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Abstract

Angiogenesis is the phenomenon by which new blood vessels are created from
preexisting ones. But this natural process is also involved, in a chaotic way,
in tumor development. Many molecules have shown particular efficiency in in-
hibiting this phenomenon, hopefully leading to either: (i) a reorganization of the
neovessels allowing a better tumor uptake of cytotoxic molecules (as chemother-
apy) or (ii) a deprivation of the tumor vascular network with the view to starve
it. However, characterizing the anti-angiogenic effects of a molecule remains dif-
ficult, mainly because the proposed physical modeling approaches have barely
been confronted to in vivo data, which are not directly available. This paper
presents an original approach to characterize and analyze the anti-angiogenic
responses in cancerology that allows biologists to account for spatial and dynam-
ical dimensions of the problem. The proposed solution relies on the association
of a specific biological in vivo protocol using skinfold chambers, image process-
ing and dynamic system identification. An empirical model structure of the
anti-angiogenic effect of a tested molecule is selected according to experimental
data. Finally the model is identified and its parameters are used to characterize
and compare responses of the tested molecule.

Keywords: data-driven modeling, system identification, image processing,
cancer, angiogenesis

1. Introduction

Angiogenesis is a normal and necessary phenomenon consisting in creating
new blood vessels from preexisting ones. It concerns many physiological pro-
cesses during life cycle as, for example, wound healing, development of new
tissues, embryonic maturation, menstrual cycles, etc.5

Unfortunately, it is also involved in tumor development, especially in tumor
neovascularization. As a matter of fact, at the very beginning of tumor devel-
opment (i.e. before it reaches 1 to 3 mm3) oxygen and nutrients uptakes can
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be done by a simple diffusion process. But beyond a 3 mm3 threshold, to carry
on their development, cancer cells over-express physiological pro-angiogenic fac-10

tors, as Vascular Endothelial Growth Factor (VEGF), in order to stimulate the
angiogenesis process in favor of the tumor [1]. Nearby endothelial cells (blood
vessel constituting cells) will then be activated by VEGF and will get out of their
quiescent state and start the construction of a new vessel in the angiogenic signal
source direction.15

Due to the permanent excess of physiological pro-angiogenic factors, the
newly created blood vessels have an aberrant architecture, non stabilized, per-
meable and tortuous. Therefore the tumor irrigation is not optimal and creates
hypoxia areas, leading to a continuous tumor angiogenesis stimulation. Such
conditions could make the tumor treatment-resistant to chemo- or radiothera-20

pies since the lack of suitable vascularization prevents a good drug delivery or
a good tumor oxygenation [2]. It has also been proved that the start of tumor
growth was directly linked to neovascular development, [3], hence, it is now
accepted that inhibiting angiogenesis in tumor could increase the efficiency of
standard therapies [4].25

However, the efficiency and secure use of anti-angiogenic drugs requires to
better define their pharmacodynamic effects and consequences on tumor growth.
Indeed, it will allow to determine when, how and how long these drugs should
be administrated in order to optimize the therapeutic protocols.

On the other hand, the use of mathematical models has been largely democ-30

ratized for various biological applications, either for characterization, prediction
or control purposes. A literature review proposed by Mriouah et al., [5], pub-
lished in 2012, showed that three main types of mathematical models have been
used to: (i) simulate and understand complex phenomena involved in angiogenic
processes [6, 7, 8], (ii) analyze interactions between tumor and vasculature sys-35

tems [9, 10] and (iii) optimize anti-angiogenic therapies [11, 12, 13, 14, 15].
This review also emphasizes that the model structures can take various forms:
temporal, spatio-temporal or multi-scale. However they were all designed from
physical and biological equations, and very few behavioral modeling approaches
of angiogenesis have been tested, so far. For instance, Drexler and Kovacs have40

used in [16, 17, 18, 19, 20] a state-space representation derived from a lineariza-
tion process applied to a nonlinear model initially proposed in [11]. Nevertheless
the relevance of this state-space model has never been assessed in vivo. Indeed,
Mriouah et al. particularly highlight the lack of in vivo validation of existing
models. In fact, not only very few models were confronted with real data but45

statistical tests are barely applied to validate the model performance. Yet, with-
out any relevant validation tests based on in vitro or in vivo data, the credibility
and medical application of mathematical models remains unlikely.

One of the main bottleneck preventing empirical modeling and practical
validation is the lack of experimental data availability (in terms of quality and50

quantity).
In such a context, the objective of the present paper is to propose an inno-

vative approach integrating:
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• an in vivo protocol of experiments using skinfold chambers (real time
observation of in vivo angiogenesis processes) applied to mice.;55

• image segmentation technics (access to informative biological data);

• dynamic system identification methods (data-driven modeling);

with the purpose of characterizing and comparing more accurately the anti-
angiogenic treatment responses.

This paper is organized as follows. Section 2 describes material and methods60

performed from in vivo experiments to image acquisition and Section 3 presents
the automatic image segmentation process by which data are extracted from
images. A data-driven model structure selection is then proposed in Section 4
before being identified. Finally results are discussed in Section 5 before drawing
conclusion and perspectives.65

2. Material and methods

In vivo angiogenesis imaging through skinfold chambers, on nude mice, al-
lows to visualize the creation, functionality and remodeling of blood vessels
within tumor during 4 to 5 weeks [21].

2.1. Skinfold chamber70

This chamber model is made of two titanium shields placed on either side
of a skinfold on the mouse back. These shields have a central circle hole of
10 mm diameter through which each side of the skinfold is visible. The skin of
one side is dissected and removed in front of one of the apertures, which is then
hermetically sealed with a thin sterilized cover glass in order to visualize the75

skin blood vessels of the other side dermis. It is possible, by removing the cover
glass then by replacing it, to implant tumor cells or to graft tumors within the
visualization chamber.

The main advantages of such a system is that chambers allow repeated (al-
most daily) observations of both vascular network and tumor growth by in vivo80

intravital microscopy over 4 to 5 weeks [22]. An example of this model is pre-
sented in Figure 1.

2.2. Animals and tumor xenografted model
The study design was approved (authorization number: CELMEA-2012-

0018) by Animal Protection Bureau of the French Ministry for Fishing, Agri-85

culture and Food and the experiments were conducted in accordance with the
Guiding Principles for Research Involving Animals. Using human tumor frag-
ments requires to work with immunodeficient mice (nude) to avoid graft rejec-
tions.

Experiments were performed on 6 to 12-weeks-old female nude mice (nu/nu)90

weighting between 25 and 30 grammes (n=16). They were provided by Janvier
breeding (Le Genest St Isle, France).
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Figure 1: Example of a xenograft and skin vascular observation from skinfold chamber placed
on a nude mouse

Anesthesia was achieved by a single intraperitoneal injection of a Xylazine
(8 mg/kg, Rompun 2 %, Bayer Health Care, Puteaux, France) and Ketamine
(90 mg/kg, Imalgène 500, Merial, Lyon, France) mixture. To prevent post-95

operative pain and stress, mice were injected subcutaneously with single doses
of Buprenorphine (0.05 mg/kg, Buprécare, Axience) and Meloxicam (1 mg/kg,
Metacam, Boehringer Ingelheim).

The dorsal skinfold chamber is positioned and xenograft implanted respec-
tively at days D−14 and D−13, see Figure 2. The xenograft consists in placing100

a non-vascularized 1 mm thick tumor fragment (of 2 to 4 mm2) on the vascular
network of the skin.We use tumor fragments derived from a human glioblastoma
cell line (U87). The cells are injected subcutaneously in the flanks of nude mice
to form a tumor which is then cut into small fragments that are placed on the
vascular network in the skinfold chamber.105

At the end of experiments, mice were killed by a lethal dose of sodium
pentobarbital (Pentobarbital sodiquer, CEVA Santé Animale, La Ballastière,
France).

2.3. Anti-angiogenic drugs and administration protocols
Only one anti-angiogenic drug was tested: bevacizumab (Avastinr, Roche,110

France). It is a monoclonal antibody targeting VEGF in order to prevent the
fixation of VEGF to its receptors on endothelial cells, hence hindering angiogen-
esis stimulation and in consequence, the angiogenesis stimulation [23, 24]. When
the tumor vascular network was complete (i.e. when the entire visible part of
the tumor is vascularized) the mice were randomized into two batches: one115

treated and one control. The treated batch was daily injected intraperitoneally
with bevacizumab (10 mg/kg).

2.4. Image acquisition
Picture acquisitions were made 3 to 6 times a week; from anesthetized mice

placed on the platform of the microscope (Nikon AZ100, Champigny sur Marne,120
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France). The vascularization of xenografts and vascular network evolution have
been followed for 28 days maximum, using transmitted light with a FITC filter
(Fluorescein isothiocyanate) which allows to increase contrast between vessels
and skin thanks to blood hemoglobin autofluorescence. Only superficial tumor
vessels were observed due to the weak microscope depth of field.125

The experimental setup timeframe is illustrated in Figure 2.

0

Days

-14 -13 15

Tumor graft

Skinfold chamber placement 

Treatment beginning Mouse sacrifice

Image acquisition

Figure 2: In vivo experiments timeframe

3. Automatic image segmentation

A vascular network can be characterized by predicates as length between
junctions, irrigation quality or cellular density. However, there is a certain lack
of knowledge in comprehension of tumor vascular network features [25].130

Ideally, angiogenesis analysis should be robust, reproducible and as non-
supervised as possible. The observed characteristics should be multiple and
directly relied on preclinical and clinical results [26]. To guarantee such con-
straints, an automatic image segmentation becomes necessary since it can offer
many advantages:135

• more reliable data (quantitative results with acceptable uncertainties);

• increased reproducibility compared to the naked eye measurements;

• data processing of large image sets in a short time;

• access to barely used physical quantities due to the difficulty of manual
extraction.140

3.1. Image processing
3.1.1. Region of interest

It is technically difficult to detect by computer a structure that is hardly
discernible to the naked eye. In our case the tumor boundaries are too tenuous
(lack of contrast). Hence in this exploratory study, the tumor segmentation145

was performed manually by biologist experts in order to define the region of
interest (ROI). In the future, we plan to test multimodality imaging to better
discriminate cancerous tissues from healthy tissues.
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3.1.2. Vascular network detection
The vascular network detection step deals with the definition of pixel be-150

longing either to vessels or to tumor tissue within the previously defined ROI.
The stages of the vascular network extraction are presented in Figure 3.
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Figure 3: Application of Savitzky-Golay filter: estimated polynomial response (in red) com-
pared to the 500th line of original picture (in black) in A, peaks extraction (supposed to be
vessels) by subtraction of the two signals in B, result is thresholded (red curve in B) and
normalized in Figure C where peaks represent blood vessels detected from original picture D

Given the sought structures type (wire-shaped and highly contrasted with
respect to the background picture, i.e. of higher frequency), the first step was
to detect the background (cancerous tissue) and to subtract it from the image.155

Two first order Savitzky-Golay filters, [27], (one for horizontal and one
for vertical directions) were used. This filter identifies, with the least-square
method, a polynomial through a 25 pixels long sliding window. The window
length is tunable: the shorter it is, the more sensitive to high frequency (includ-
ing noise) will be the filter. Hence, each filter returns a background estimated in160

one direction, the final estimated background is defined as the maximum value,
for each pixel, of the two directional backgrounds.

In order to extract vessels, the original picture and the estimated background
are subtracted and thresholded. The threshold value is fixed at 3 % of the
original picture maximum intensity. Finally, a calibration step is performed to165

keep only the wire-shaped structures, i.e. having:

• a minimum number of consecutive pixels by line and column;

• a minimum size, whatever the direction.

6



These parameters were empirically fixed and depend on the searched ele-
ments size. They have been tested on a first set of images before being validated170

on a second one. An example of the final blood vessel segmentation is presented
in Figures 4.B1,2.

3.1.3. Skeletonization
This step allows to simplify the picture to ease detection and quantification

algorithms application. It consists in refining every structure (blood vessels)175

till having unitary width lines (just like fire in a grass field). A routine imple-
mented on Matlab was used on our images to remove pixels on the boundaries
of objects while preventing structures breaks. Examples of results are presented
in Figures 4.C1,2.

3.2. Quantification and data processing180

Access to physical quantities on tumor-vascular network evolution is the key-
stone which allows system identification of angiogenesis model. These quantities,
or signals, must be measured from in vivo experimental 2D image sequences.

The previous segmentation and skeletonization steps are necessary to quan-
tify different predicates through time: tumor area, total endothelial cells area185

(blood vessels), vascular density (ratio between tumor and vessel areas), amount
of junctions, amount of vascular sprouts (small length newly created vessels),
vascular network total length, etc.

Nevertheless, as previously said, macroscopic images were taken almost ev-
eryday, it means that the sampling period is not constant (varying between 1190

and 3 days). Hence, data had to be interpolated in order to be used with com-
mon system identification algorithms. This has been done by a classical linear
interpolation routine on Matlab with a new sampling period of 1 day.

4. Data-driven modeling and system identification

System identification consists in searching a mathematical model of a dy-195

namic system from its input/output signals. This model is characterized by a
structure and parameters that need to be chosen and adjusted, in order to re-
produce the input/output behavior of the studied system. The model structure
can be based on a priori knowledge (from physics or biological equations, as
used in [19] for example) where parameters have biological meanings or it can200

only rely on input/output signals behavior. Unlike classic physical modeling
approaches, behavioral model structures remain more parsimonious (minimally
parametrized) and easy to compute or simulate [28]. In this section, we propose
to use the parameters of behavioral model structures as numeric indicators of
the anti-angiogenic efficiency. The comparison of the estimated values for each205

model parameter allows us to assess more precisely the effects of new treatments
with respect to reference molecules.

In our case, it is known that tumor-vascular density can be a marker for
cancer evolution and, of course, for survival prognostics. In fact, this signal,
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Figure 4: Example of segmentation process on a control (left) and treated tumor (right) at
day +7: manual segmentation (ROI) of cancerous tissues is done in yellow on step A, vessel
segmentation is performed on step B (vessels are in white), step C presents the quantification
(blue and red circles) on the skeletonized vascular network (green lines)

taking into account both tumor and endothelial cells areas, appears to be one of210

the most informative measurable quantity in angiogenesis studies. As presented
in Figure 5, it is clear that treatment by bevacizumab affects the angiogenic
dynamic of tumors. Next paragraph presents the data-driven modeling process
that estimates and thus quantifies this anti-angiogenic effect.
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Figure 5: Mean signals and their standard deviation of tumor-vascular density for control
(left) and treated mice (right)

4.1. Modeling process215

The effects of treatment on tumor growth and vascular network development
could be considered, in a control point of view, as a system whose behavior is
deviated from its natural dynamics by the effect of an external input variable.
This MISO (Multiple Input Single Output) structureMG, presented in Figure 6,
contains two sub-blocks:220

• angiogenesis dynamics (Md);

• treatment dynamics (Mt).

Tumor-vascular 
density model

Md

Treatment effect 
model
Mt

yG(t)ud(t)

ut(t)

+
yd(t)

yt(t)

GLOBAL SYSTEM
MG

Figure 6: Input/output representation of angiogenic phenomenon and treatment effect models,
where ud(t) and ut(t) are respectively the grafting and treatment inputs and yd(t) and yt(t)
are their corresponding outputs combined in yG(t)

Where yG(t), the global output, is the vascular density response measured from
in vivo macroscopic images, as described in Section 3. This variable is composed
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of the natural growth response of the tumor angiogenesis system yd(t) and of225

the treatment effect on it, yt(t). Each block is controlled by a specific input
signal:

• ud(t) is a step signal defining when tumor is grafted on the mouse;

• ut(t) is the amount of anti-angiogenic agent injected to the studied mouse,
approximated by a step signal beginning at day 0.230

4.1.1. Structure selection
Continuous-time (CT) model structures were preferred to discrete-time rep-

resentations for convenience reasons. Indeed, with a CT model the estimated
parameters are independent of the sample time period, the method is then
reproducible on different data sets, and the estimates will therefore be compa-235

rable. Moreover, some recent developments in system identification applied to
the modeling of continuous-time systems from sampled data have been proposed
in [29].

An Output Error (OE) equation was chosen for both systemsMd andMt:

M : y(t) =
B(p)

F (p)
u(t) (1)

with

B(p) = b0p
nb + b1p

nb−1 + · · ·+ bnb

F (p) = pnf + f1p
nf−1 + · · ·+ fnf .

where p is the differential operator (i.e. x(t)pn = dnx(t)
dtn ). The parameter vector

is defined as θ = [b0, . . . , bnb , f1, . . . , fnf ]. In such a structure, indices nb and nf240

define respectively the numerator and denominator orders.
It is assumed that the input and output signals denoted {u(tk); y(tk)}, are

sampled at discrete times t1, · · · , tN . The measured output is described as
follows:

ym(tk) = y(tk) + e(tk). (2)

where e(tk) ∼ N (0, σ2) denotes the random residuals between the observed and
explained responses, and σ2 corresponds to the variance of this Gaussian white
noise.

The complete model structure is then given by:245

MG :

{
yG(t) =

Md︷ ︸︸ ︷
Bd(p)
Fd(p)

ud(t) +

Mt︷ ︸︸ ︷
Bt(p)
Ft(p)

ut(t)

yGm(tk) = yG(tk) + e(tk)
(3)

withBd(p), Fd(p), Bt(p) and Ft(p) four polynomials of orders {nbd , nfd , nbt , nft} ∈
N+. Selecting a model structure consists in choosing suitable values for those
four indices by looking for the best compromise between behavioral fitting (high
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orders) and simplicity (low orders). Let M be a set of model structures (of in-
creasing complexity) that compete for the description of the global system:

M =
{
MGi , i = 1, . . . , nm

}
(4)

where nm is the number of tested order combinations. Akaike’s information
criterion, [30], was selected to find the most parsimonious model structures.
In fact, the AIC promotes fitting accuracy while penalizing high dimensional
(dim(θ)) structures guaranteeing a parsimoniously parametrized model. Two
criteria (the first one computed with control data and the second one with
treated data) were computed for each combination and the selected structure is
obtained as follows:

M̊G = arg min
MGi

∈M

(
AICcont(MGi) +AICtreat(MGi)

2

)
(5)

where AICcont(MGi) and AICtreat(MGi) are the two criteria computed from
control and treated data. 64 structures were tested using Matlab System Identi-
fication Toolbox and selected orders are nbd = 0, nfd = 2, nbt = 1 and nft = 1.

Finally, the selected global model structure of tumor-vascular density devel-
opment and treatment effect becomes:

M̊G :

{
yG(t) =

bd0
p2+fd1p+fd2

ud(t) +
bt0p+bt1
p+ft1

ut(t)

yGm(tk) = yG(tk) + e(tk)
(6)

4.2. Continuous-time system identification
Various statistical methods have been proposed to solve CT parameter esti-250

mation issues formulated in both time and frequency domains. However, only
the Simplified Refined Instrumental Variable method for Continuous-time Sys-
tems (SRIVC) has been used herein. The SRIVC method has proven to be
very efficient in a number of practical cases and is one of the very few methods
that can be interpreted in optimal statistical terms, so providing an estimate of255

the parametric error covariance matrix and therefore estimate of the confidence
bounds on the parameter estimates [31]. It presents the clear advantage to
be simple to use since the CT parameters are directly estimated from sampled
data. The conversion stage which can be delicate is therefore avoided. A SRIVC
routine is now embedded in SITB Matlab toolbox (System Identification Tool-260

Box 8.0, released in 2012) and allows to identify CT model from sampled data.
This recursive algorithm is based on the instrumental variable method, [30],
initialized by a first least squares estimation step. The inputs/outputs signal
derivates, needed to compute the regression vector, are computed by a state-
variable filter. The cut-off frequency of this filter is fixed to a sufficiently high265

value to take into account all the system time constants [31]. This method was
used to estimate the parameters of the model (6).
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4.3. Estimation results and model falsification
Measured and simulated outputs are presented with their corresponding in-

puts in Figure 7. Residuals, defined as:

Res(tk) = yGm(tk)− yGsim(tk) (7)

are also presented.
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Figure 7: Measurements and estimated outputs for control and treated batches. Input signals
and residuals are respectively plotted above and below

4.3.1. Fitting and stochastic analysis270

Both simulated outputs fit quite well the measurements, the goodness of fit,
computed as follows:

FIT = 100
(

1− ‖yGsim (tk)−yGm (tk)‖2
‖yGm (tk)−µyGm ‖2

)
(8)

with µyGm , the mean of yGm(tk), was estimated between 87 and 92% .
However, in order to entirely validate the stochastic assumptions formulated

in Section 4.1.1 (especially on e(tk) whiteness), the statistical properties of the275

residuals have been graphically assessed by comparing:

1. the residual autocovariance function with a Kronecker’s delta function
inside a 99% confidence interval;

2. the residual quantiles spread with respect to one from a normal law.

Results are presented in Figure 8.280
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Figure 8: Residuals autocorrelation functions within a 99% confidence interval at top for
control and treated data sets and quantile-quantile plots below. These curves show acceptable
results in both independence and normality terms

4.3.2. Parameter analysis
Parameter estimates are presented in Table 1 with their coefficients of vari-

ation (cv = | σ̂θθ | × 100, where σ̂θ is the standard deviation of the parameter
estimated by bootstrapping with Nsim = 200).

4.4. Sensitivity analysis285

In order to assess the impact of each parameter on the output signal, we
have performed a sensitivity analysis based on the model estimated from the
treatment batch data. For every simulation of the model (Nsim = 500), one of
the parameters was assigned a value randomly picked according to a uniform law
defined on

[
0.9× θ̂, 1.1× θ̂

]
(corresponding to a 20 % variation range) while the290

others parameters were kept to their estimated nominal values. The simulated
output signals were then centered and normalized and are presented in Figure 9.

Results show that four parameters are more sensitizing (bd0 , fd2 , bt1 and
ft1) than the other ones. As presented on their corresponding figures, these
parameters mainly affect the increase dynamics and steady states of the system.295
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Batch Param. Estimate cv (%)

Control

bd0 0.023 12
fd1 0.23 13
fd2 0.057 10
bt0 0 -
bt1 0 -
ft1 0 -

Treated

bd0 0.021 18
fd1 0.16 35
fd2 0.051 19
bt0 −0.032 45
bt1 −0.068 22
ft1 0.35 50

Table 1: Parameter estimates and coefficients of variation cv for control and treated batches
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Figure 9: Normalized variation ranges of output signal yG(t) for a ±10% variation on each
parameters

Such features can easily be interpreted in a biological way as vascular network set
up and rearrangement phases. The biological interpretation of these parameters
is discussed in the next section.
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5. Discussion

Macroparameters as static gains and time constants can be used to easily300

characterize the dynamics of tumor-vascular density development or treatment
effect. These macroparameters are defined as follows:

• Static gains: Kd =
bd0
fd2

and Kt =
bt1
ft1

• Time constants: τd = 1
|λd| and τt = 1

|λt| with λi the roots of polynomial
Fi(p) where i = {d, t}.305

In our case, as shown in Figure 10, the tumor natural growth dynamics are
equivalently estimated from control or treatment data sets (i.e. parameters bd0 ,
fd1 and fd2), which confirms the choice on the model structure.

However, these plots also highlight the regularization effect of bevacizumab.
Indeed the negative static gain for the treatment effect part of the model in-310

dicates a tumor-vascular density decrease mainly due to the vascular network
rearrangement caused by (i) the anti-vascular effect of the molecule (destruc-
tion of blood vessels) but also to (ii) its anti-angiogenic ability (inhibition of
new sprouts creation leading to fewer neovessels). The time constants are not
compared to each other in this pilot study. Nevertheless they could be useful to315

compare the pharmacokinetics of the competitive drugs.
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Figure 10: Meta-parameter estimates and their standard deviation obtained by bootstrapping

6. Conclusion

The objective of this paper was to propose an innovative and integrative
data-driven modeling approach that was able to estimate and compare anti-
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angiogenic effects of therapeutic molecules on tumor-vascular density. The pro-320

posed method was confronted with experimental in vivo data obtained from a
user-independent image segmentation process of tumors macroscopic pictures.
The approach has proven its efficiency by successfully reproducing the tumor
and vascular behaviors and by producing parameter estimates which can be in-
terpreted and compared to assess the treatment effects. In short terms perspec-325

tives, it is planned to extend the previous behavioral modeling to the amount
junctions and vascular sprouts as well as the total length of the vascular network.

Further experiments will be carried out to assess the model ability to dis-
criminate different treatment doses and their consequences on vascular network
and tumor growth.330

Finally, this model could also be used for predictive purposes in order to
foretell when the optimal normalization window occurs, during which the effects
of an anti-cancer therapy (such as chemo- or radiations therapies) could be
potentialized [32, 33].
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