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Abstract 

 

Knowledge of the trophic ecology and interactions of marine top predators is fundamental for 

understanding community structure and dynamics as well as ecosystem function. We examined the 

feeding relationships of four heavily exploited elasmobranchs caught in coastal artisanal shark 

fisheries in south-western Madagascar (2009-2010) - Sphyrna lewini, Loxodon macrorhinus, 

Carcharhinus falciformis and Rhynchobatus djiddensis - using stable isotope (δ15N and δ13C) 

analysis. Relative trophic position (indicated by δ15N) and foraging location (indicated by δ13C) 

differed among species. Isotopic niche width was highly variable: more pelagic species, such as S. 

lewini and C. falciformis, had the broadest isotopic niches while the benthic R. djiddensis had the 

narrowest. High niche overlap occurred between R. djiddensis and two of the species, C. falciformis 

(93.2%) and L. macrorhinus (73.2%) and to a lesser extent S. lewini (13.3%). Relative trophic 

position of S. lewini significantly increased with size, suggesting a dietary shift with age. Sex 

differences in δ15N values were observed in L. macrorhinus, suggesting intraspecific niche 

partitioning. Variation in stable isotope values among these four highly exploited elasmobranch 

species indicates trophic structuring, likely driven by differences in diet and habitat use as well as 

by size and sex. This study provides the first baseline information on the trophic ecology of 

elasmobranchs caught in artisanal fisheries from south-western Madagascar. 

 

Keywords: artisanal fisheries, sharks, trophic ecology, δ15N, δ13C, ontogenetic shift, sex 

differences. 
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INTRODUCTION 

 

Predicting the community-level consequences of changes in the abundance of a particular species, 

due to natural or anthropogenic factors, requires an understanding of its trophic interactions and 

trophic similarity amongst species (i.e. the level of trophic redundancy). In both terrestrial and 

marine environments, the removal of predators across multiple trophic levels has been shown to 

disrupt ecosystem function (reviewed in Estes et al. 2011). Declines of top marine predators, such 

as sharks, have been widely documented (Ferretti et al. 2010) and have raised international concern 

(Dulvy et al. 2008, Worm et al. 2013), but there is a paucity of data regarding trophic relationships 

among species within this predatory guild. For coastal ecosystems, it has been proposed that 

predator declines could initiate trophic cascades, whereby their removal disrupts the natural 

population abundances, or behaviours, of consecutive lower trophic level species (Myers et al. 

2007, Heithaus et al. 2008, Burkholder et al. 2013). Elasmobranchs are upper trophic level 

predators in many marine ecosystems, but there is considerable variation in diets and relative 

trophic position among species (Wetherbee & Cortés 2004, Hussey et al. 2014). The presence of a 

diverse marine top predator community, such as elasmobranchs, including an abundance of 

sympatric and ecologically interacting species, may be important in structuring some marine 

communities (Heithaus et al. 2010). It is unclear, however, whether diverse marine top predator 

faunas represent trophically redundant species (Myers et al. 2007) or inhabit unique foraging niches 

with differential impacts on overall community structure (Kinney et al. 2011, Heithaus et al. 2013). 

Although 95% of global fishers are artisanal (Pauly 2006), detailed information on fisheries catch 

composition is limited due to a lack of monitoring and reporting as a result of restricted financial 

and logistical capacity. In developing countries, artisanal fisheries are the principal fishing practice 

and are consequently of considerable social and economic importance to regional human 



 4 

populations. These fisheries, however, can negatively impact the abundance and species 

composition of vulnerable species such as elasmobranchs (Pinnegar & Engelhard 2008). Continued 

unregulated exploitation can lead to declines of key species with consequences extending to the 

broader food web, including commercial species that are critical to the livelihoods of local 

populations. Along the coast of Madagascar, elasmobranchs are heavily exploited both for 

subsistence (meat) and commercial (fins) purposes with an active and developed export market 

(McVean et al. 2006, Robinson & Sauer 2013). Between October 2001 and October 2002, 13 

species were identified from a total of 1164 individual elasmobranchs caught off the southwestern 

region of Madagascar. Hammerhead sharks (mostly Sphyrna lewini, and to a lesser extent S. 

