M Kelbert 
email: mkelbert@hse.ru
  
V Konakov 
email: vkonakov@hse.ru
  
S Menozzi 
  
  
  
  
  
WEAK ERROR FOR CONTINUOUS TIME MARKOV CHAINS RELATED TO FRACTIONAL IN TIME P(I)DES

Keywords: Mathematics Subject Classification. Primary 60F99, 35R11; Secondary 60G52, 60H30 Fractional Cauchy Problems, Probabilistic Approximations, Local Limit Theorems, Stable processes

HAL is

Introduction

We are interested in the probabilistic approximation of P(I)DEs of the following type:

(1.1)

∂ β t u(t, x) = Lu(t, x), (t, x) ∈ R * + × R d , u(0, x) = f (x), x ∈ R d ,
where ∂ β t , β ∈ (0, 1), stands for the Caputo-Dzherbashyan derivative and L is the generator of a Brownian or stable driven non degenerate SDE (see equations (2.10), (2.11) below for the respective definitions of the Caputo-Dzherbashyan derivative and the spatial operators considered). Equations of the previous type appear in many applicative fields from natural sciences to finance, see e.g. Meerschaert et al., [START_REF] Meerschaert | Stochastic Models for Fractional Calculus[END_REF], [START_REF] Meerschaert | Inverse Stable Subordinators[END_REF] and references therein.

Under suitable assumptions, the solution of (1.1) can be represented as u(t, x) := E[f (X 0,x Z β t )] where (X 0,x s ) s≥0 solves the SDE with generator L and (Z β t ) t≥0 is the inverse of a stable subordinator of index β ∈ (0, 1) independent from X 0,x . This therefore extends the "usual" Feynman-Kac representation, corresponding to β = 1, to the fractional case β ∈ (0, 1).

Many probabilistic numerical approximations of u(t, x) have been considered when β = 1. We can for instance mention the works of Konakov et al. (see [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF], [START_REF] Konakov | Small time Edgeworth-type expansions for weakly convergent nonhomogeneous Markov chains[END_REF] in the non degenerate diffusive case or [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF] for SDEs driven by symmetric stable processes) that investigate the Euler scheme or, more generally, the Markov Chain approximation of the spatial motions in terms of Edgeworth expansions or Local Limit Theorems (LLTs). We can also refer to the works of Bally and Talay for the Euler scheme of some hypoelliptic diffusions [START_REF] Bally | The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function[END_REF], [START_REF] Bally | The law of the Euler scheme for stochastic differential equations, II. Convergence rate of the density[END_REF] or [START_REF] Konakov | Explicit parametrix and local limit theorems for some degenerate diffusion processes[END_REF] for associated LLTs.

In the current (strictly) fractional framework two additional difficulties appear. Firstly, it is known that the fundamental solutions to (1.1) exhibit, additionally to the usual time singularity in short time, a diagonal spatial singularity, see e.g. Eidelman and Kochubei [START_REF] Eȋdelman | Cauchy problem for fractional diffusion equations[END_REF] for the current case or Kochubei [START_REF] Kochubei | Cauchy problem for fractional diffusion-wave equations with variable coefficients[END_REF] for extensions to higher order fractional derivatives β ∈ (1, 2). Secondly, the inverse of the subordinator leads to consider random integration times that might be either very small or very long. The analysis of the discretization error in the previously mentioned works was always performed for a fixed final time horizon T and the constants controlling the error estimates depend explosively on T for small and large times. We must therefore carefully control these explosions. In short time we must handle the spatial singularity of the fractional heat kernel whereas in long time, the explosion is compensated by the fast decay of the density of the inverse subordinator. Let us mention that those difficulties may deteriorate the "usual" convergence rate for the weak error even for the Euler approximation. We establish error bounds for the Euler scheme and the Markov Chain approximation of a diffusive SDE, Theorem 3.1, and for the Euler scheme of a stable driven SDE, Theorem 3.2. We emphasize that Kolokoltsov [START_REF] Kolokoltsov | Generalized Continuous-Time Random Walks (CTRW)[END_REF] also considered probabilistic schemes to approximate equations of type (1.1) in a more general setting, namely considering a fractional like time derivative that could depend on space as well. He establishes convergence of the schemes towards the expected solution but since the approach relies on semigroup techniques, no convergence rates are provided.

The article is organized as follows. We first recall in Section 2 which are the probabilistic tools needed to give representations and approximations of the solution to equation (1.1). We then state our main results in Section 3. The proofs are given in Section 4 which is the technical core of the work. Some perspectives are considered in Section 5. Technical results concerning the parametrix expansions, which are needed to establish the short and long time behaviour of the involved spatial densities, are collected in Appendix A. As a by-product of our analysis, we obtain two-sided heat kernel estimates for the fundamental solution of (1.1) in Appendix B.

Probabilistic objects associated with Cauchy Problems with Time

Fractional Derivatives.

We first recall how a probabilistic representation for the solution of (1.1) can be derived considering the special case of L being associated with a d-dimensional symmetric stable process of index α ∈ (0, 2], thus including the Brownian motion. We write for φ ∈ C 2 0 (R d , R) (space of twice continuously differentiable functions with compact support), Lφ(x) = 1 2 ∆φ(x) for α = 2 whereas for α ∈ (0, 2):

Lφ(x) = R d {φ(x + y) -φ(x) -∇φ(x) • yI |y|≤1 }µ(dy) = R + ×S d-1 {φ(x + |y|ȳ) -φ(x) -∇φ(x) • |y|ȳI |y|≤1 )}|y| -(1+α) d|y|ν(dȳ), (2.1)
where ν is the spherical part of µ and is assumed to be non degenerate, i.e. there exists

(2.2) Λ ≥ 1, ∀ξ ∈ R d , Λ -1 |ξ| α ≤ S d-1 | ξ, η | α ν(dη) ≤ Λ|ξ| α .
Observe that if (S α u ) u≥0 is a stable process with generator L then ∀t ≥ 0, ∀ξ ∈ R d , ϕ S α t (ξ) := E[exp(i ξ, S α t )] := exp -tC α

S d-1 | ξ, η | α ν(dη) ,
where the explicit value of C α can be found in Sato [START_REF] Sato | Lévy processes and Infinitely divisible Distributions[END_REF].

Let us now discuss heuristically how some suitable scaling limits of Continuous Time Random Walks (CTRWs) actually give a probabilistic interpretation of the solution to (1.1). These objects thus provide a natural approximation scheme to (1.1). Basically, CTRWs are random walks that wait a certain amount of time between their jumps. In the i.i.d. case, the mechanism can be described as follows: let (T i , Y i ) i∈N * be a sequence of R + × R d -valued i.i.d pairs of random variables defined on some probability space (Ω, F , P). For all t ≥ 0 one defines:

Γ t := Nt i=0 Y i , N t := max{m ∈ N : m i=1 T i ≤ t}.
If the (T i ) i∈N * are exponentially distributed and independent of the (Y i ) i∈N * the process (Γ t ) t≥0 is easily shown to be Markovian. This property clearly fails in the general case. Of particular interest is the case when the (T i ) i∈N * and the (Y i ) i∈N * are independent and respectively belong to the domain of attraction of a β-stable and α-stable law with β ∈ (0, 1) and α ∈ (0, 2]. This property indeed yields that :

(2.3) (n -1/β ⌊nu⌋ i=1 T i ) u≥0 ⇒ (S β,+ u ) u≥0 , and (n -1/α ⌊nu⌋ i=1 Y i ) u≥0 ⇒ (S α u ) u≥0 ,
where ⌊•⌋ stands for the integer part and ⇒ indicates the usual convergence in law for processes. We also used the convention that 0 i=1 = 0. In (2.3), S β,+ is a β-stable subordinator, i.e. a Lévy process with positive jumps and its Laplace transform writes ψ S β,+ u (λ) = E[exp(-λS β,+ u )] = exp(-uλ β ), λ ≥ 0. On the other hand, we will assume that S α is a symmetric R d -valued stable process with generator as in (2.1). Now, the rescaled process associated with the number of jumps (N t ) t≥0 also has a limit, namely (n -β N nt ) t≥0 → (Z β t ) t≥0 , where Z β t := inf{s ≥ 0 : S β,+ s > t} which is the inverse process of a β-stable subordinator. Since S β,+ s is increasing in s, Z β t also corresponds to the first passage time of S β,+ above the level t. Thus, one formally has:

n -β/α Γ nt t≥0 = (n β ) -1/α Nnt i=1 Y i t≥0 = (n β ) -1/α n β (n -β Nnt) i=1 Y i t≥0 ⇒ S α Z β t t≥0 .
From the independence of S α and Z β , the limit random variable S α Z β t has, for any t > 0, an explicit density that writes:

q(t, x) = +∞ 0 p S α (u, x)p Z β (t, u)du, (2.4) where p S α (u, x) = 1 (2π) d R d exp(-i x, λ )ϕ S α u (λ)dλ and p Z β (t, u) stands for the density of Z β t at point u. Observe that since P[Z β t ≤ u] = P[S β,+ u > t]
we have the following relation between the density of the inverse Z β and the density of the subordinator S β,+ :

(2.5)

p Z β (t, u) = ∂ u P[Z β t ≤ u] = ∂ u (1 -P[S β,+ u ≤ t]) = -∂ u t 0 p S β,+ (u, y)dy.
We also have the following important equation for this density.

Proposition 2.1 (PDE associated with p Z β ). For fixed t > 0, the density p Z β (t, u) satisfies in the distributional sense the equation:

(2.6) (D β t + ∂ u )p Z β (t, u) = t -β Γ(1 -β) δ(u),
where δ stands for the Dirac mass at 0 and D β t denotes the Riemann-Liouville derivative. Namely, for a function h and β ∈ (0, 1):

D β t h(t) = 1 Γ(1 -β) d dt t 0 h(t -u)u -β du .
Proof. Let us differentiate under the integral in (2.5) to get for u > 0:

(2.7)

p Z β (t, u) = - t 0 ∂ u p S β,+ (u, y)dy = - t 0 L * ,β p S β,+ (u, y)dy = -L * ,β t 0 p S β,+ (u, y)dy,
using the Kolmogorov forward equation for the density of the subordinator and denoting by L * ,β the adjoint of its generator. Precisely,

L * ,β ϕ(t) = - 1 Γ(-β) +∞ 0 {ϕ(t -s) -ϕ(t)} ds s 1+β .
Recall now that for a smooth (say C 1 ) function ϕ : R + → R that is extended by 0 on R -, for all t > 0,

-L * ,β ϕ(t) = 1 Γ(-β) t 0 (ϕ(t -s) -ϕ(t)) ds s 1+β - ϕ(t) βt β = 1 Γ(-β) ϕ(t) -ϕ(0) βt β - t 0 ϕ ′ (t -s)s -β ds β - ϕ(t) βt β = 1 Γ(-β)(-β) t 0 ϕ ′ (t -s)s -β ds + ϕ(0) t β = D β t ϕ(t).
Thus we get the result for u > 0 from (2.7) and (2.5) differentiating w.r.t. u. The proof can be achieved observing that p S β,+ (u, y)dy → u→0 δ(dy) which implies

lim u→0 + p Z β (t, u) = D β t θ(t) = t -β Γ(1-β) , θ(t) = I t>0
. This observation implies the form of the singularity at the origin in Equation (2.6).

We refer to [START_REF] Podlubny | Fractional Differential Equations[END_REF] for additional general references concerning fractional calculus. From (2.4) and (2.6) we therefore derive that for all t > 0:

D β t q(t, x) = +∞ 0 p S α (u, x){-∂ u p Z β (t, u) + t -β Γ(1 -β) δ(u)}du = +∞ 0 ∂ u p S α (u, x)p Z β (t, u)du + t -β Γ(1 -β) δ(x) = Lq(t, x) + t -β Γ(1 -β) δ(x), (2.8)
where we used that ∂ u p S α (u, x) = Lp S α (u, x) (the spatial density satisfies the Kolmogorov backward equation) and the fact that S α u → u→0 0. We have also denoted by δ, with a slight abuse of notation, the Dirac mass at 0 in R d . In other words, the transition p.d.f. q of (S α Z β t ) t≥0 can be viewed as the fundamental solution of (2.8). Hence, for a given continuous initial data f , the associated Cauchy problem solved by

u(t, x) = E[f (x + S α Z β t
)] writes:

(2.9)

D β t u(t, x) = Lu(t, x) + t -β Γ(1-β) f (x), (t, x) ∈ R + * ×R d , u(0, x) = f (x), x ∈ R d .
Alternatively, equation (2.9) can be rewritten in terms of the Caputo-Dzherbashyan fractional derivative, denoted ∂ β t hereafter, recalling that for a smooth function h and β ∈ (0, 1):

∂ β t h(t) := 1 Γ(1 -β) t 0 h ′ (t -u)u -β du, D β t h(t) - t -β Γ(1 -β) h(0) = ∂ β t h(t), t > 0.
(2.10)

The probabilistic representation of the solution to equation (1.1) is thus derived from (2.9) applying identity (2.10) to the function h(t) = u(t, x).

Let us mention that, in the special case L = λ 2 ∆, some explicit expansions of the density of √ 2λS 2

Z β t
have been obtained by Beghin and Orsingher [START_REF] Beghin | Fractional diffusion equations and processes with randomly varying time[END_REF]. The correspondence between the previously described CTRWs and Equation (2.8) suggested various extensions. The first one consists in introducing a Markov Chain for the spatial motion, i.e. the i th -spatial jump depends on the position Y i-1 . This procedure can lead to consider at the limit differential operators of the more general form

L 1 φ(x) = b(x), ∇φ(x) + 1 2 Tr(σσ * (x)D 2 x φ(x)) or L 2 φ(x) = b(x), ∇φ(x) + R d {φ(x + σ(x)y) -φ(x) -∇φ(x) • σ(x)yI |σ(x)y|≤1 }µ(dy),
(2.11) for µ(dy) := |y| -(1+α) d|y|ν(dȳ) as in (2.1), in equations (2.9), (1.1). We consider homogeneous operators in time for notational simplicity. Let (X s ) s≥0 solve the SDE with generator given in (2.11), i.e.

X t = x + t 0 b(X s )ds + t 0 σ(X s -)dY s , (2.12)
where Y is a Brownian motion in the diffusive case and a symmetric α-stable with α ∈ (0, 2) process with Lévy measure µ otherwise. Then, under suitable assumptions, needed to get smoothness of the p.d.f. for the spatial motion (X t ) t>0 , we can derive similarly to the previous computations that the solution to the Cauchy problem (1.1) writes:

(2.13) ∀(t, x) ∈ R + × R d , u(t, x) = E[f (X 0,x Z β t )].
Observe that, similarly to equation (2.4), denoting by p

X Z β T the density of X Z β T at time T > 0, one has for all (x, y) ∈ (R d ) 2 : p X Z β T (x, y) = +∞ 0 p(u, x, y)p Z β (T, u)du, (2.14)
where p(u, x, .) stands for the density of X 0,x u . Let us also mention that modifying the laws of the waiting times including a possible dependence on the previous jump time and spatial position, leads to consider at the limit a modified fractional derivative in time. We refer to Kolokoltsov [START_REF] Kolokoltsov | Generalized Continuous-Time Random Walks (CTRW)[END_REF] for details and results concerning the extension of the formula (2.13) and convergence of the associated approximations.

Assumptions and Main Results

3.1. Assumptions on the Coefficients and Approximation Scheme. We assume that the coefficients in equation (2.12) satisfy the following conditions: (S) The coefficients b : R d → R d , σ : R d → R d ⊗ R d are assumed to be bounded as well as their derivatives up to order 6.

(UE) There exists Λ ≥ 1 s.t. for all (x, ξ)

∈ (R d ) 2 : Λ -1 |ξ| 2 ≤ σσ * (x)ξ, ξ ≤ Λ|ξ| 2 .
Now, we consider for a given time step h > 0, setting for i ∈ N, t i := ih, the following Markov Chain approximation of equation (2.12):

(3.1) ∀i ∈ N, X h ti+1 = X h ti + b(X h ti )h + σ(X h ti )h 1/α η i+1 , X h 0 = x, for i.i.d. R d -valued random variables (η j ) j≥1 and α ∈ (0, 2].
Also, since we are considering the fractional derivative, we can explicitly and exactly simulate (S β,+ ti ) i∈N , see, e.g., Weron and Weron [START_REF] Weron | Computer simulation of Lévy α-stable variables and processes[END_REF]. From the exact simulation on the time grid, a natural choice to approximate the inverse process Z β t is to consider the discrete inverse process: (3.2) ∀t ≥ 0, Z β,h t := inf{s i := ih : S β,+ si > t}.

Thus, for a given T > 0, we finally approximate X Z β T appearing in (2.13) by

X h Z β,h T .
Let us mention that the smoothness assumption (S) could be weakened in the case of the Euler scheme. These smoothness conditions are actually those required to apply the results of [START_REF] Konakov | Small time Edgeworth-type expansions for weakly convergent nonhomogeneous Markov chains[END_REF].

Diffusive case:

This case is associated with spatial motions with generators of the form L 1 in (2.11). We then specifically assume that α = 2 in (3.1) and that the (η j ) j≥1 are s.t. their moments coincide with those of the standard Gaussian law in R d up to order 2. We consider two kinds of conditions: (I Eul ) The (η j ) j≥1 have standard Gaussian densities (so that the above scheme is the usual Euler discretization). (I m ) For a given integer m ≥ 2(d + 1), the (η j ) j≥1 have a density Q M which is C 4 and has, together with its derivatives up to order 4, polynomial decay of order M > d(2m + 1) + 4. Namely, for all z ∈ R d and multi-index ν, |ν| ≤ 4:

|D ν Q M (z)| ≤ C M (1 + |z|) -M .
We say that assumption (A D,Eul ) (resp. (A D,m )) is in force as soon as (S), (UE), (I Eul ) (resp. (I m )) hold. We write (A D ) whenever (A D,Eul ) or (A D,m ) holds.

It is well known that under (A D ) the random variables X t , X h ti have densities for all t > 0, i ∈ N * respectively, see e.g. [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF]. This property then transfers to X Z β T and X h Z 

|p X Z β T (x, y) -p X Eul,h Z β,h T (x, y)| = | R + p Z β (T, u)p(u, x, y)du - i≥1 P[Z β,h T = t i ]p Eul,h (t i , x, y)| (3.3) ≤ ch E β,Time (T, x -y) + E β,Space (T, x -y) ,
where:

E β,Time (T, x -y) := I d≤2 T β/2 |x -y| + I d≥3 |x -y| 2 pβ (T, x -y) + 1 T β pβ (T, x -y) , E β,Space (T, x -y) := I d=1 + I d≥3 |x -y| + I d=2 T β/2 pβ (T, x -y) + 1 T β/2 pβ (T, x -y) , with pβ (T, x -y) := I d≤2 T β/2 |x -y| I d=2 + I d≥3 T β |x -y| d-2 exp(cT β/2 ) × exp -c -1 |x -y| 2 T β , pβ (T, x -y) := exp(cT β/(1+β) ) T βd/2 exp -c -1 |x -y| 2 T β 1/(2-β) . (3.4)
The two auxiliary functions p, pβ are s.t. their sum serves as an upper bound for both p

X Z β T , p X Eul,h Z β,h T
. Precisely, there exists c := c(β) s.t. for all T > 0, (x, y) ∈

(R d ) 2 , x = y: (p X Z β T + p X Eul,h Z β,h T )(x, y) ≤ c(p β + pβ )(T, x -y).
We refer to Corollary 4.1 for a proof of this last statement. We also establish in Appendix B a similar lower bound, proving the estimate is sharp.

(x, y)| ≤ c hE β,Time (T, x -y)

+c ε {h 1/2 E M β,Space,LLT (T, x -y) + E M,ε β,Space,NoLLT (T, x -y, h)} , (3.5) 
where the contribution E β,Time (T, x -y) due to the time sensitivity, see equations (3.3) and (4.1), is as above and:

E M β,Space,LLT (T, x -y) := I d=1 + I d≥3 |x -y| + I d=2 T β/2 qm-[(d-1)+I d=1 ],β (T, x -y) + 1 T β/2 qm,β (T, x -y) , denoting as well for all l ∈ N * : ql,β (T, x -y) := I d≤2 T β/2 |x -y| I d=2 + I d≥3 T β |x -y| d-2 exp(cT β/2 ) × 1 + |x -y| T β/2 -l , qm,β (T, x -y) := exp(cT β/(1+β) ) T βd/2 1 + |x -y| T β/2 -⌊ m 2-β ⌋ . (3.6) Also: E M,ε β,Space,NoLLT (T, x -y, h) := (h 1/5-ε ) 1 2 I d≤2 T β |x -y| d-2+I d≤2 exp(cT β/2 ) × exp -c |x -y| 2 h 1/5-ε + 1 + |x -y| (h 1/5-ε ) 1/2 -2(m-1)+(d-2)+I d≤2 .
Comments on the results.

-Euler Scheme. Observe that the term pβ in (3.4) comes from the contribution of small times in fomula (2.14). This gives the additional (diagonal) spatial singularity in the fractional case. The term pβ in (3.4) comes from the integration over long times in (2.14). It induces a loss of concentration in space w.r.t to the usual case β = 1, though preserving the usual parabolic equilibrium: the spatial contribution remains comparable to the square root of time. • In the diagonal region, i.e. for points s.t. |x -y| ≤ κT β/2 for some κ ≥ 1, if we restrict to spatial points that are equivalent to the time contribution for the usual parabolic metric, i.e. κ -1 T β/2 ≤ |x -y| ≤ κT β/2 , the previous error bound reads in small time, i.e. for T ≤ 1 :

(3.7) |p X Z β T (x, y) -p X Eul,h Z β,h T (x, y)| ≤ ch T β (p β + pβ )(T, x -y).
This means that we find the upper-bound for the density of the processes involved, multiplied by a factor corresponding to the singularity induced by a time derivative (or equivalently second order derivatives in space) of the non degenerate diffusive heat kernel at time T β . There is even here a difference w.r.t. to the usual analysis, see e.g. [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF], which involves a singularity of order one in space, which in the current bound comes from the contribution E β,Space (T, x -y) in (3.3) and is negligible if T ≤ 1 . This is due to the discrete approximation of the inverse of the subordinator which yields to consider derivatives in time for the densities of the spatial motion (see equation (4.1) and Lemma 4.1 below). If the error bound (3.3) is now considered for T sufficiently large, the contribution E β,Space (T, x -y) dominates and we are back to the usual error rate for the considered region.

Observe as well that the spatial diagonal singularity induced by the fractional time derivative yields additional constraints. Namely, for the Euler approach, to get a convergence rate of order h ε one needs to take:

|x -y| ≥ h (1-ε)/d , d ≥ 1.
• In the off-diagonal region, i.e. |x -y| ≥ κT β/2 , we do not have spatial singularities anymore. Indeed, the error bound also reads as in (3.7). Anyhow, the specificity comes from the loss of concentration due to the term pβ coming from the long time integration in (2.14) and appearing in the two-sided estimates of Appendix B. We refer to Lemmas 4.8 and 4.11 (see also Corollary 4.1 and Theorem B.1) for a detailed presentation of these facts.

The previous facts make us feel that the previous bounds are sharp, up to constants.

-Markov Chains. For the error bound (3.5) associated with the Markov Chain approximation, the term E β,Time is similar to the Euler case, since it does not depend on the chosen discretization scheme but only on the time sensitivities of the spatial density, see again (4.1). On the other hand two additional contributions appear. The first one, E M β,Space,LLT enjoys the same convergence rate h1/2 as in the usual LLT (see Petrov [START_REF] Petrov | Sum of Independent Random Variables[END_REF], [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF]) and the terms qm-(d-1)+I d=1 ,β , qm,β appearing in (3.5) are the Markov chain analogue of the contributions pβ and pβ in (3.3) 1 . Note first that we keep under (A D,m ) the same index m as the one appearing for the weak error at a given fixed time, see (4.27) below and [KM09], [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], for the contribution qm,β associated with the large time integration and which also yields a loss of concentration. Observe as well that the spatial diagonal singularities in small time also deteriorate the concentration in this framework. We point out that, for the LLT to apply, the considered time has to be sufficiently large, namely u ≥ h 1/5-ε in (2.14). The last term E M,ε β,Space,NoLLT comes precisely from those very small times u ≤ h 1/5-ε for which the limit results do not apply.

-Continuity of the Estimates when β ↑ 1. In this case, the Caputo derivative in (2.10) tends to the usual derivative. It is therefore natural to ask whether our results match the ones previously obtained in that case (see [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF], [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF]). Let us now emphasize that when β ↑ 1 then ψ S β,+ u (λ) → exp(-λu), λ ≥ 0. Thus, the subordinator S β,+ , and its inverse Z β both tend to the deterministic drift with slope 1. This means that for a given T > 0,

P[Z β T ∈ du] -→ β→1 δ T (du). Hence, the time integral in (2.14) disappears at the limit, i.e. p X Z β T (x, y) -→ β→1 p(T, x, y). From (3.3)
and (4.1), the same phenomenon occurs for the scheme provided T = Kh, K ∈ N * and the error associated with the time sensitivity, term E 1 in (4.1) yielding the contribution E β,Time would vanish in the previous error bounds. Since the previous Dirac convergence would also kill the additional contributions in small and long time, we finally derive that the error bounds obtained in (3.3) and (3.5) are coherent with those of the previous works at the limit.

)(x, y) (see Corollary 4.1).

Strictly Stable case.

Additionally to assumptions (A), (UE) we will assume that :

(ND) The spherical part ν of the measure µ in (2.11) satisfies the non-degeneracy condition of equation (2.2). Moreover, ν has a C 3 density w.r.t. the Lebesgue measure of the sphere.

(B) The drift b = 0 if α ≤ 1.
This last condition is rather usual to have pointwise bounds on the density of the SDE, see [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF]. We will consider similarly to the diffusive case the approximation (3.1) for α ∈ (0, 2) restricting ourselves to the Euler scheme case, i.e. the (η j ) j≥1 are i.i.d. symmetric stable random variables with common law Y 1 (driving process at time 1). We say that (A S ) holds if (S), (UE), (ND), (B) are in force. Recall from Kolokoltsov [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF] and [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF] that the random variables X t , X h,Eul ti have a density for all t > 0, i ∈ N * respectively. Thus, similarly to the diffusive case, this property transfers to the random variables

X Z β T , X h,Eul Z β,h T from (2.14).
With the previous notations, we have the following approximation result.

Theorem 3.2. Under (A S ), there exists a constant c s.t. for a given time step h ∈ (0, 1) and a fixed time horizon T > h 1/β , and any (x, y)

∈ (R d ) 2 s.t. |x -y| ≥ h 1/α
we have the following convergence result:

|p X Z β T (x, y) -p X h,Eul Z β,h T (x, y)| ≤ ch I |x-y|≤T β/α |x -y| α + I |x-y|>T β/α T β pβ (T, x -y) + 1 T β pβ (T, x -y) , (3.8) 
where

pβ (T, x -y) := exp(cT βω) ) 1 T β |x -y| d-α I |x-y|≤T β/α + T β |x -y| d+α I |x-y|>T β/α , pβ (T, x -y) := exp(cT βω/(1-ω(1-β))
)

T βd/α 1 + |x-y| T β/α d+α , ω := 1 α ∧ 1, (p X Z β T + p X Eul,h Z β,h T )(x, y) ≤ c(p β + pβ )(T, x -y), c := c(β, (A S )).
Remark 3.1. We observe a phenomenon which is similar to the diffusive case, i.e. the error bound has the expected rate of order h up to additional singularities. In the strictly stable case, i.e. α ∈ (0, 2), two contributions give additional singularities w.r.t. those already appearing in the sharp density bounds (see Theorem B.1).

Those contributions write T -β , |x -y| -α and come from the time derivative of the density in (2.14).

On the other hand, since the spatial motion already has heavy tails, we do not observe here a loss of concentration phenomenon as we did in the diffusive case. Eventually, we still have diagonal spatial singularities, which are in the strictly stable case more direct to formulate. They appear precisely when |x -y| ≤ T β/α , that is when the diagonal regime holds w.r.t. to the usual stable parabolic scaling. This is again the effect of the fractional in time derivative analyzed in small time, see (2.14). Let us mention that there is some continuity w.r.t. to the stability index for the induced singularity, at least when d ≥ 3 since the diffusive case provides a factor (T β |x -y| d-2 ) -1 for that contribution in pβ (T, x -y).

Proof of the Main Results.

In the following we denote by c a generic positive constant that may change from line to line. Explicit dependencies for those constants c, mainly on assumptions (A D ) or (A S ), β, are specified as well.

4.1. Decomposition of the Error. For given points (T, x, y) ∈ R * + × (R d ) 2 , we get from (2.14) and (3.2) that the error writes:

E(T, x, y) := (p X Z β T -p X h Z β,h T )(x, y) = R + p Z β (T, u)p(u, x, y)du - i≥1 P[Z β,h T = t i ]p h (t i , x, y), = R + p Z β (T, u)(p(u, x, y) -p(φ(u), x, y))du +{ i≥1 P[Z β,h T = t i ](p(t i , x, y) -p h (t i , x, y))}, := E 1 (T, x, y) + E 2 (T, x, y), (4.1)
denoting for all u ∈ R * + , φ(u) := inf{t i := ih : t i > u}, where we have used (3.2) for the last but one equality. Let us specify that E 1 is a term involving the time sensitivities of the density of the SDE (2.12), which does not depend on the approximation scheme. The contribution E 2 is associated with the spatial sensitivity involving the discretization error for the considered scheme.

The idea is then to use some known asymptotics of the density S β,+ (see e.g. Zolotarev [START_REF] Zolotarev | One dimensional Stable processes[END_REF] or Hahn et al. [START_REF] Hahn | Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion[END_REF]) which provide those for p Z β . On the other hand, the quantities |p(t i , x, y)-p h (t i , x, y)| have been thoroughly investigated in the literature for the diffusive case, see [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], [START_REF] Gobet | Short time asymptotics of the density of the Euler scheme[END_REF]. The results established therein give that for a general approximation scheme of type (3.1) the difference is controlled at order h 1/2 which is the convergence rate in the Gaussian LLT, see e.g. Petrov [START_REF] Petrov | Sum of Independent Random Variables[END_REF]. If the scheme already involves Gaussian increments (usual Euler scheme of the diffusion) the control is improved and the convergence rate is h, see also [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF]. In the strictly stable case, i.e. α < 2, the convergence rate of the Euler scheme, for which the exact stable increments are considered in (3.1), has been investigated in [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF]. The proof of Theorems 3.1 and 3.2 immediately follows from equation (4.1) and the following Lemmas. 

= c(β,(A D )) ≥ 1, s.t. for all T > 0, (x, y) ∈ (R d ) 2 , x = y: |E 1 (T, x, y)| ≤ ch exp(cT β/2 ) T β |x -y| d exp(- c -1 2 |x -y| 2 T β ) + exp(cT β/(1+β) ) T β(1+d/2) exp -c -1 |x -y| 2 T β 1/(2-β) ≤ ch I d≤2 T β/2 |x -y| + I d≥3 |x -y| 2 pβ (T, x -y) + 1 T β pβ (T, x -y) .
Under Assumption (A S ) (Strictly stable case), there exists c := c(β, (A S )) s.t. for all T > 0, (x, y) ∈ (R d ) 2 , x = y:

|E 1 (T, x, y)| ≤ ch exp(cT βω ) I |x-y|≤T β/α T β |x -y| d + I |x-y|>T β/α |x -y| d+α + exp(cT βω/(1-ω(1-β)) ) T β(1+d/α) ∨ |x -y| d+α ≤ ch I |x-y|≤T β/α |x -y| α + I |x-y|>T β/α T β pβ (T, x -y) + 1 T β pβ (T, x -y) ,
where ω = 1 α ∧ 1. Remark 4.2. Observe that in the stable case there is no loss of concentration as in the diffusive one. The second term of the stable bound in Lemma 4.1 corresponds to the usual estimate for the time derivative of the stable density, see Lemma 4.10 below and [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF]. The first one corresponds to the additional spatial singularity induced by the fractional derivative in time in the diagonal regime |x -y| ≤ T β/α (stable parabolic scaling at time T β ).

We now give two Lemmas concerning the spatial sensitivity that involve the analysis of the discretization error and the time randomization.

Lemma 4.3 (Spatial Sensitivity: Diffusive Case). Under assumption (A D ) there exists c := c(β, (A D )) s.t. for all T > 0, (x, y) ∈ (R d ) 2 , x = y: -For the Euler scheme:

|E Eul 2 (T, x, y)| ≤ ch I d=1 + I d≥3 |x -y| + I d=2 T β/2 pβ (T, x -y) + 1 T β/2 pβ (T, x -y) := chE β,Space (T, x -y), (4.2)
where we write E Eul 2 , with a slight difference w.r.t. the definition in (4.1), to specifically make the distinction with general Markov Chains.

-For a general Markov Chain, we have that for all ε ∈ (0, 1/5) there exists c ε := c ε ((A D,m )) s.t. for all T > 0, (x, y) ∈ (R d ) 2 , x = y: 

|E 2 (T, x, y)| ≤ c ε h 1/2 I d=1 + I d≥3 |x -y| + I d=2 T β/2 qm-(d-1)+I d=1 ,β (T, x -y) + 1 T β/2 qm,β (T, x -y) + (h 1/5-ε ) 1 2 I d≤2 T β |x -y| d-2+I d≤2 exp(cT β/2 ) × exp -c |x -y| 2 h 1/5-ε + 1 + |x -y| (h 1/5-ε ) 1/2 -2(m-1)+(d-2)+I d≤2 := c ε {h 1/2 E M β,Space,LLT (T, x -y) + E M,ε β,Space,NoLLT (T, x -y, h)}.
|E Eul 2 (T, x, y)| ≤ ch exp(cT βω ) I |x-y|≤T β/α T β |x-y| d + I |x-y|>T β/α |x-y| d+α + exp(cT βω/(1-ω(1-β)) ) T β(1+d/α) ∨|x-y| d+α ≤ ch I |x-y|≤T β/α |x-y| α + I |x-y|>T β/α T β pβ (T, x -y) + 1 T β pβ (T, x -y) .
Remark 4.5. We emphasize that in the strictly stable case, both time and spatial sensitivities yield the same error. This comes from the fact that the short time singularity for the error expansion of the Euler scheme, exactly matches the time singularity of the derivative of the stable heat kernel, see equations (4.32) and (4.11).

4.2. Asymptotics of the PDF of the Inverse Subordinator. As a preliminary remark, let us mention that in the particular case β = 2 -n , n ∈ N * , for all T > 0, the random variable Z β T , inverse at the level T of the subordinator S β,+ can be easily and explicitly simulated from the following Proposition. In particular, the auxiliary discrete approximation Z β,h T is not needed in those cases, and the time sensitivity error E 1 (T, x, y) in (4.1) would vanish (considering a straightforward extension of the discretization scheme for the last time step).

Proposition 4.6 (Identity in law for Z β T , β = 2 -n , n ∈ N * , T > 0). (4.4) ∀n ∈ N * , β = 2 -n , Z β T (law) = √ 2|B 1 ( √ 2|B 2 ( √ 2|B 3 (• • • ( √ 2|B n (T )|) • • • )|)|)|,
where the (B i ) i∈{1,••• ,n} are independent Brownian motions.

Proof. Let us start with n = 1. In this case, it is well known that, recalling that

(S 1 2 ,+ t
) t≥0 is the standard subordinator with index 1 2 , one has S 1 2 ,+ t t≥0

(law) = τ t √ 2 t≥0
, where τ t , the stopping theorem gives that, for all s ≥ 0,

E[exp( √ 2λB s∧τ t √ 2 -λ(s ∧ τ t √ 2 ))] = 1 =⇒ s→+∞ E[exp(-λτ t √ 2
)] = exp(-tλ 1/2 ).

Write now for all t ≥ 0:

P[Z 1 2 T ≤ t] = P[S 1 2 ,+ t > T ] = P[τ t √ 2 > T ] = P[ sup s∈[0,T ] B s ≤ t √ 2 ] = P[ √ 2|B T | ≤ t],
using the well known Lévy identity sup s∈[0,T ] B s

= |B T |, T > 0, for the last equality, see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]. This proves (4.4) for n = 1. Introduce now a family of i.i.d. random processes (S i (t)) t≥0 i≥1 with law (S 1 2 ,+ t ) t≥0 . It is then easily seen that Sn (t) := S n (S n-1 (...S 1 (t))) is a standard stable subordinator of index β = 1 2 n . An immediate induction indeed gives:

∀λ ≥ 0, E[exp(-λS n (S n-1 (...S 1 (t))))] = E[exp(-λ 1/2 S n-1 (...S 1 (t)))] = • • • = exp(-λ 1/(2 n ) t).
Assume that identity (4.4) holds for a given n ∈ N * and let B n+1 be an additional independent Brownian motion independent of the (B i ) i∈ [[1,n]] . Write:

P[ Sn+1 (t) > T ] = P[S n+1 ( Sn (t)) > T ] = P[ sup s∈[0,T ] B n+1 (s) ≤ Sn (t) √ 2 ] = P[ Cn ( √ 2 sup s∈[0,T ] B n+1 (s)) ≤ t], (4.5) 
where Cn stands for the inverse of Sn . Now, the induction hypothesis exactly gives that for all u ≥ 0 Cn (u)

(law) = √ 2|B 1 ( √ 2|B 2 ( √ 2|B 3 (• • • ( √ 2|B n (u)|) • • • )|)|)|.
The proof then follows from the Lévy identity and (4.5) since Sn+1 is a subordinator of index 1/2 n+1 .

Remark 4.7. It can be shown similarly that for given (

β i ) i∈[[1,n]] ∈ (0, 1) n , n ∈ N * , if (S i (t)) t≥0 i∈[[1,n]] are independent subordinators s.t for i ∈ [[1, n]], (S i (t)) t≥0 (law) = (S βi,+ t
), then Sn (t) := S n (S n-1 (...S 1 (t)) is a subordinator of index β := n i=1 β i and

Z β T (law) = Z βn Z β n-1 . . .Z β 1 T .
The delicate part is that this relation cannot be easily exploited from the practical viewpoint, except if

β i = 1 2 , ∀i ∈ [[1, n]].
In particular, it follows from Proposition 4.6 that, for a given spatial Markov process (X t ) t≥0 with generator L of the form (2.11), the solution of equation (1.1) with β = 2 -n writes for a continuous function f and for all (T,

x) ∈ R + × R d : u(T, x) := E[f (X 0,x Z 2 -n T )] := E[f (X 0,x √ 2|B 1 ( √ 2|B 2 ( √ 2|B 3 (•••( √ 2|B n (T )|)••• )|)|)| )],
generalizing Theorem 2.2 in Beghin and Orsingher [START_REF] Beghin | Fractional diffusion equations and processes with randomly varying time[END_REF].

We now state the Lemma concerning the required asymptotics for the laws of Z β T , Z β,h T . Lemma 4.8 (Bounds for the density of the inverse subordinator and its discrete approximation). For all T > 0,

p Z β (T, u) ≤ θ(T, u), ∀i ∈ N * , P[Z β,h T = t i ] ≤ C β hθ(T, t i ), (4.6)
where:

(4.7) θ(T, u) := c β T β exp -c -1 β u T β 1/(1-β)
, for some constants c β , C β ≥ 1.

Remark 4.9. The above control is the generalization of the well known Gaussian bound for β = 1/2 recalled in Proposition 4.6.

Proof. Let us first recall the following asymptotics for p S β,+ 1, • from equation (2.2), (2.3) in [START_REF] Hahn | Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion[END_REF], see also [START_REF] Zolotarev | One dimensional Stable processes[END_REF]:

p S β,+ 1, v ∼ K(β/v) (1-β/2)/(1-β) exp -[1 -β](v/β) β/(β-1) , v → 0 + , K = 1/ 2πβ(1 -β), p S β,+ 1, v ∼ β Γ(1 -β) v -β-1 , v → +∞.
(4.8)

Write now from (2.5) recalling the identity S β,+ u (law)

= u 1/β S β,+ 1 , u > 0:

p Z β (T, u) = -∂ u [ T 0 1 u 1/β p S β,+ 1, y u 1/β ]dy = 1 βu 1+1/β T 0 p S β,+ 1, y u 1/β dy + T 0 ∂ y p S β,+ 1, y u 1/β ydy = T βu 1+1/β p S β,+ 1, T u 1/β , (4.9)
integrating by parts and using (4.8).

Hence,

p Z β (T, u) ∼ T -β Γ(1 -β) , u → 0 + , p Z β (T, u) ∼ β T β/(2(1-β)) Ku β-1/2 1-β exp -[1 -β] (β) β/(1-β) u T β 1/(1-β) . u → +∞
The above controls and elementary computations give the first bound in (4.6). Indeed, there exists c 0 := c 0 (β) ≥ 1 s.t.,

p Z β T (T, u) ≤ c T -β Γ(1 -β) , u ≤ T c 0 β , p Z β T (T, u) ≤ cK β T β/(2(1-β)) u β-1/2 1-β exp -[1 -β] (β) β/(1-β) u T β 1/(1-β) ≤ c β T β exp -c -1 β u T β 1/(1-β) , u ≥ (c 0 T ) β .
For the last bound we observe that for β ≤ 1 2 and u ≥ (c 0 T ) β , [u

β-1 2 1-β ]/[T β 2(1-β) ] ≤ cT β 1-β ([β-1 2 ]- 1 
2 ) = cT -β , with a constant c := c(β). For β > 1 2 , we obtain similarly that [u

β-1 2 1-β ]/[T β 2(1-β) ] ≤ T -β [ u T β ] β-1 2 1-β .
The last contribution can be absorbed by the exponential so that we are back to the previous case. For u ∈ [(c -1 0 T ) β , (c 0 T ) β ], the statement follows from (4.9) and the positivity of p S β + (1, .) on compact sets.

From the control p Z β (T, u) ≤ θ(T, u) and the relation (3.2), we indeed derive that for all i ∈ N * , P[Z β,h

T = t i ] ≤ C β hθ(T, t i ) for some C β ≥ 1.
For the rest of the analysis we will need some controls on the p.d.f. of X t and their time derivatives in both the diffusive and strictly stable case. Such results can be found in Friedman [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] under (A D ) or [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF] under (A S ). For the reader's convenience we also recall in Appendix A some points about the parametrix expansion from which these controls are derived. Let us emphasize that, for our analysis, we need to specificy explicitly the dependence of the constants in time since we are led to integrate over arbitrarily large time intervals in (2.14).

Lemma 4.10 (Non degenerate heat kernel bounds). Under Assumption

(A D ) (dif- fusive case), there exists (c, C) := (c, C)((A D ), d) ≥ 1 s.t. for all (u, x, y) ∈ R * + × (R d ) 2 : p(u, x, y) ≤ C exp(Cu 1/2 )g c (u, x -y), |∂ u p(u, x, y)| ≤ C exp(Cu 1/2 ) u g c (u, x -y), g c (u, x -y) := 1 (2πcu) d/2 exp(- |x -y| 2 2cu
). (4.10) Under Assumption (A S ) (strictly stable case), there exists

C := C((A S ), d) ≥ 1, ω := 1 α ∧ 1 s.t. for all (u, x, y) ∈ R * + × (R d ) 2 : p(u, x, y) ≤ C exp(Cu ω )p S (u, x -y), ∂ u p(u, x, y) ≤ C exp(Cu ω ) u p S (u, x -y), p S (u, x -y) = c α u d/α 1 + |x -y| u 1/α -(d+α) , (4.11)
where the constant c α is chosen to have R d p S (u, z)dz = 1.

Observe that the above controls are exponentially explosive in time.

We now give a fundamental lemma for the error analysis. The quantities below derive from the time sensitivities or the previous error bounds from [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF] used to control the terms E 1 , E 2 in (4.1) respectively. Lemma 4.11 (Fundamental Bounds). Let T > 0 be given. The following controls hold: -Diffusive case: There exists c := c((A D )) s.t. for γ ∈ {0, 1 2 , 1} and for all (x, y) ∈ (R d ) 2 , x = y:

+∞ 0 u -γ p Z β (T, u)g c (u, x -y) exp(Cu 1/2 )du + i≥1 t -γ i P[Z β,h T = t i ]g c (t i , x -y) exp(Ct 1/2 i ) ≤ c I d≥3 |x -y| 2γ + I d=2 |x -y| Iγ=1 T β 2 Iγ>0 + I d=1 |x -y| Iγ>0 T β 2 Iγ=1 pβ (T, x -y) + 1 T βγ pβ (T, x -y) . (4.12)
For the Markov Chain approximation, for all ε ∈ (0, 1 5 ), there exists

c ε := c ε ((A D,m )) s.t. denoting for all (x, y) ∈ (R d ) 2 , q m (t i , x -y) := c m t d/2 i 1 + |x -y| t 1/2 i -m
, where c m is s.t. R d q m (t i , z)dz = 1, we have for all x = y: 

i≥⌈h -4/5-ε ⌉ q m (t i , x -y)t -1/2 i exp(Ct 1/2 i )P[Z β,h T = t i ] ≤ c ε I d=1 + I d≥3 |x -y| + I d=2 T β/2 qm-[(d-1)+I d=1 ],β (T, x -y) + 1 T β/2 qm,β (T, x -y) := c ε E M β,
+ i≥1 t -γ i P[Z β,h T = t i ]p S (t i , x -y) exp(Ct ω i ) ≤ c I |x-y|≤T β/α |x -y| γα + I |x-y|>T β/α T βγ pβ (T, x -y) + 1 T βγ pβ (T, x -y) .
As a direct corollary of equation (2.14) and Lemmas 4.10 and 4.11 taking γ = 0 we obtain some controls on the density of X Z β t . Precisely, we have: Corollary 4.1 (Some density estimates for the spatial motion along the inverse subordinator). There exists c := c((A), β, α) ≥ 1 s.t. for any fixed T > 0 the following estimates hold:

p X Z β T (x, y) ≤ c(p β + pβ )(T, x -y),
in both the diffusive and strictly stable case with the associated definitions of pβ , pβ in Theorems 3.1 and 3.2.

Remark 4.12. In the above bounds, from the definitions of pβ , pβ , we have in some sense the usual scaling in time for the Gaussian and stable heat-kernels at time T β . We indeed observe that the dichotomy between the diagonal and off-diagonal regime is performed depending on |x -y| ≤ K(T β ) 1/α or |x -y| > K(T β ) 1/α for some positive constant K. In the diagonal regime we also have, as indicated previously, an additional spatial singularity whereas in the off-diagonal one, the concentration is modified in the diffusive case due to the integration of the density p Z β (T, u) for large u in (2.14).

In the Gaussian case, those bounds are coherent with those of [START_REF] Eȋdelman | Cauchy problem for fractional diffusion equations[END_REF] and our approach can be viewed as an alternative probabilistic strategy to derive estimates for the fundamental solution of fractional in time diffusive PDEs. For the strictly stable case, to the best of our knowledge these results seem to be new. Some lower bounds are derived in Appendix B.

Proof of Lemma 4.11.

-Diffusive case. We focus on the first integral in the l.h.s. of (4.12) since the other term can be handled similarly (Riemann sum approximation). Exploiting the bounds from Lemma 4.8, we split the time integration domain at the characteristic time scale T β and write:

Q γ,β (T, x -y) := +∞ 0 u -γ p Z β (T, u)g c (u, x -y) exp(Cu 1/2 )du (4.15) ≤ c β exp(CT β/2 ) T β exp - c -1 4 |x -y| 2 T β T β 0 du u γ+d/2 exp - c -1 4 |x -y| 2 u + c β T β +∞ T β du u γ+d/2 exp(Cu 1/2 ) exp -c -1 |x -y| 2 2u exp -c -1 β u T β 1/(1-β) := Q γ,β,s (T, x -y) + Q γ,β,l (T, x -y),
where the subscripts s, l respectively denote the contributions in short and long time. For the contribution Q γ,β,s (T, x-y), we have to analyze the integral I(T β , γ, |x-

y|, d) := T β 0 du u γ+d/2 exp(-c -1 4 |x-y| 2 u
). Observe that except if d = 1, γ = 0 there is a singularity in small time in the integral which needs to be compensated by the spatial component |x -y| = 0 in the exponential. This yields the spatial (diagonal) singularity.

To equilibrate the time singularity we will thoroughly rely on the fact that the density of the hitting time of level a > 0 for the scalar Brownian motion writes (see e.g. [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]):

(4.16) ∀u > 0, f a (u) := 2a (2πu 3 ) 1/2 exp - a 2 2u
.

-If γ + d/2 ≥ we write for all |x -y| = 0:

I(T β , γ, |x -y|, d) = T β 0 du|x -y| u 3/2 |x -y| d+2γ-3 u (d+2γ-3)/2 exp - c -1 4 |x -y| 2 u 1 |x -y| d+2γ-2 ≤ c |x -y| d+2(γ-1) T β 0 du|x -y| (2πu 3 ) 1/2 exp -c -1 |x -y| 2 2u ≤ c |x -y| d+2(γ-1) .
-If γ + d/2 < 3/2 which actually happens for d = 1, γ ∈ {0, 1 2 } or d = 2 and γ = 0 we write:

I(T β , 0, |x -y|, 1) ≤ cT β/2 , I(T β , 0, |x -y|, 2) = I(T β , 1/2, |x -y|, 1) ≤ T β/2 |x -y| T β 0 du|x -y| u 3/2 exp - c -1 4 |x -y| 2 u ≤ cT β/2 |x -y| .
The previous results can be summarized as follows. There exists c := c((A D ),β) s.t. for all (T, x, y) ∈ R * + × (R d ) 2 , |x -y| = 0:

Q γ,β,s (T, x -y) ≤ c exp(cT β/2 ) exp -c -1 |x -y| 2 2T β × I d=1,γ=0 T β/2 + I d=2,γ=0 + I d=1,γ=1/2 T β/2 |x -y| + I d+2γ≥3 T β |x -y| d+2(γ-1) .
(4.17)

The restriction |x -y| = 0 is not necessary if d = 1, γ = 0.

On the other hand, from Young's inequality, there exists cβ > 0 s.t. for all u, ε > 0:

u 1/2 = ε u T β 1/2 (ε -1 T β ) 1/2 ≤ cβ ε u T β 1/(1-β) + ε -1/(1+β) T β/(1+β) .
We thus get from (4.15) that, for ε sufficiently small, there exists cβ s.t.:

Q γ,β,l (T, x -y) ≤ cc β T β(1+γ+d/2) exp(c β T β/(1+β) ) × +∞ T β du exp -c -1 |x -y| 2 2u exp - c -1 β 2 u T β 1/(1-β)
. Now two cases occur according to the dichotomy indicated in Remark 4.12. If |x -y| ≤ T β/2 then setting ũ := u/T β we get Q γ,β,l (T, x-y)

≤ cβ T β(γ+d/2) exp(c β T β/(1+β)
). If now |x -y| > T β/2 , we see that the two exponential contributions in the integral are

equivalent if κ 1 {|x-y| 2 T β/(1-β) } 1-β 2-β ≤ u ≤ κ 2 {|x-y| 2 T β/(1-β) } 1-β 2-β , 1 < κ 1 < κ 2 < +∞, for which exp - c -1 β 2 u T β 1/(1-β) ≤ exp - c -1 β κ 1/(1-β) 1 4 |x -y| 2 T β 1/(2-β) exp - c -1 β 4 u T β 1/(1-β)
.

On the other hand, for u

∈ [T β , κ 1 {|x -y| 2 T β/(1-β) } 1-β 2-β ] we have: exp -c -1 |x -y| 2 2u ≤ exp -(2cκ 1 ) -1 |x -y| 2 T β 1/(2-β)
.

For u ∈ [κ 2 {|x -y| 2 T β/(1-β) } 1-β 2-β , +∞), it suffices to bound exp - c -1 β 4 u T β 1/(1-β) ≤ exp - c -1 β 4 κ 1/(1-β) 2 |x -y| 2 T β 1/(2-β)
.

Thus, setting as in the diagonal case ũ = u/T β , we derive that there exists cβ := cβ ((A D ),κ 1 , κ 2 ) ≥ 1, s.t. for all (T, x, y

) ∈ R * + × (R d ) 2 : (4.18) Q γ,β,l (T, x -y) ≤ cβ T β(γ+d/2) exp(c β T β/(1+β) ) exp -c -1 β |x -y| 2 T β 1/(2-β)
.

The statement (4.12) follows from (4.18) and (4.17). -Markov Chain.

Setting i C := ⌈h -4/5-ε ⌉, i := ⌈T β /h⌉, let us write from Lemma 4.8:

Q 1 2 ,β (T, x -y) := i≥iC P[Z β,h T = t i ] exp(Ct 1/2 i )t -1/2 i q m (t i , x -y) ≤ c T β exp(CT β/2 ) ti ti C u -(d+1)/2 1 + |x -y| u 1/2 -m du + c T β(1+(d+1)/2) exp(cT β/(1+β) ) +∞ ti 1 + |x -y| u 1/2 -m exp(-c -1 β u T β 1/(1-β)
)du

:= Q 1 2 ,β,s (T, x -y) + Q 1 2 ,β,l (T, x -y), (4.19)
using as above Young's inequality to get the upper bound and replacing, up to modifications of the constants, the Riemann sums by integrals.

We now derive setting t = u/|x -y| 2 and up to a modification of c:

Q 1 2 ,β,s (T, x -y) ≤ c T β exp(cT β/2 ) t 1 2 I d=1 i |x -y| d-1+I d=1 ti/|x-y| 2 ti C /|x-y| 2 t-(d+1+I d=1 )/2 1 + 1 t1/2 -m d t ≤ c T β exp(cT β/2 ) t 1 2 I d=1 i |x -y| d-1+I d=1 ti/|x-y| 2 ti C /|x-y| 2 t-3/2 1 + 1 t1/2 -m+(d-2+I d=1 ) d t ≤ c T β exp(cT β/2 ) T β/2 I d=1 |x -y| + I d≥2 |x -y| d-1 × 1 + |x -y| T β/2 -m+(d-1)+I d=1 . (4.20)
On the other hand if |x-y| ≤ T β/2 (diagonal regime) we readily get

Q 1 2 ,β,l (T, x- y) ≤ c exp(cT β/(1+β) ) T β(d+1)/2
. If now |x -y| > T β/2 , splitting as above for u ∈ [t i , κ 1 {|x - We again focus on the first term in the l.h.s. of (4.14). The discrete sum can be handled similarly. Analogously to (4.15), replacing g c by p S and the exponent 1/2 in the exponential by ω, we write from Lemmas 4.8 and 4.10:

y| 2 T β/(1-β) } 1-β 2-β ] and u ≥ κ 1 {|x -y| 2 T β/(1-β) } 1-β 2-β yields : Q 1 2 ,β,l (T, x -y) ≤ c T β(d+1)/2 exp(cT β/(1+β) ) 1 + |x -y| T β/2 1/(2-β) -m . ( 4 
Q γ,β,s (T, x -y) ≤ c β c α exp(CT βω ) T β T β 0 du u γ+d/α 1 (1 + |x-y| u 1/α ) d+α .
Two cases are to be distinguished.

-If d = 1, γ = 0, α > 1 then the above diagonal singularity is integrable and one gets:

Q 0,β,s (T, x -y) ≤ c β c α exp(CT βω ) T β 1 (1 + |x-y| T β/α ) 1+α T β 0 du u 1/α ≤ cc α exp(cT βω ) T β/α 1 (1 + |x-y| T β/α ) 1+α . (4.22)
In particular, this estimate holds even for x = y. There is no spatial singularity. -For all the other cases, i.e. d = 1, γ = 1, α > 1 or d = 1, α ≤ 1, d ≥ 2 for γ ∈ {0, 1}, we need to consider x = y in order to equilibrate the time singularity. In small time we still distinguish the diagonal and off-diagonal regimes. Precisely, -If |x -y| ≤ T β/α , then:

Q γ,β,s (T, x -y) ≤ c β c α exp(CT βω ) T β 1 |x -y| d+α |x-y| α 0 duu 1-γ + T β |x-y| α du u γ+d/α ≤ c β c exp(cT βω ) 1 T β |x -y| d-α(1-γ) + 1 T β(γ+d/α) . (4.23) -If |x -y| > T β/α Q γ,β,s (T, x -y) ≤ c β c α exp(CT βω ) T β 1 |x -y| d+α T β 0 duu 1-γ ≤ c β c exp(cT βω ) T β(1-γ) |x -y| d+α . (4.24)
Let us mention that, in the diagonal regime, we get as in the diffusive case an additional spatial singularity.

Let us now deal with Q γ,β,l (T, x -y). We first write from Young's inequality that there exists cβ s.t. for all u, ε > 0:

u ω = ε u T β ω (ε -1 T β ) ω ≤ cβ ε u T β 1/(1-β) + (ε -1 T β ) ω/(1-ω(1-β)) .
Thus, taking ε small enough yields:

Q γ,β,l (T, x -y) ≤ c exp(cT βω/(1-ω(1-β)) ) T β +∞ T β du( u |x -y| d+α ∧ u -dβ/α )u -γ × exp - c -1 β 2 u T β 1/(1-β) ≤ c exp(cT βω/(1-ω(1-β)) ) T β |x -y| d+α ∧ T -βd/α T -βγ . (4.25)
The result follows from (4.22), (4.23), (4.24), and (4.25). 4.3. Time Sensitivity: Proof of Lemma 4.1. The lemma, which gives the control on the time sensitivity term E 1 (T, x, y) in the decomposition error (4.1), is proved using the bounds of Lemma 4.11. We simply write from Lemma 4.10, and Lemma 4.8 for the first time step, that in the diffusive case, there exists c := c((A D )) s.t. :

|E 1 (T, x, y)| ≤ c h exp(Ch 1/2 ) T β |x -y| d exp -c -1 |x -y| 2 h +h +∞ h p Z β (T, u)u -1 exp(Cu 1/2 )g c (u, x -y)du ,
whereas in the strictly stable case, there exists c := c((A S )) s.t. :

|E 1 (T, x, y)| ≤ c exp(Ch ω )h 2 T β |x -y| d+α + h +∞ h p Z β (T, u)u -1 exp(Cu ω )p S (u, x -y)du .
Recalling that in the strictly stable case we assumed h 1/β ≤ T and h 1/α ≤ |x -y|, the result then follows from the above controls and equations (4.12), (4.14) in Lemma 4.11.

4.4. Sensitivity in Space: Proof of Lemmas 4.3 and 4.4.

4.4.1.

The case of a diffusive spatial motion. The key control for the analysis of the term E 2 (T, x, y) in (4.1) is provided by the following Lemma.

Lemma 4.13 (Control for the Spatial Error). For our current approximation schemes in (3.1) we have:

-Under (A D,Eul ), i.e. for the Euler scheme, there exists (C, c) := (C, c)((A D ), d) ≥ 1 s.t. for a given h > 0 and for all i ∈ N * :

|(p -p h Eul )(t i , x, y)| ≤ Ch{ 1 t 1/2 i ∨ exp(Ct 1/2 i )}g c (t i , x -y), g c (t i , z) = 1 (2πct i ) d/2 exp - |z| 2 2ct i , z ∈ R d , (4.26) 
standing for the usual d-dimensional Gaussian density with variance ct i . -Under (A D,m ), i.e. general Markov Chain approximation, there exists

C := C((A D,m ), d) ≥ 1 s.t. if t i ≥ h δ , δ < 1/5: |(p -p h )(t i , x, y)| ≤ Ch 1/2 { 1 t 1/2 i ∨ exp(Ct 1/2 i )}q m (t i , x -y), 0 ≤ q m (t i , x -y) := c m t -d/2 i 1 + |x -y| t 1/2 i -m . (4.27) 
Let us mention that q m enjoys the same parabolic scaling as g c but has polynomial decay. We observe the usual convergence rates in h and h 1/2 respectively for the Euler scheme and the Markov Chain approximation. For general Markov Chains, this is the rate of the Gaussian LLT (see [START_REF] Petrov | Sum of Independent Random Variables[END_REF], [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], [START_REF] Konakov | Small time Edgeworth-type expansions for weakly convergent nonhomogeneous Markov chains[END_REF]). For the Euler scheme, the innovations are already Gaussian so that the first term disappears in the previously mentioned LLT, yielding a contribution of order h.

The important point of the previous Lemma is that it specifies the behaviour of the constants in short and long time. This allows us to balance, as for the time sensitivity, those constants with the controls on the laws of Z β T , Z β,h T given in Lemma 4.8 thanks to Lemma 4.11.

Proof. For the Euler scheme, the short time behaviour of the error has already been established in [START_REF] Gobet | Short time asymptotics of the density of the Euler scheme[END_REF] (see Theorem 2.3 therein) whereas the exponential bounds can once again be derived from the explicit form of the parametrix series used to investigate the error in [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF]. For the sake of completeness, we recall these aspects in Appendix A.1.

For a general Markov Chain approaching the diffusion, i.e. for which the innovations are not necessarily Gaussian, to enter a Gaussian asymptotics specified by the Gaussian LLT, a certain number of time steps is needed. This is why we impose the condition t i ≥ h δ , δ < 1/5 which is the one required in [START_REF] Konakov | Small time Edgeworth-type expansions for weakly convergent nonhomogeneous Markov chains[END_REF] (see assumption (B2) therein) to establish the Gaussian LLT in short time. The behaviour of the constants in large time can also be derived from [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF] (similarly to the procedure presented in Appendix A.1). For the control in short time we refer to Remark 1 after Theorem 1 in [START_REF] Konakov | Small time Edgeworth-type expansions for weakly convergent nonhomogeneous Markov chains[END_REF]. Anyhow, for the reader's convenience, we recall in Appendix A.1 the approach developed therein.

We thus directly get from (4.1) and (4.26) in Lemma 4.13 that there exists (c, C) := c((A D ))≥ 1 s.t. for all T > 0, (x, y) ∈ (R d ) 2 , x = y:

|E Eul 2 (T, x, y)| ≤ Ch i≥1 P[Z β,h T = t i ] exp(Ct 1/2 i )t -1/2 i g c (t i , x -y). (4.28)
The result (4.2) for the Euler scheme now follows from equation (4.12) in Lemma 4.11.

For the Markov Chain approximation, setting i C := ⌈h -4/5-ε ⌉ we write using (4.27):

|E 2 (T, x, y)| ≤ C i∈[[1,iC ]] P[Z h T = t i ]|(p -p h )(t i , x, y)| + √ h i>iC P[Z β,h T = t i ] exp(Ct 1/2 i ) 1 t 1/2 i q m (t i , x -y) ≤ c ε {E 21 (T, x, y) + √ hE M β,Space,LLT (T, x -y)}, (4.29) 
exploiting equation (4.13) in Lemma 4.11 for the last inequality in the previous r.h.s. It therefore remains to control E 21 (T, x, y).

For this contribution, we do not have comparison results between the two densities. The technique thus consists in controlling each of the terms. Observe to this end that a simple parametrix expansion for the scheme, similar to the one performed in [KM00] using Lemmas 3.6 and 3.11 therein, (see also Appendix A), would give that there exists c :

= c((A D,m ), d) ≥ 1 s.t. for all i ∈ [[1, i C ]], (x, y) ∈ (R d ) 2 : (4.30) p h (t i , x, y) ≤ c exp(ct 1/2 i ) t d/2 i 1 + |x -y| t 1/2 i -2(m-1)
.

We thus derive from the definition in (4.29) and equations (4.6), (4.10), (4.30) that:

E 21 (T, x, y) ≤ c T β h exp(cT β/2 )    iC i=1 t -d/2 i   exp - c -1 2 |x -y| 2 t i + 1 + |x -y| t 1/2 i -2(m-1)      .
From the arguments in the proof of Lemma 4.11, we can write for all d ≥ 1:

E 21 (T, x, y) ≤ c T β exp(cT β/2 ) t 1 2 I d≤2 iC |x -y| d-2+I d≤2 ×   exp -c |x -y| 2 t iC + 1 + |x -y| t 1/2 iC -2(m-1)+(d-2)+I d≤2   ≤ E M,ε β,Space,NoLLT (T, x -y, h), (4.31)
recalling t iC = h 1/5-ε . Putting together estimates (4.31) into (4.29) for the Markov Chain approximation concludes the proof of Lemma 4.3. 4.4.2. The case of strictly stable driven SDE. Similarly to the diffusive case, the crucial point is the following Lemma.

Lemma 4.14. Under (A S ) there exists C := C((A S )), s.t. for a given t i := ih we have:

|(p -p h Eul )(t i , x, y)| ≤ Ch{ 1 t i ∨ exp(Ct ω i )}p S (t i , x -y), p S (t i , z) := c α t d/α i 1 1 + |z| t 1/α i d+α , ∀z ∈ R d , R d p S (t i , z)dz = 1. (4.32)
Proof. The exponential control is derived similarly to the diffusive case, and comes from the specific form of the parametrix expansion used to analyze the error. The control in small time can also be derived from this representation, similarly to what occurs in [START_REF] Konakov | Small time Edgeworth-type expansions for weakly convergent nonhomogeneous Markov chains[END_REF]. To make this last point clear we give some details in Appendix A.

Lemma 4.4 now follows from Lemma 4.14 and equation (4.14) in Lemma 4.11.

Perspectives

We did not consider in this work the case of a general Markov Chain approximating stable driven SDEs. To do so the first step would consist in establishing a LLT for sums of i.i.d random variables belonging to the domain of attraction of a stable law. Such results have been thoroughly studied in the scalar case, see e.g. Mitalauskas and Statuljavičjus [START_REF] Mitalauskas | An asymptotic expansion in the case of a stable approximating law[END_REF] or the monograph by Christoph and Wolf [START_REF] Christoph | Convergence theorems with a stable limit law[END_REF]. We also refer to the PhD. of Squartini [START_REF] Squartini | Global limit theorems for sums of independent identically distributed random variables using quasicumulants[END_REF] and to [START_REF] Molchanov | Quasicumulants and limit theorems in case of the Cauchy limiting law[END_REF] (Cauchy case), for recent developments. We believe those results can be extended to the multidimensional case and would also transmit to a Markov Chain approximation through a continuity technique like the parametrix. Now such limit theorems could also allow to consider more general fractional like time derivatives that would be associated with the inverse of inhomogeneous stable subordinators (S + t ) t≥0 with generators

L t φ(s) = R * + (φ(s + u) -φ(s))g(t, u) du u 1+α .
Eventually, an analysis of generalized fractional like derivatives involving as well the spatial variable like in Kolokoltsov's work, see e.g. Proposition 4.4 in [START_REF] Kolokoltsov | Generalized Continuous-Time Random Walks (CTRW)[END_REF], would require to establish LLT for approximations of the couple (S + t , X t ) with generator

L t φ(s, x) = R * + (φ(s + u, x) -φ(s, x))g(t, u, x) du u 1+α + R d (φ(s, x + z) -φ(s, x)) f (t, x, z) dz |z| d+α .
This case is much more delicate in the sense that the complete coupling breaks the independence in (2.13) between the spatial motion and the process associated with the fractional like time derivative. We anyhow believe that the arguments of [START_REF] Kolokoltsov | Generalized Continuous-Time Random Walks (CTRW)[END_REF] can be adapted provided the LLT holds. This will concern further research.

do not coincide anymore when iterated. Precisely considering d = 1 to alleviate the notations, we get for all t ∈ (0, t i ):

(L 2 -L 2 * )p(t, x, y) = {b(x)b ′ (x) + 1 2 a(x)b ′′ (x)}∂ x p(t, x, y) +{ 1 2 b(x)a ′ (x) + a(x)b ′ (x) + 1 4 a(x)a ′′ (x)}∂ 2 x p(t, x, y) + 1 2 a(x)a ′ (x)∂ 3 x p(t, x, y). (A.5)
Now, the controls on the density and its derivatives imply under the smoothness assumptions in (A D ) similarly to (A.3) that there exists c := c((A D )) s.t. for all multi-indexes α, β, |α| + |β| ≤ 3 for all t > 0:

(A.6) |∂ α x ∂ β y ∂p(t, x, y)| ≤ c t |α|+|β| 2 exp(ct 1/2 )g c2 (t, x -y).
We refer to Friedman [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF] for details. Hence, the most singular term in (A.5) is the last one. Precisely,

|a(x)a ′ (x)∂ 3 x p(t, x, y)| ≤ c t 3/2 exp(ct 1/2 )g c2 (t, x -y). (A.7)
Now, recalling from (A.4) that this control needs to be plugged in the time-space

convolution p ⊗ [(L 2 -L 2 * )]p(t i , x, y) = ti 0 ds R d p(s, x, z)(L 2 -L 2 * )p(t i -s, z, y)dz, two cases can occur: if s ∈ [0, t i /2]
the control in (A.7) is not singular and gives the stated bound of t -1/2 i once integrated in time. On the other hand when s ∈ [t i /2, t i ], some integration by parts need to be performed for the singular term yielding a third order spatial derivative in z of p(s, x, z). Thanks to (A.6), which gives

|∂ 3 z p(s, x, z)| ≤ c s 3 2
exp(cs 1/2 )g c2 (s, x -z), and the integration in time, we get again a time singularity in t -1/2 i for the main contribution in (A.4). The remainder can be handled similarly (see [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF]). This analysis can be performed as well for the Markov Chain approximation, see [START_REF] Konakov | Small time Edgeworth-type expansions for weakly convergent nonhomogeneous Markov chains[END_REF].

A.2. Strictly Stable Case. The expansion (A.1) also holds under (A S ), see [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF] from which we have

|p ⊗ H (i) (t, x, y)| ≤ (c 1 t) iω Γ(i -ω) p S (t, x -y), ω := 1 α ∧ 1 ∈ (1/2, 1].
This therefore gives the indicated exponential bound p(t, x, y) ≤ c exp(ct ω )p S (t, xy) for c := c((A S )). Now, let us denote by f the spherical density of the measure ν (see assumption (ND)). We can rewrite:

Lϕ(x) = L * ϕ(x) = b(x), ∇ x ϕ(x) + R d {ϕ(x + σ(x)z) -ϕ(x) -∇ x ϕ(x), σ(x)z I |σ(x)z|≤1 }f z |z| dz |z| d+α = b(x), ∇ x ϕ(x) + R d {ϕ(x + z) -ϕ(x) -∇ x ϕ(x), z I |z|≤1 }Θ(x, z)dz,
where we denoted for all

ζ ∈ R d , Θ(ζ, z) := f σ -1 (ζ)z |σ -1 (ζ)z| |σ -1 (ζ)z| d+α det(σ(ζ)) . (A.8)
With the notations of the previous section (considering α < 1 to avoid the cut-off and alleviate the notations) we get:

L 2 p(t, x, y) = b(x), ∇ x b(x)∇ x p(t, x, y) + b(x), D 2
x p(t, x, y)b(x)

+ b(x), R d (∇ x p(t, x + z, y) -∇ x p(t, x, y))Θ(x, z)dz + b(x), R d (p(t, x + z, y) -p(t, x, y))∇ x Θ(x, z)dz + R d [ R d {p(t, x + z ′ + z, y) -p(t, x + z ′ , y)}Θ(x + z ′ , z)dz] -[ R d {p(t, x + z, y) -p(t, x, y)}Θ(x, z)dz] Θ(x, z ′ )dz ′ , L 2 * p(t, x, y) = b(x), D 2 x p(t, x, y)b(ξ) + b(x), R d (∇ x p(t, x + z, y) -∇ x p(t, x, y))Θ(ξ, z)dz + R d [ R d {p(t, x + z ′ + z, y) -p(t, x + z ′ , y)}Θ(ξ, z)dz] -[ R d {p(t, x + z, y) -p(t, x, y)}Θ(x, z)dz] Θ(ξ, z ′ )dz ′ ξ=x .
Thus, the difference writes:

(L 2 -L 2 * )p(t, x, y) = b(x), ∇ x b(x)∇ x p(t, x, y) + b(x), R d
(p(t, x + z, y) -p(t, x, y))∇ x Θ(x, z)dz

+ R d [ R d {p(t, x + z ′ + z, y) -p(t, x + z ′ , y)} ×{Θ(x + z ′ , z) -Θ(x, z)}dz] × Θ(x, z ′ )dz ′ .
We mention that, even though we assumed b = 0 for α < 1 we kept the explicit dependence on b in the above computations for the sake of completeness. Let us now focus on the last term in the above equation:

D(t, x, y) := R d R d (p(t, x + z + z ′ , y) -p(t, x + z ′ , y) ×{Θ(x + z ′ , z) -Θ(x, z)}dz × Θ(x, z ′ )dz ′ ,
which is the only contribution if α < 1 and which would be the most singular for α ≥ 1. The smoothness and non-degeneracy assumptions (S), (UE), (ND) on the coefficients yield:

|∇ x Θ(x, z)| ≤ c |z| d+α , |D(t, x, y)| ≤ c R d R d |p(t, x + z + z ′ , y) -p(t, x + z ′ , y)| × I |z ′ |> 1 4 t 1/α + |z ′ |I |z ′ |≤ 1 4 t 1/α |z| d+α × 1 |z ′ | d+α dz ′ dz,
where we have truncated with respect to the characteristic time-scale t 1/α (up to a constant) in the variable z ′ . Indeed, if |z ′ | ≤ 1 4 t 1/α we perform a Taylor expansion and exploit the previous bound on ∇ x Θ whereas if |z ′ | > 1 4 t 1/α we simply use the uniform bound of Θ deriving from its definition in (A.8) and the non degeneracy assumptions. Write now:

|D(t, x, y)| ≤ c |z ′ |≤ 1 4 t 1/α R d |p(t, x + z + z ′ , y) -p(t, x + z ′ , y)| × |z ′ | |z ′ | d+α × 1 |z| d+α dz ′ dz +c |z ′ |> 1 4 t 1/α R d |p(t, x + z + z ′ , y) -p(t, x + z ′ , y)| × 1 |z ′ | d+α × 1 |z| d+α dz ′ dz := (D 1 + D 2 )(t, x, y).
Let us treat those two terms separately. Recalling from [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF] and the above bounds that |∇ x p(t, x, y)| ≤ c exp(ct ω ) t 1/α p S (t, x -y) we derive:

D 1 (t, x, y) ≤ c exp(ct ω ) t 1/α |z ′ |≤ 1 4 t 1/α ,|z|≤ 1 4 t 1/α p S (t, x + z ′ + θz -y)|z| × |z ′ | |z ′ | d+α × 1 |z| d+α dz ′ dz + |z ′ |≤ 1 4 t 1/α ,|z|> 1 4 t 1/α |p(t, x + z + z ′ , y) -p(t, x + z ′ , y)| × |z ′ | |z ′ | d+α × 1 |z| d+α dz ′ dz := (D 11 + D 12 )(t, x, y),
for some θ := θ(x, z, z ′ , y) ∈ [0, 1] in D 11 . In that contribution, since both z, z ′ are small w.r.t. the characteristic time t 1/α , we have:

p S (t, x + z ′ + θz -y) ≤ c t d/α 1 (1 + |x+z ′ +θz-y| t 1/α ) d+α ≤ c t d/α 1 ( 1 2 + |x-y| t 1/α ) d+α ≤ c2 d+α p S (t, x -y). (A.9) Hence: D 11 (t, x, y) ≤ c exp(ct ω ) t 1/α p S (t, x -y) r≤ 1 4 t 1/α dr r α 2 ≤ c exp(ct ω ) t 2-1 α p S (t, x -y).
For the contribution |p(t, x + z + z ′ , y) -p(t, x + z ′ , y)| in D 12 (t, x, y), since |z| can be large, we write directly, recalling as well that |z ′ | is small and proceeding as in (A.9):

|p(t, x + z + z ′ , y) -p(t, x + z ′ , y)| ≤ |p(t, x + z + z ′ , y)| + |p(t, x + z ′ , y)| ≤ c(p S (t, x + z -y) + p S (t, x -y)). (A.10)
Observe that if |x -y| ≤ t 1/α , i.e. the diagonal regime holds for p S (t, x -y), we can then use the global upper-bound (p S (t, x + z -y) + p S (t, x -y)) ≤ c t d/α , in the control (A.10) so that

D 12 (t, x, y) ≤ c exp(ct ω )p S (t, x -y) |z ′ |≤ 1 4 t 1/α dz ′ |z ′ | |z ′ | d+α |z|> 1 4 t 1/α dz |z| d+α ≤ c exp(ct ω )p S (t, x -y)t -2+ 1 α .
If now |x -y| > t 1/α , we have for all given ε ∈ (0, 1), p S (t,

x + z -y) ≤ c ε p S (t, x -y) if z ∈ B(x -y, ε|x -y|). Indeed, |x -y + z| ≥ |x -y| -|z| ≥ ε|x -y|. On the other hand, if z ∈ B(x -y, ε|x -y|), |z| ≥ (1 -ε)|x -y| and |z| -(d+α) ≤ ((1 -ε)|x -y|) -(d+α) ≤ c ε t -1 p S (t, x - 
y), up to a possible modification of c ε . Thus,

D 12 (t, x, y) ≤ c exp(ct ω ) t -2+ 1 α p S (t, x -y) + c ε p S (t, x -y) B(x-y),ε|x-y|) c ∩{|z|> 1 4 t 1/α } dz |z| d+α |z ′ |≤ 1 4 t 1/α |z ′ |dz ′ |z ′ | d+α + 1 {(1 -ε)|x -y|} d+α B(x-y),ε|x-y|) p S (t, x + z -y)dz |z ′ |≤ 1 4 t 1/α |z ′ |dz ′ |z ′ | d+α ≤ c exp(ct ω )p S (t, x -y)t -2+ 1 α .
This proves that:

(A.11) D 1 (t, x, y) ≤ c exp(ct ω )p S (t, x -y)t -2+ 1 α .
Let us observe that we have some continuity for the singularity w.r.t. the stability index, w.r.t. to the diffusive case, as far as the small jumps are concerned (see equation (A.7)). The large jumps deteriorate the singularity. Precisely,

|D 2 (t, x, y)| ≤ |z ′ |> 1 4 t 1/α dz ′ |z ′ | d+α × R d |p(t, x + z ′ + z, y) -p(t, x + z ′ , y)| dz |z| d+α .
From the previous arguments, splitting again the small and large jumps in the z variable w.r.t. the characteristic time scale t 1/α , we get:

R d |p(t, x + z ′ + z, y) -p(t, x + z ′ , y)| dz |z| d+α ≤ c t exp(ct ω )p S (t, x + z ′ -y).
This therefore gives following the dichotomy used for the term D 12 (t, x, y):

|D 2 (t, x, y)| ≤ c t 2 exp(ct ω )p S (t, x -y),
which together with (A.11) indeed gives the bound |D(t, x, y)| ≤ c t 2 exp(ct ω )p S (t, xy).

Let us emphasize from [KM10] that the expansion (A.4) also holds in the strictly stable case. The previous control then gives the result, similarly to the discussion in the previous paragraph if s ∈ [0, t i /2]. For s ∈ [t i /2, t i ] we take the spatial adjoint and the associated contribution can be analyzed similarly. Eventually, this analysis extends to the remainder terms in (A.4).

1 2-β ≤ p X Z β T (x, y) ≤ c T β/2 exp(cT β 2 ) exp -c -1 |x -y| 2 T β + exp(cT β 1+β ) ) exp -c -1 |x -y| 2 T β 1 2-β . (B.1) • For d = 2 and x = y: c -1 T β exp(-cT β ) exp -c |x -y| 2 T β | log(c 1/2 |x -y| T β/2 )|I |x-y|≤c -1/2 T β/2 + 1 + exp(-cT ) exp -c |x -y| 2 T β 1 2-β ≤ p X Z β T (x, y) ≤ c T β exp(cT β 2 ) exp -c -1 |x -y| 2 T β | log(c -1/2 |x -y| T β/2 )|I |x-y|≤c 1/2 T β/2 + 1 + exp(cT β 1+β ) ) exp -c -1 |x -y| 2 T β 1 2-β . . (B.2) • For d ≥ 3 and x = y: c -1 exp(-cT β ) T β |x -y| d-2 exp -c |x -y| 2 T β + exp(-cT ) T βd/2 exp -c |x -y| 2 T β 1 2-β ≤ p X Z β T (x, y) ≤ c exp(cT β 2 ) T β |x -y| d-2 exp -c -1 |x -y| 2 T β + exp(cT β 1+β ) ) T βd/2 exp -c -1 |x -y| 2 T β 1 2-β . (B.3)
-Strictly Stable Case: Under (A S ), there exists c := c(β,(A S ))≥ 1 s.t. for d ≥ 2 and α ∈ (0, 2) or d = 1, α ≤ 1, a given T > 0 and for all (x, y) ∈ (R d ) 2 , x = y, one has:

c -1 exp(-cT β ) T β |x -y| d-α I |x-y|≤T β/α + 1 T βd/α exp(-cT β ) 1 + |x-y| T β/α d+α ≤ p X Z β T (x, y) ≤ c exp(cT βω ) T β |x -y| d-α I |x-y|≤T β/α + 1 T βd/α exp(cT βω 1-ω(1-β) ) 1 + |x-y| T β/α d+α , ω := 1 α ∧ 1. (B.4) If d = 1, α > 1 we get for all (x, y) ∈ R 2 : c -1 1 T βd/α exp(-cT β ) 1 + |x-y| T β/α d+α ≤ p X Z β T (x, y) ≤ c 1 T βd/α exp(cT βω 1-ω(1-β) ) 1 + |x-y| T β/α d+α , ω := 1 α . (B.5)
Proof. We first mention that the arguments in the proof of Lemma 4.8 also give that, a lower bound homogeneous to (4.6) holds for p Z β (T, u). Precisely:

(B.6) c -1 β T β exp -c β u T β 1/(1-β) ≤ p Z β (T, u).
-Diffusive case. Let us concentrate on the lower bounds, since the upper bounds are already derived in Corollary 4.1, and on the two-sided bounds for the two dimensional case. Note that we obtain in equations (B.2), (B.3), for dimensions d ≥ 2, the same singularities that we observe for the Poisson kernel of the associated dimension.

We focus below on the lower bound for d ≥ 3 and the two-sided bounds for d = 2. The other controls can be derived from arguments similar to those developed below. One of the key points for the proof is the lower bound for the density of the spatial motion. Namely a lower bound homogeneous to the one in Lemma 4.10 holds for the density of the spatial motion. It is classical, from chaining arguments, see e.g. Chapter 7 in Bass [START_REF] Bass | Diffusions and Elliptic Operators[END_REF], to derive from the parametrix expansions presented above that there exists c :

= c((A D )) ≥ 1 s.t. for all (x, y) ∈ (R d ) 2 : (B.7) p(t, x, y) ≥ c -1 exp(-ct) t d/2 exp -c |x -y| 2 t .
Lower bound for d ≥ 3. We now start from (2.14), (B.6) and (B.7) to derive:

p X Z β T (x, y) ≥ c -1 T β exp(-cT β ) T β 0 du u d/2 exp(-c |x -y| 2 u ) + +∞ T β du u d/2 exp(-c |x -y| 2 u ) exp(-cu) exp -c u T β 1/(1-β) := (m 1 + m 2 )(T β , x -y). (B.8)
To control m 1 (T β , x -y) we consider again the previous, diagonal/off-diagonal dichotomy:

-For |x -y|/T β/2 ≤ 1 (diagonal regime) write: -For |x -y|/T β/2 > 1 (off-diagonal regime), write first from Young's inequality,

u ≤ c β ( u T β ) 1/(1-β) + (T β ) 1/β .
Computations similar to those in Lemma 4.11 then yield:

m 2 (T β , x -y) ≥ c -1 exp(-cT ) T β × 2[|x-y| 2 T β 1-β ] 1-β 2-β [|x-y| 2 T β 1-β ] 1-β 2-β du u d/2 exp -c |x -y| 2 u exp -c u T β 1/(1-β) ≥ c -1 exp(-cT ) T β exp -c |x -y| 2 T β 1 2-β 1 [|x -y| 2 T β 1-β ] 1-β 2-β (d/2-1) ≥ c -1 exp(-cT ) T β exp -c |x -y| 2 T β 1 2-β 1 [T β(1+ 1 1-β ) ] 1-β 2-β (d/2-1) ≥ c -1 exp(-cT ) T βd/2 exp -c |x -y| 2 T β 1 2-β
, recalling that ∀z ≥ 1, exp(-z 1/(2-β) )z -1-β 2-β (d/2-1) ≥ c -1 exp(-cz 1/(2-β) ) for the last but one inequality. We have thus proved in all cases: If now c 1/2 |x -y|/T β/2 > 1, we write:

m 1 (T β , x -y) ≥ c -1 exp(-cT β ) exp(-c |x-y| 2 T β ) T β T β T β /2 du u ≥ c -1 exp(-cT β ) exp(-c |x-y| 2 T β ) T β .
The previous bounds give the result.

-Strictly Stable Case. We focus here on the lower bound for d ≥ 2. The other cases can be handled similarly. From the lower bound in Kolkoltsov [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF] for the density and a chaining argument one derives that there exists c := c((A S ))≥ 1 s.t. for all t > 0, (x, y) ∈ (R d Let us now turn to m 2 (T β , x -y). We get:

-If |x -y| ≤ T β/α , m 2 (T β , x -y) ≥ c -1 T β exp(-cT β ) 2T β T β du u d/α ≥ c -1
T dβ/α exp(-cT β ).

-If |x -y| > T β/α , m 2 (T β , x -y) ≥ c -1 T β |x -y| d+α exp(-cT β )

2T β T β udu ≥ c -1 T β |x -y| d+α exp(-cT β ).
Plugging the above estimates and (B.12) into (B.11) gives the result.

Remark B.1. Let us emphasize that the bounds of Theorem B.1 would hold under the weaker assumptions that the coefficients b, σ are measurable and s.t. σσ * is Hölder continuous and b is bounded. Indeed, the two-sided heat kernel bounds for the spatial motion hold in that case. We can for instance refer to Sheu [START_REF] Sheu | Some estimates of the transition density of a nondegenerate diffusion Markov process[END_REF] in the diffusive case or to Huang [START_REF] Huang | Two-sided bounds for SDEs driven by tempered stable processes[END_REF] in the strictly stable case.

Let us point out as well that the two sided bounds hold in the diffusive case under those assumptions for the density of X h,Eul Z β,h T associated with the Euler scheme approximation for the spatial motion. Again, the key estimate is a two-sided bound for the Euler scheme which can be found in Lemaire and Menozzi [START_REF] Lemaire | On some non asymptotic bounds for the Euler scheme[END_REF]. In the strictly stable case, the upper bound holds under the indicated assumptions. This is a consequence of the parametrix expansion for the density of the scheme, see [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF]. The lower bound is more delicate to obtain since even in the diffusive case, the localization arguments which are standard for the SDE need to be carefully adapted for the scheme.

Remark B.2. We conclude saying that the results in Theorem 3.1 could be slightly improved in light of the sharp estimates of Theorem B.1 for d = 2. We did not exploit those controls in the presentation of the main results mainly for notational coherence and simplicity.

  Lemma 4.1 (Time Sensitivity in the Error). Under assumption (A D ) (Diffusive case) we have that there exists c :

(4. 3 )

 3 Lemma 4.4 (Spatial Sensitivity: Strictly Stable Case). Under assumption (A S ), there exists c := c(β, (A S ))≥ 1 s.t. for all T > 0, (x, y) ∈ (R d ) 2 , x = y:

√ 2 :

 2 = inf{s ≥ 0 : B s = t √ 2 }, stands for the hitting time of level t √ 2 for the standard Brownian motion B. Indeed, considering for a given λ ≥ 0 the exponential martingale exp( √ 2λB s -λs) s≥0

  Space,LLT (T, x -y). (4.13) -Strictly Stable case: There exists c := c((A S )) s.t. for γ ∈ {0, 1} and for all (x, y) ∈ (R d ) 2 , x = y: +∞ 0 u -γ p Z β (T, u)p S (u, x -y) exp(Cu ω )du (4.14)

m 1 (

 1 T β , x -y) ≥ c -1 exp(-cT β ) T β |x-y| 2 |x-y| 2 /2 du u d/2 ≥ c -1 exp(-cT β ) T β |x-y| 2 |x-y| 2 /2 du |x -y| d ≥ c -1 exp(-cT β ) T β |x -y| d-2 .-For |x -y|/T β/2 > 1 (off-diagonal regime) write:m 1 (T β , x -y) ≥ c -1 exp(-cT β ) T β |x -y| dexp(-cT β ) T β |x -y| d-2 exp -c |x -y| 2 T β T β T β /2 du u ≥ c -1 exp(-cT β ) T β |x -y| d-2 exp -c |x -y| 2 T β .We have thus established that:(B.9) m 1 (T β , x -y) ≥ c -1 exp(-cT β ) T β |x -y| d-2 exp -c |x -y| 2 T β .On the other hand for the contribution m 2 (T β , x -y) in (B.8) we get:-For |x -y|/T β/2 ≤ 1 (diagonal regime) write:m 2 (T β , x -y) ≥ c -1 exp(-cT β ) T β(1+d/2) exp(-cT β ) T βd/2 .

m 2 (,

 2 T β , x -y) ≥ c -1 exp(-cT ) which together with (B.9) and (B.8) completes the proof of the lower bound for d ≥ 3.Bounds for d = 2. The lower bound (B.8) and an homogeneous upper bound still hold, with obvious modifications of the constants. We focus on the contribution m 1 (T β , x -y) yielding the additional spatial diagonal singularity. The term m 2 (T β , x -y) can be analyzed as above. Let us write:m 1 (T β , x -y) ≥ c -1 exp(-cT β ) Assume first that c 1/2 |x -y|/T β/2 ≤ 1. Setting v := exp -c |x-y| 2 uin the above integral we derive:m 1 (T β , x -y) ≥ c -1 exp(-cT β ) T β exp(-c |x-y| 2 log(v))dv ≥ c -1 exp(-cT β ) T β exp(-c |x -y| 2 T β ) -log(c |x -y| 2 T β ) + log(c |x -y| 2 T β )(exp(-c |x -y| 2 T β ) -e -1) . Hence:m 1 (T β , x -y) ≥ c -1 exp(-cT β )e -1 T β -log(c |x -y| 2 T β ) ≥ c -1 e -1 exp(-cT β ) exp -c |x-y| 2 T β T β | log(c |x -y| 2 T β )|.The upper-bound could be derived similarly.

  m 1 + m 2 )(T β , x -y). (B.11) Let us first control m 1 (T β , x -y) exploiting again the diagonal/off-diagonal dichotomy. -If |x -y| ≤ T β/α then m 1 (T β , x -y) ≥ c -1 exp(-cT β ) T β |x-y| α |x-y| α /2 du u d/α ≥ c -1 exp(-cT β ) T β |x -y| d-α .-If |x -y| > T β/α we get:m 1 (T β , x -y) ≥ c -1 T β exp(-cT β ) T β T β /2 du u |x -y| d+α ≥ c -1 T β |x -y| d+α exp(-cT β ).We have thus established (B.12)m 1 (T β , x-y) ≥ c -1 exp(-cT β ) 1 T β |x -y| d-α I |x-y|≤T β/α + T β |x -y| d+α I |x-y|>T β/α .

We recall that (p β + pβ )(T, xy) serves as an upper bound for (p X Z β T
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Appendix A. Derivation of the Error Bounds in Small and Large Time.

We briefly explain in this section the bounds appearing in (4.26), (4.27) and (4.32) that are crucial for our analysis in order to balance the indicated explosive behaviours with the decays of the density of the inverse subordinator, see Lemma 4.8. Actually, the only control that needs to be fully justified is (4.32) in small time. The other bounds in small time are already established in the previously quoted papers. Also, the exponential bounds are in some sense classical.

Let us consider the case of the Euler scheme associated with (2.12) first. The crucial point is that the densities p(t i , x, .), p h Eul (t i , x, .), of respectively X ti in (2.12) and its Euler scheme X h ti in (3.1) starting at x, enjoy a parametrix expansion, see again [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF], [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF], [START_REF] Konakov | Local limit theorems for transition densities of Markov chains converging to diffusions[END_REF], [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF] for the diffusive case and [START_REF] Kolokoltsov | Symmetric stable laws and stable-like jump diffusions[END_REF] and [START_REF] Konakov | Weak error for stable driven stochastic differential equations: Expansion of the densities[END_REF] for the stable one. We proceed with the simplest example of a non degenerate diffusion, but the results for the other cases can be derived similarly. Consider the dynamics (2.12) under (A D ). The p.d.f p(t, x, .) of X x t exists for every t > 0 and writes:

where for all (t, x, y) ∈ R * + × R 2d , H(t, x, y) = (L -L)p(t, x, y) where p(t, x, y) stands for the p.d.f. at point y of the frozen Gaussian or stable process Xx,y t = x + b(y)t + σ(y)Y t , with generator L. Note that the frozen density is always considered at the freezing point. In (A.1) for two integrable functions f, g : R *

A.1. Diffusion Case. It is known (see [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF], [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF]) that, under (A D ), there exist (c 1 , c 2 ) := (c 1 , c 2 )((A D ))≥ 1 s.t. for all i ≥ 1, t > 0,

From equations (A.2) and (A.1), it is easily seen that there exists (c

This explains the exponential control. This approach is due to McKean and Singer [START_REF] Mckean | Curvature and the eigenvalues of the Laplacian[END_REF]. It can be easily transposed to the approximation schemes. The p.d.f. of Euler approximations enjoy similar properties as the one of the initial SDE (see the quoted references). The control in small time comes from the explicit form of the error decomposition which is similar to (A.1). Namely, one has (see [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF] in the considered case)

where the remainder term satisfies as well -Diffusive Case: Under (A D ), there exists c := c(β,(A D ))≥ 1 s.t. for a given T > 0 and for all (x, y) ∈ (R d ) 2 , one has: