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Séparation des modèles de communication
simultanée pour les réseaux: protocoles
déterministes, avec bits aléatoires publics et
privés. †
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Nous étudions un modèle de communication à plusieurs joueurs, où les joueurs correspondent aux noeuds d’un réseau.
Chaque joueur connaı̂t la taille du réseau, son identifiant ainsi que ceux de ses voisins. Les joueurs envoient simul-
tanément un unique message à un arbitre, qui doit décider une propriété du graphe. L’objectif de l’article est de séparer,
du point de vue de la complexité de communication (la taille des messages), trois situations différentes : les protocoles
déterministes, les protocoles probabilistes avec des bits aléatoires publics et les protocoles probabilistes avec unique-
ment des bits aléatoires privés. Pour ce faire nous travaillons autour de la fonction booléenne Jumeaux, dont le résultat
est vrai si le graphe possède deux sommets ayant le même voisinage, et f aux sinon.
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1 Introduction
In the number-in-hand multiparty communication model there are k players. Each of these k players re-

ceives an n-bit input string xi and they all need to collaborate in order to compute some function f (x1, . . . ,xk).
There are different communication modes for the number-in-hand model. In this paper we focus on the si-
multaneous messages communication mode, in which all players simultaneously send a unique message to
a referee. The referee collects the messages and computes the function f . The computational power of both
the players and the referee is unlimited. When designing a protocol for function f , the goal is to minimize
the size of the longest message generated by the protocol. This minimum, usually depending on n, is cal-
led the message size complexity of f . Typical questions in communication complexity consist in designing
protocols with small messages, and proving lower bounds on the size of such messages.

Several authors considered the case where the data distributed among the players is a graph [AGM12,
BMN+11, PVZ12, WZ13]. Informally, each player knows a set of edges of the graph and together they
must decide a graph property, e.g., connectivity. Again we can observe two different settings. In one of
them, the edges are distributed among the players in an adversarial way [AGM12, WZ13]. In this work,
following [AGM12, BMN+11], we consider the setting where each player corresponds to a node of the
graph, and thus each player knows the identifier of this node together with the identifiers of its neighbors
and the size of the graph, represented as an n-bits vector (in the vector xi of player i, the bit number j is set
to 1 if and only if the nodes i and j are adjacent). For the sake of simplicity we assume that the graph has
n nodes numbered from 1 to n, hence there are k = n players, and we call this model number-in-hand for
networks.

†Une version étendue de ces travaux a été acceptée à SIROCCO’14. This work has been partially supported by CONICYT via
Basal in Applied Mathematics (I.R.), Núcleo Milenio Información y Coordinación en Redes ICM/FI P10-024F (I.R.) and Fondecyt
1130061 (I.R.)
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For many natural functions the messages are much shorter when randomization is allowed [KN97]. In the
randomized setting, there are significant differences between the communication complexities of protocols
using public coins (shared by all players and the referee) and the more restrictive setting where each player
has his own, private coin. We emphasize that in the number-in-hand communication model for networks,
each edge is “known” by two players, thus we have some shared information.

Related work.
The number-in-hand model with simultaneous messages and k = 2 players.
The case of two players is not new and it has been intensively studied. Clear separations have been pro-
ved between deterministic, private coins and public coins protocols in this case. For instance, the message
size complexity of the EQ function, which simply tests whether the two n-bit inputs are equal, is Θ(n) for
deterministic protocols [KN97], O(1) for randomized protocols with public coins with constant one-sided
error [BK97], and Θ(

√
n) for randomized protocols with private coins and constant one-sided error [BK97]

(see Section 2 for details). More generally, Babai and Kimmel [BK97] proved that for any function f its
randomized message size complexity, for private coins protocols, is at least the square root of its determi-
nistic message size complexity. Chakrabarti et al. [CSWY01] proved that, for some family of functions, the
gap between deterministic and randomized message size complexity with private coins is smaller that the
square root.

The number-in-hand communication model for networks.
For deterministic protocols, Becker et al. [BMN+11] show that graphs of bounded degeneracy can be
completely reconstructed by the referee using messages of size O(logn), and several natural problems like
deciding whether the graph has a triangle, or if its diameter is at most 3, have message size complexity
of Θ(n). For randomized protocols with public coins, Ahn, Guha and McGregor [AGM12] introduced a
beautiful and powerful technique for graph sketching. The technique works both for streaming models and
for the number-in-hand for networks, and allows to solve CONNECTIVITY using messages of size O(log3 n).
The protocols have two-sided, O(1/nc) error, for any constant c > 0.

Our results. We separate the deterministic, the randomized with private coins and the randomized with
public coins settings of the number-in-hand for networks communication model. The separations are made
using problem TWINS and some variants. The boolean function TWINS(G) returns 1 if and only if graph
G has two twins (that is, two nodes having the same neighborhood). We also consider function TWINx(G),
where x is the identifier of a node, and the result is 1 if and only if there is some other node having the same
neighborhood as x.

We prove that the deterministic message size complexity of TWINS and TWINx is Θ(n). Also, both
functions can be computed by randomized protocols with public coins and message size O(logn). These
protocols, based on the classical fingerprint technique, have one-sided error O(1/nc) for any constant c > 0.
Observe that the situation for private coins is very different from the case of the number-in-hand model
with two players, where the gap between private coins and determinism is at most the square root. In order
to separate the private and public coins settings we use a boolean function called TRANSLATED-TWINS.
We prove that the message size complexity of this function in the private coins setting is Ω(

√
n), while it is

O(logn) in the public coins setting. The main results of this research are summarized in Table 1.

TWINS TWINx TRANSLATED-TWINS

Deterministic Θ(n) Θ(n) Θ(n)
Randomized private-coins O(

√
n logn) O(logn) Ω(

√
n), O(

√
n logn)

Randomized public-coins O(logn) O(logn) O(logn)

TABLE 1: Main results of this research.

2 Definitions
Number-in-hand. The number-in-hand communication model is defined as follows. Let f be a function
having as input k boolean vectors of length n. There are k players {p1, . . . , pk} who wish to compute the
value of f on input (x1, . . . ,xk) ∈ ({0,1}n)k. Player pi only sees the input xi, and also knows his own
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number i. We only consider here the simultaneous messages communication mode, in which all the k players
simultaneously send a message to a referee. After that, the referee (another player who sees none of the
inputs) announces the value f (x1, . . . ,xk) using only the information contained in the k messages.

A deterministic protocol P for function f describes the algorithms of the players (for constructing the
messages) and of the referee (for retrieving the final result) that correctly computes f on all inputs. An
ε-error randomized protocol P for f is a protocol in which every player and the referee are allowed to
use a sequence of random bits, and for all (x1, . . . ,xk) ∈ ({0,1}n)k the referee outputs f (x1, . . . ,xk) with
probability at least 1− ε. For boolean functions f we define a one-sided ε-error randomized protocol in
the same way, with exception that for all (x1, . . . ,xk) ∈ ({0,1}n)k such that f (x1, . . . ,xk) = 1, the referee
always outputs 1. We distinguish between two sub-cases of randomized protocols : (i) the private-coin
setting, in which each player, including the referee, flips private coins and (ii) the public-coin setting, where
the coins are shared between players, but the referee can still have his own private coins. The cost of a
protocol P , denoted OREQ, is the length of the longest message sent to the referee. The deterministic
message size complexity, denoted Cdet( f ), is the minimum cost of any deterministic protocol computing f .
Analogously, we denote Cpriv

ε ( f ), Cpub
ε ( f ), as the message size complexity for ε-error public and private

protocols, respectively.
Number-in-hand for networks. Number-in-hand for networks is a particular case of number-in-hand
where each party is a node of an n-vertex graph with vertices numbered from 1 to n. Therefore, in this
model, k = n, player pi corresponds to the node i and the inputs x1, . . . ,xn correspond to the rows of the
adjacency matrix of some simple undirected graph G of size n. Hence, the input of player (node) i is the
characteristic function of the neighborhood NG(i) (i.e. j ∈ NG(i) if and only if i j ∈ E(G)).

All our graphs are undirected, so for any pair i, j of nodes, the bit number i of player j equals the bit
number j of player i. In full words, each edge of the graph is known by the two players corresponding to its
end-nodes. All our protocols use Ω(logn) bits. We assume, w.l.o.g., that each node sends its own number
in the message transmitted to the referee.
The problems. We now come back to the number-in-hand for networks model. In this framework we shall
study three boolean functions on graphs.

— TWINS(G) outputs 1 if and only if G has two vertices u and v with the same neighborhood, i.e., such
that N(u) = N(v).

— TWINSx(G) is a “pointed” version of previous function. Its output is 1 if and only if there is a vertex
y such that N(y) = N(x).

— TRANSLATED-TWINS is defined on input graphs G of size 2n, labeled from 1 to 2n. Its output is 1
if and only if G has a vertex i such that, for any vertex j, j ∈ N(i) ⇐⇒ j+ n ∈ N(i+ n). In other
words, the output is 1 if and only if there exists i such that N(i)+n = N(i+n).

3 Bounds in the deterministic model
To show the lower bounds in the deterministic model (the first row in Table 1, the upper bounds are trivial)

we combine two ingredients. First of all, consider the function RECONSTRUCTION(G), whose output is G
itself, i.e., the adjacency matrix of G. Note that if a deterministic protocol computes RECONSTRUCTION
on the family of n-vertex graphs Gn, then such protocol must generate messages of size at least log(|G |)/n
(see also [BMN+11]).

Then, we show that if we have a deterministic protocol P for any of the three problems (TWINS, TWINx
or TRANSLATED-TWINS), then we can use this protocol to build another protocol P ′ for RECONSTRUC-
TION, such that the cost of P ′ is roughly the cost of P times a constant. The construction of P ′ from P is
almost identical for TWINS and TWINx, but is quite different in the case of TRANSLATED-TWINS. More
details in [BMRT14].

4 Fingerprints
The upper bounds obtained for randomized models are based in the well known technique called finger-

prints, used in the case of 2 players. Consider the problem EQ mentioned in the introduction, and name x1
and x2 the inputs of the players, which are numbers in [0,2n]. The fingerprint technique consists in taking
a prime number p uniformly at random, and then player i sends fi = xi mod p to the referee, who simply
has to check if f1 = f2. Why does this work ? If x1 = x2 then the fingerprint f1 equals f2. By the other hand,
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if x1 6= x2, it is easy to check that if we pick p ∈ [n3,2n3] the probability that f1 = f2 is smaller than 1/n.
Notice that if we take a bigger prime number p, say in [n4,2n4] then the (one-sided) error probability of the
protocol is reduced to smaller 1/n2. Then, back in the n players case and following the same technique, we
can solve TWINS, TWINx and TRANSLATED-TWINS with error probability smaller than 1/n.

The fingerprint technique requires that the random prime number p is equal for each player, which means
that this technique works only in the public-coins randomized model. However, in the case of TWINx it is
possible to fix this issue. Indeed, suppose that player i has its input xi and its own randomized prime number
pi. Since xi is the neighborhood of i in G, i can recognize if x is in its neighborhood or not. Then, a protocol
in this context could be : make a fingerprint fi with pi, that is fi = xi mod pi, and send fi together with pi
and one more bit, 0− 1 depending if x is in the neighborhood of i or not. The referee first recover x from
the last bit of each message, for each i compute f i

x = x mod pi, and test if fi = f i
x. Choosing p big enough,

we obtain the same costs and errors.

5 Private versus Public coins in the randomized model
The results shown before clearly separate the deterministic model from the private and public randomized

models. To separate the two randomized models, we show that TRANSLATED-TWINS requires Ω(
√

n) bits
of communication in the private coins randomized model. The proof is based in the result of Chakrabarti
et al. [CSWY01]. Let OREQ be the problem where each player receives a squared matrix of size n, and
the output is 1 if there is a index i ∈ [1,n] such that the i-th row of both matrices are equal. In [CSWY01],
it is shown that any protocol solving OREQ requires Ω(n

√
n) bits of communication in the private coins

randomized model for two players. We reduced TRANSLATED-TWINS to OREQ, showing that if there
exists a protocol P for TRANSLATED-TWINS then there is a protocol for OREQ with cost O(nC(P )). That
shows than the cost of TRANSLATED-TWINS is Ω(

√
n) for any public coins randomized protocol.

6 Open problems
The first natural challenge is to determine the message size complexity of function TWINS for randomized

protocols with private coins. Using the techniques of Babai and Kimmel [BK97] for EQ, one can prove that
TWINS can be solved by a one-sided, bounded error protocol with private coins and messages of size
O(
√

n logn). We believe that the message size complexity of TWINS for private coins protocols is Ω(
√

n).
More surprisingly, to the best of our knowledge, the message size complexity of CONNECTIVITY is wide

open. Recall that, in the randomized, public coins setting, there exists a protocol using O(log3 n) bits, due
to Ahn, Guha and McGregor [AGM12]. Can this upper bound be improved to O(logn) ? For randomized
protocols with private coins and/or for deterministic protocols, can one prove a lower bound of Ω(nc) for
some constant c < 1 ?
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