mokarran and S. zygaena) represented 29% of the catch by number and 24% of the total wet weight 

with an estimate of over 123 metric tons landed (McVean et al. 2006). Hammerhead sharks 

(Sphyrna spp.) are globally threatened, with S. lewini currently classified as Endangered (IUCN 

Red List). Currently, no baseline ecological data exists for elasmobranchs from this region, but a 

decline in elasmobranch abundance has been observed for the most exploited species (McVean et 

al. 2006). This decline of elasmobranchs from the coastal waters of south-western Madagascar 

could have adverse effects on both fishing communities and marine ecosystems. To assess this 

possibility, there is a need for information on these species including their trophic interactions and 

levels of trophic redundancy in the elasmobranch community. 

Nitrogen and carbon stable isotopes provide chemical tracers of the diets and foraging habitats of 

organisms in a given ecosystem. Because offshore or pelagic-derived food webs tend to be 13C-

depleted compared to inshore or benthic food webs (Hobson 1999), carbon isotope values (δ13C) 

can be used to indicate the foraging habitat of a species. In addition, the relative position of the 

consumer in the food web can be estimated from nitrogen isotopes values (δ15N) because of the 

enrichment of 15N through successive trophic transfers (Hobson 1999, Caut et al. 2009, Hussey et 
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al. 2014). To date, carbon and nitrogen stable isotopes have been used to elucidate aspects of 

elasmobranch trophic and foraging ecology, including niche breadth and separation (Kinney et al. 

2011, Speed et al. 2011, Vaudo & Heithaus 2011, Heithaus et al. 2013), individual foraging 

specialization (Matich et al. 2011), and ontogenetic and sex variation in trophic interactions and 

habitat use (e.g. Hussey et al. 2011, Carlisle et al. 2012). Long-term integrated stable isotope values 

also provide information on the role of elasmobranchs within a food web (McMeans et al. 2010, 

Vaudo & Heithaus 2011). In this study, we used stable isotopes to assess trophic relationships, 

isotopic niche breadth and overlap, as well as ontogenetic variation in trophic interactions among 

the most commonly caught elasmobranch species in artisanal fisheries operating in the coastal 

waters off south-western Madagascar (Table 1), including the scalloped hammerhead shark S. 

lewini, the sliteye shark Loxodon macrorhinus, the giant guitarfish Rhynchobatus djiddensis and 

the silky shark Carcharhinus falciformis. 
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MATERIALS AND METHODS 

 

Study sites and sample collection 

Shark samples were collected at 5 fish villages (landing sites) in south-western Madagascar: 

Andavado aka, Nosy Be, Nosy Hao, Lamboara and Nosy Andriamitaroka (Fig. 1). Southern areas 

(Andavadoaka, Nosy Be, Nosy Hao, Lamboara) are characterised by 2 distinct fringing and barrier 

reef systems separated by a 5 km wide passage or channel in which several patch reefs are situated. 

The northern area (Nosy Andriamitaroka) is characterised by a shallow underwater shelf, approx. 

30 km in width and generally less than 20 m deep. A scattered coral bank lies at the seaward 

periphery adjacent to the continental shelf drop-off. Sharks were caught by traditional fishers using 

longlines and gillnets from traditional non-motorised sailing pirogues (6 to 8 m long). Longlines 

consisted of an anchor line 50 to 100 m long and a buoyed surface line, 50 to 100 m long, with 

three 12 m long snoods approx. 25 m apart which are attached to the surface line (McVean et al. 

2006). Gillnets, the most commonly used gear, are approx. 50 m long and 4.5 m deep with a mesh 

size of 20 to 25 cm. The nets are typically set on the bottom, in water approx. 30 m deep, and are 

generally baited with fish. Trained local data collectors surveyed the 5 fish landing sites year round 

from April 2009 to May 2010 to collect elasmobranch muscle samples for stable isotope analysis. 

White muscle tissue samples from the dorsal region of freshly landed sharks were collected from 

the most commonly recorded species, and were frozen at −20°C until further processing. Basic 

morphometric measurements, including total and fork length (TL and FL, respectively) and sex 

were recorded for each individual sampled. 
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Stable isotope analyses 

Elasmobranch white muscle tissue was freeze-dried, ground into a homogeneous powder and lipids 

were removed by 2 successive extractions (1 h shaking in cyclohexane at room temperature and 

subsequent centrifugation) prior to analysis to standardize data among individuals and across 

species within the food web (Hussey et al. 2012a). This process also removes urea and 

trimethylamine oxide (TMAO) present in shark tissues, which can potentially affect δ15N values 

(Hussey et al. 2012b). A small sub-sample of tissue (0.35 to 0.45 mg) was weighed and stable 

isotope measurements performed with a continuous-flow isotope-ratio mass spectrometer (Delta V 

Advantage, Thermo Scientific) coupled to an elemental analyser (Flash EA1112, Thermo 

Scientific). Reference gases were calibrated against International Reference Materials (IAEA-N1, 

IAEA-N2 and IAEA-N3 for nitrogen; NBS-21, USGS-24 and IAEA-C6 for carbon). Results are 

expressed in the δ notation relative to Pee Dee Belemnite and atmospheric N2 for δ13C and δ15N, 

respectively, according to the equation: δX = [(Rsample/Rstandard) − 1] × 103, where X is 13C or 

15N and R is the isotope ratio 13C/12C or 15N/14N, respectively. Replicate measurements of a 

laboratory standard (acetanilide) indicated that analytical errors were <0.1‰ for δ13C and δ15N. 

Percent C and N elemental composition of tissues were used to calculate the sample C:N ratio, and 

indicated satisfactory lipid removal efficiency (mean ± SD C:N = 3.12 ± 0.2). 

 

Data analysis 

Assumptions regarding normality and homogeneity of variance were not met following Shapiro-

Wilks and F tests. Non-parametric Kruskal-Wallis (H) tests were consequently used to examine 

the difference in stable isotopes values (δ15N and δ13C) among species. Wilcoxon (W) signed rank 

tests were performed to assess differences in δ13C and δ15N values between sexes and ANCOVA 

was used to test the influence of size and species on δ13C and δ15N values of the 2 most commonly 
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sampled species (S. lewini and L. macrorhinus). The ANCOVA is a general linear model with a 

continuous outcome variable (δ15N and δ13C values) and 2 or more predictor variables where at 

least one is continuous (size; FL) and at least one is categorical (species). In order to compare 

isotopic niches and infer habitat (δ13C) and resource (δ15N) separation among the 4 species, we 

used the recently developed SIBER metric (Stable Isotope Bayesian Ellipses using R; Jackson et 

al. 2011). Corrected standard ellipses (SEAc) are calculated from the variance and covariance of 

the data matrix and represent core niche or dietary isotopic space while accounting for small sample 

sizes per species and variable sample sizes among species. The OVERLAP command within 

SIBER was used to calculate the percentage of core niche overlap among species δ13C and δ15N 

ellipse space (Jackson et al. 2011). Data were analysed using R v. 2.12.0 (R Development Core 

Team 2010). 

 

RESULTS 

 

Over the 12 mo study period, 84 Loxodon macrorhinus, 40 Sphyrna lewini, 20 Rhynchobatus 

djiddensis and 7 Carcharhinus falciformis samples were obtained. The size range of individuals 

sampled was highly variable among species, with juveniles making up the majority of individuals, 

especially for S. lewini and R. djiddensis (Table 2, Fig. 2). The δ13C value was lowest for S. lewini 

(mean ± SD; −15.9 ± 1.19‰) and highest for C. falciformis (−14.4 ± 2‰), while the mean δ15N 

was lowest for L. macrorhinus (11.7 ± 0.59‰) and the highest for C. falciformis (12.9 ± 1.36‰; 

Table 2). Stable isotope values found in this study were graphically compared to other teleost fishes 

with known trophic level and habitat (see Daly et al. 2013), including offshore pelagic, coastal 

pelagic and coastal demersal species (Fig. 3). Based on these data, C. falciformis and S. lewini do 
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not have truly oceanic isotopic values. Conversely, it seems that L. macrorhinus and R. djiddensis 

are coastal consumers foraging in benthic and inshore habitats (Fig. 3). 

Mean isotopic values varied among the 4 species for both δ13C (H = 10.8; df = 3; p = 0.01) and 

δ15N (H = 10.8; df = 3; p = 0.01; Fig. 3). At the individual level, δ13C and δ15N data were tightly 

clustered for L. macrorhinus and R. djiddensis but were more dispersed for S. lewini and C. 

falciformis (Figs. 3 & 4). Isotopic ellipse size was highly variable among species, with R. djiddensis 

having the smallest isotopic niche (0.3) and C. falciformis the largest (5.4) (Fig. 4). Ellipse sizes 

for S. lewini and L. macrorhinus were 4.1 and 1.9, respectively. Isotope niche overlap, based on 

the measure of ellipse overlap was high for R. djiddensis compared with C. falciformis (93.2%) 

and L. macrorhinus (73.2%), and to a lesser extent S. lewini (13.3%, Table 3). Higher isotopic 

niche overlap was also found between L. macrorhinus and both S. lewini (48.3%) and C. falciformis 

(46.2%), but most other comparisons yielded low niche overlap values (Fig. 4; Table 3). 

For S. lewini and L. macrorhinus, ANCOVA confirmed that the 2 species were significantly 

distinct in their δ15N values, and that there was an effect of individual size (F3,116 = 30.75, p < 

0.0001, Fig. 5). Smaller individuals of both species had similar δ15N values, but there was an 

increase in δ15N with size in S. lewini (R2 = 0.49, p < 0.0001) that was not observed in the smaller-

bodied L. macrorhinus. In contrast, ANCOVA found no influence of species and size on δ13C 

values (F3,116 = 2.05, p = 0.11; Fig. 5). Intraspecific variation in δ15N and δ13C values was high 

for both S. lewini and L. macrorhinus (Table 2; Fig. 5), especially for δ13C, highlighting potentially 

inter-individual differences in diets and/or foraging habitats. There was no difference between male 

and female δ13C values for either species (S. lewini: W = 161.5; p = 0.60 and L. macrorhinus: W = 

871.5; p = 0.77) or for δ15N values of S. lewini (W = 150; p = 0.39). For L. macrorhinus, males had 

significantly higher δ15N values (mean = 11.8 ± 0.54‰) than females (mean = 11.5 ± 0.62‰; W = 

675; p = 0.04). 
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DISCUSSION 

These data provide the first investigation of trophic interactions, isotopic niches, ontogenetic and 

gender variation in the foraging ecology of 4 heavily exploited elasmobranch species from a data-

poor region, the Mozambique Channel off south-western Madagascar. Sphyrna lewini, Loxodon 

macrorhinus, Rhyncho batus djiddensis and Carcharhinus falciformis are among the most 

commonly caught species by artisanal fishers over continental shelf waters in this region (~75% of 

species landed in the sampled region; F. Humber unpubl. data), and likely constitute a large 

proportion of the elasmobranch biomass. These species also account for a high percentage of the 

catch of artisanal fisheries off northern Madagascar, where concern over exploitation rates has 

recently been documented (Robinson & Sauer 2013). Sampling covered a range of sizes (FL range 

62 to 260 cm) for L. macrorhinus and C. falciformis, but consisted of mostly juvenile S. lewini and 

R. djiddensis, likely reflecting artisanal shark fisheries overlapping with nursery areas. It is 

possible, however, that long-term exploitation of elasmobranchs in this region, primarily for the 

fin trade, has altered the size structure of populations. 

In order to correctly interpret stable isotope values in the tissues of juvenile sharks, especially those 

with long turnover rates (e.g. muscle), it is critical to understand the dynamics of maternal 

provisioning (McMeans et al. 2010). Previous studies of mother− offspring differences of stable 

isotopes ratios in placentatrophic sharks have shown that embryos are generally enriched in δ15N 

but fractionation of δ13C is variable among species (McMeans et al. 2009, Vaudo et al. 20s10). 

Based on data from the literature (size at birth and growth parameters; Compagno 1984, 1986), all 

animals from our study were likely more than 1 yr old. Therefore, maternal influences should have 

very limited impacts on isotopic values of the individuals in this study. 
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Stable isotope data indicated that, although the 4 species differed in their relative trophic position 

(indicated by mean δ15N values), δ13C values suggested considerable overlap in the food webs 

where species were foraging. There were, however, differences in how trophic interactions varied 

with size for S. lewini and L. macrorhinus and between sexes of L. macrorhinus. The 4 focal species 

are morphologically and ecologically distinct in terms of body size and feeding apparatus, diet 

consumed, and habitat use patterns (see Table 1). C. falciformis and S. lewini are wide-ranging and 

occur in oceanic, epipelagic and continental shelf habitats. They feed mostly on epipelagic and 

pelagic fish, cephalopods and crustaceans (Compagno 1984, Bonfil 2008). Juvenile S. lewini reside 

in coastal nursery grounds (Simpfendorfer & Milward 1993) that probably extend over the 

continental shelf off south-western Madagascar, as observed off south-eastern Africa (Diemer et 

al. 2011). R. djiddensis also occurs over the continental shelf, but, in contrast to S. lewini and C. 

falciformis, is adapted to shallow coastal waters (i.e. closer to more 13C-enriched benthic sources) 

and is thought to have relatively restricted home range and to feed mostly on molluscs and 

crustaceans (Darracott 1977, Compagno 1986). L. macrorhinus is a poorly known continental shelf 

species that lives in intertidal areas up to 80 m depth and which feeds on teleosts, coastal 

cephalopods and crustaceans (Compagno 1984). Despite these marked differences, there was 

considerable overlap in δ13C values among the 4 species. The larger variation in δ13C values 

observed in L. macrorhinus and S. lewini compared to R. djiddensis likely indicate the diversity of 

habitats and feeding areas encountered with larger home ranges, especially for the more pelagic S. 

lewini. The inability of δ13C values to discriminate known interspecific variation in seasonal fine-

scale vertical (pelagic vs. benthic) and horizontal (oceanic vs. coastal) distributions likely relates 

to the slow turnover rate of muscle tissue (>250 d; Kim et al. 2012). Such limitations of carbon 

isotopes in resolving fine-scale foraging patterns of seabirds and marine mammals have been 

reported in various ecological contexts (Cherel et al. 2008, Méndez-Fernandez et al. 2012). For 
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example, despite obvious differences in habitat preferences of small cetaceans off the Iberian 

Peninsula (e.g. depth distributions; Pierce et al. 2010), similar δ13C values were recorded among 

species (Méndez-Fernandez et al. 2012). 

Unfortunately, isotopic data on prey from specific habitats and food webs could not be collected 

during our study. Such data would provide even greater insights into the diets, foraging habitats 

and home ranges of the species studied here (e.g. Daly et al. 2013, Kiszka et al. 2014). However, 

data from neighbouring areas (e.g. coastal waters of Mozambique; Daly et al. 2013) can provide 

insights into habitat use by our focal species off SW Madagascar. Based on these regional data, 

none of the most pelagic species, especially C. falciformis and S. lewini had truly oceanic isotopic 

values. Indeed, both species from south-western Madagascar had higher δ13C values than those 

measured in pelagic teleosts (Daly et al. 2013). This pattern is similar to published data on carbon 

and nitrogen isotope values from the same region for C. falciformis. Both δ15N and δ13C were 

significantly higher for C. falciformis off south-western Madagascar than was found further north 

in the Mozambique Channel (Rabehagasoa et al. 2012; see Table 2). This could be due to spatial 

variation in diets of C. falciformis in this region. However, the individuals we sampled were 

significantly larger than those analysed by Rabehagasoa et al. (2012). Therefore, ontogenetic shifts 

in diets, which have been documented for this species (Compagno 1984, Cabrera-Chávez-Costa et 

al. 2010, Rabehagasoa et al. 2012), may also explain the observed differences with C. falciformis 

feeding on higher trophic level prey at larger sizes. Moreover, higher δ13C values observed in this 

species in our study area may either reflect an increasing relative importance of coastal prey with 

age, or a larger prevalence of coastal prey in the diet of C. falciformis (where the continental shelf 

is broader). In contrast, based on a comparison of data from a variety of pelagic and coastal teleost 

fish species from the coastal waters of Mozambique, it seems that L. macrorhinus and R. djiddensis 

are truly coastal consumers foraging in inshore and benthic habitats (Daly et al. 2013). 



 13 

Interestingly, δ13C values measured in S. lewini and R. djiddensis from south-western Madagascar 

were similar to those from north-western India (Borrell et al. 2011) and KwaZulu-Natal, South 

Africa (for S. lewini only; