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Existing device-to-device (D2D) offloading techniques assume that all nodes storing data are potential forwarders. This
leads to suboptimal results whenever the system has to reward forwarders. How to design a global strategy that keeps
the number of seed users low (to save cellular bandwidth) and selects the appropriate set of forwarders (to know which
ones to reward) remains an open issue. We formulate this question as a stochastic control problem that we solve using
an application of Pontryagin’s Maximum Principle (PMP). We provide a framework that works under a generic cost
model. We show analytically that an optimal solution exists and compute when operators benefit from this policy.
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1 Introduction
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Figure 1: The infrastructure injects two copies of the con-
tent (Fig. 1(a)) and decides that one of the nodes should be
promoted as forwarder (Fig. 1(b)). Later, it decides to pro-
mote another seeder as opportunistic forwarding seems not
to guarantee sufficient dissemination (Fig. 1(c)).

Device-to-device (D2D) communications are a
well-timed strategy for operators to face the ever-
increasing demand for mobile data by offloading
part of the traffic from their cellular infrastructure.
Motivated by the delay-tolerance of some types of
content, operators may send data to a subset of
users (seeders) and let them propagate it by means
of opportunistic D2D transmissions.

Existing proposals in the literature assume that
all seeders are, by default, also opportunistic for-
warders [HHK+12, RdAC14]. Such an assumption
leads to suboptimal results when forwarders must
be rewarded for helping relieve the load on the cel-
lular channel. The problem is that, if performed
in a uncontrolled fashion, opportunistic diffusion
may generate additional costs without necessarily bringing gains to data dissemination. Moreover, a well-
planned rewarding strategy is essential to encourage mobile users to participate in the offloading process.

The balance between instantaneous cost and future benefits of the injection and forwarding decisions is
strategic to the dissemination process, given that available resources (bandwidth and rewards) are limited.
Fig. 1 illustrates the offloading process with a central coordinator (at the infrastructure side) that controls the
cellular injections and the promotion of users to the forwarding state. We investigate the following problem:
which fraction of seeders should be promoted as forwarders and when should this happen? We translate the
possible decisions operators can take (injection and forwarding) into a cost function. We apply Pontryagin’s
Maximum Principle (PMP) [BGP60] to minimize the cost function subject to the state-equations governing
the network evolution. Numerical results provide us with insights into the interactions between seeders,
forwarders, and the evolution of data dissemination. We also reveal that, under rewarding conditions, the
forwarding decision is just as critical as the choice of seeders.
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2 System description
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Figure 2: State transition rates.

We model the evolution of the content dissemination using a variant of the
classic SIR model.† Some users request data and are referred to as inter-
ested. Initially, all the nodes are in the interested state. At this stage, the
operator can only use cellular transmissions to reach these users. Nodes that
receive the content through the cellular channel enter the seeder state, (not
yet playing any active role in data distribution). At this point, the coordi-
nator can promote a fraction of them to the forwarder state to trigger the
opportunistic diffusion of the content.

Network model. The system consists of N mobile nodes and one content
to be distributed by the infrastructure to all the nodes within the lifetime T .
Following the notation introduced above, nodes can be in the interested, seeder, or forwarder states. Their
respective fractions are nI(t), nS(t), nF(t).

Communication opportunities. We use a mean field model that is accurate for a large population. As with
a disease contagion in a population, content spreads from forwarder to interested nodes when in physical
proximity. State evolution can be described by a system of ODEs and a set of initial constraints. The contact
rate λ(t) rules the encounter of any two nodes. We assume, for the purposes of this paper, that encounters
are homogeneous. As shown in Fig. 2, interested nodes become forwarders with rate λ(t)nI(t)nF(t).

Injections and Promotions. The central offloading coordinator manages the cellular injections and the
promotion of seeders to the forwarder state. Injections increase the rate at which nodes switch from the
interested to the seeder state. The intensity of injections is denoted by uI(t). Consequently, uI(t)nI(t) ≤
Imax(t) describes the rate of injected copies. The injection rate is bounded by Imax(t), which measures the
maximum available load on the cellular network. Seeders carry the content but have to be promoted in order
to contribute to data dissemination. As a result, nodes shift to the forwarder state with intensity uS(t). This
increases the fraction of nodes promoted to the forwarder state by a rate uS(t)nS(t).

Cost. We consider a general cost function J as defined in Eq. 1:

J(T ) = Φ[nI(T )]︸ ︷︷ ︸
payoff

+

T∫
0

f [uI(t)nI(t)]︸ ︷︷ ︸
injection

+g[λnI(t)nF(t)]︸ ︷︷ ︸
reward

dt, (1)

where Φ[nI(T )] is the final cost incurred by the operator for not having satisfied the fraction nI(T ) of users
by the deadline T . This can be seen as the loss of earnings due to missed deliveries, or the extra costs
paid due to final injections [RdAC14]. f [uI(t)nI(t)] captures the instantaneous cost in terms of network
resources for injections over the cellular channel. Forwarders are rewarded with g[λnI(t)nF(t)], which
represents reductions or virtual credits accorded to users each time they make an opportunistic transmission.
The integral portrays the growing cost over time of these two latter terms.

3 Formulation
We express the optimal control problem considering only two state variables nI and nS. This is possible be-
cause we always have nF(t) = 1−nI(t)−nS(t). The system is controlled by the tuple < uI ,uS > belonging
to the set of all the admissible controls U = {uI ,uS}, where uI ,uS ∈ [0,1] are Lebesgue integrable. The idea
is to minimize the cost function J subject to a series of state evolution constraints:

min
uI(t), uS(t) ∈U

J, subject to:

{
∂nI
∂t =−λ(t)nI(t)(1−nI(t)−nS(t))−uI(t)nI(t),

∂nS
∂t = uI(t)nI(t)−uS(t)nS(t),

(2)

where nI(t)≥ 0, nS(t)≥ 0 , nI(t)+nS(t)+nF(t) = 1, and nI(0) = n f (0) = 0, nS(0) = 1.

† We adopted a slight variation of the traditional nomenclature of the SIR model: “susceptible” users in the original SIR model are
analogous to interested of our model. Similarly, “infective” and “recovered” nodes are named forwarders and seeders, respectively.
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(a) state evolution
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Figure 3: Optimal offloading evaluated for different contact rates λ. T = 10s. Imax = 0.1, α = 2, b = 10, c = 1.

The existence of an optimal solution can be proved using the Filippov-Cesari theorems [FR75]. We apply
PMP to solve the above problem and derive the optimal control (Theorem 3.4 in [GCF+08]). Let the tuple
< n∗I (.),n

∗
S(.),u

∗
I (.),u

∗
S(.) > be an optimal solution of Eq. 2.‡ Then, there exist continuous and piecewise

continuously differentiable adjoint functions p∗i (t) and p∗s (t) that maximize the Hamiltonian function:

H(nI,S,uI,S, pi,s, t) =− f [uI nI ]−g[λnI (1−nI−nS)]+ pi[−λnI(1−nI−nS)−uInI ]+ ps[uInI−uSnS]. (3)

The optimal adjoint equations are p∗i (t) = −
∂H(.)
∂nI

∣∣∣
n∗I,S,u

∗
I,S,p

∗
i,s

and p∗s (t) = −
∂H(.)
∂nS

∣∣∣
n∗I,S,u

∗
I,S,p

∗
i,s

.

In the following, we consider an exponential function for the final payoff Φ(x) = ex− 1, a power-law
function for the direct injections f (x) = bxα (α≥ 2), and a linear function g(x) = cx to reward forwarders.
Due to the limited space available, we skip the derivation of the generic framework, which follows a some-
what standard pattern, and we provide the solution directly.
Injections. Given that f (x) is strictly convex, we can extract u∗I (t) using the Hamiltonian maximization
condition ( ∂H

∂uI
= 0 evaluated at the optimum), along with the restriction on the maximum injection rate:

u∗I (t) =
min[max[ψ(t),0], Imax]

nI(t)
, ψ(t) = α−1

√
pi(t)∗− ps(t)∗

−α b
. (4)

Promotions. Since Eq. 3 is linear in the control variable uS, the maximization condition is trivially satisfied
and independent of uS. The control in this case is called singular (Definition 3.40 in [GCF+08]) with a
bang-bang solution, i.e., a control that switches discontinuously between one extreme to the other. We
define the switching function σ = (psnS). By construction uS ∈ [0,1], then it follows that u∗S(t) = 1(−σ).

4 Numerical results
To solve the system of coupled differential equations, we adopt the shooting method from the R package
bvpSolve to compute the evolution of the state variables as well as the optimal control [SCM10]. Fig. 3
gives an example of the state and control variables for different values of the contact rate λ. In general,
injections are stronger at the beginning and at the end of the dissemination period (Fig. 3b).

Promotions (Fig. 3c) display three different patterns. For λ= 0.1, the control is always at its maximum. In
low contact-rate scenarios, considering a separate forwarder state brings no improvements. In the two latter
cases, instead, the optimal strategy does not contemplate an indiscriminate transition toward the forwarder
state. For instance, λ = 0.5 presents an on-off behavior, with promotions that stop only when the amount of
forwarders reaches significant levels. Finally, when λ = 1, the promotion is switched on only after half of
the dissemination period. Although at first sight this might seem counter-intuitive, we must not forget that,
in the model, operators have to reward each D2D transmission performed by users. We draw the lesson that
under high contact rates, opportunistic dissemination has to be limited in order to save monetary resources.
‡ Throughout the paper, variables with the star superscript (e.g., u∗I (t)) represent the value at the optimum.
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Figure 4: Cost functional J for the optimal strategy
using two offloading models (seeder-forwarder and
two-state), varying the deadline T , λ = 0.5, Imax =
0.1, α = 2, b = 10, c = 1.

Similarly, we investigate under which values of T it is
worth considering a separation between seeders and for-
warders. We compare our model to a classic two-state
model, where all the seeders are also forwarders. Fig. 4
shows the evolution of the cost function J divided by its
three main components Φ(T ), F(T ), and G(T ).§ With
shorter deadlines, when nodes have few contact oppor-
tunities, the two-state model benefits from a small ad-
vantage in terms of cost, as J is dominated by the final
payoff Φ(T ). In this scenario, there is no need to con-
sider an additional state – seeder in our model – because
it tends to slow down content diffusion (nodes have to
transit from the seeder state before being promoted to the
forwarder state). Conversely, for longer deadlines, the
three-state model significantly improves the cost func-
tional J. For T > 5, the number of uninfected nodes at
the deadline decreases, reducing the weight of Φ(T ) on
the overall cost. The largest part of J is due to the reward of opportunistic forwarders (portrayed by G(T )).
The cost for rewarding users increases linearly for the two-state model as the deadline increases. An un-
controlled number of forwarders interferes with the will of operators to cut operational costs. Instead, a
separation between seeders and forwarders offers improved flexibility in the control of the offloading evo-
lution, allowing the implementation of cost-savvy strategies.

5 Conclusion and outlook
We proposed a novel analytical framework for opportunistic offloading that captures the differences be-
tween seeders and forwarders. Mobile operators can finely control the dissemination evolution through
infrastructure injections and forwarders’ promotion. After formalizing the diffusion and the cost model, we
applied the Pontryagin’s Maximum Principle to devise the optimal strategy that minimizes the aggregate
cost for the operator. The solution is then evaluated numerically for a sample cost-function, and compared
with state-of-the-art offloading model. Future developments will consider a more general case of stochastic
diffusion processes following a Markov decision model. The dissemination model can also be extended by
taking into account forwarders that stop sharing content due to battery or storage constraints.
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