ocean 
setting isolated from siliciclastic source, (2) it 
is a wide volcaniclastic sandy system similar to 
the siliciclastic ones, and (3) it shows lateral and 
vertical variations of facies and architecture.

This Quaternary model echoes the thick and 
well-developed volcaniclastic turbidite systems 
described in ancient geological series like in the 
Kalgoorlie Sequence in Australia (Krapez and 
Hand, 2008), or in the Lower Mesozoic Min-
eral King caldera complex in Sierra Nevada 

Figure 5. Part of four 3.5 kHz echosounder 
profi les spanning Cilaos fan (see location on 
Fig. 1). Numbers indicate width (km) and height 
(m) of channels. Abbreviations: c—channel; 
cls—channel-levee system; dsc—discon-
tinuous subsurface refl ectors; es—erosion 
structures; pc—paleochannel; sw—sediment 
waves; lba—low-backscatter area.

that the channel morphology becomes deeper 
and more confi ned downstream (Fig. 5). In the 
distal part of the turbidite system, the channel 
reaches its maximum size, where it is ~5 km 
wide and ~30 m deep (Fig. 5, profi le 20).

Nature of Sediments
The cores taken on overbank areas consist 

mainly of volcaniclastic detritus ranging from 
sands to clays, with silts and sands representing 
between 78% and 88% of the sediment. Sandy 
layers consist of dark basaltic fragments, brown 
glass, olivine, feldspar, pyroxene, and in some 
cases zeolites. True pelagic layers are rare, and 
hemipelagic layers are poor in bioclasts. Pumices 
are rare, but some are observed inside hemipe-
lagic layers. The cores show classical turbidite 
sequences with traction deposits, such as ripple 
marks, laminated sand in places alternating 
with laminated bioclasts, and thick sand depos-
its, respectively, Tc, Tb, and Ta of the Bouma 
sequence (Fig. 4; Fig. DR3). These turbidites are 
rhythmic, with closely spaced sequences at the 
head of the fan and more interbedded hemipe-
lagic sediment down the fan (Fig. 4; Fig. DR3).

SEDIMENTARY PROCESSES INVOLVED 
IN THE GROWTH OF THE TURBIDITE 
SYSTEM

Sediment Supply
The Cilaos deep-sea fan covers an area of 

~15,000 km2 and has a maximum thickness 
of 120 m (Saint-Ange, 2009). By 
comparison, 



(California; Busby-Spera, 1985). In those areas, 
sediments were essentially supplied by reworking 
of volcaniclastic deposits. Analogue structures 
to those described in this article are observed, 
such as channelized and unchannelized deposits, 
cross-bedded structures, or braided plain channels 
(Busby-Spera, 1985; Krapez and Hand, 2008).

Quaternary deep-sea volcaniclastic sediments 
are widespread in many basins with high eco-
nomic interest (Fisher, 1984; Alibés et al., 1999; 
Elliott and Parson, 2008), and they represent a 
complexity for the mechanism of siliciclastic 
sedimentation. In those areas, volcaniclastic 
sedimentation is mainly seen as linked with epi-
sodic and ephemeral massive processes (Man-
ville et al., 2009). Nevertheless the existence of 
the Cilaos turbidite system underlines the lack of 
understanding of Quaternary volcaniclastic sedi-
mentation linked to long-term surface processes.

Flash fl oods, especially those that destroy 
bridges, are considered to be catastrophic events. 
Nevertheless, at the Quaternary scale and consid-
ering the phenomena of volcanic fl ank collapses, 
they are consistent events because they are linked 
with climate and long-term physical processes. 
Because the Cilaos fan is the result of fl ood sup-
ply of sediment by rivers, it appears to be a good 
example of evolution from a catastrophic sedi-
mentary system model characteristic of volcanic 
environments to a gradual sedimentary system 
model characteristic of siliciclastic environments. 
It also provides a good opportunity to study in 
detail the different facies and architecture related 
to subaerial fl ood processes.
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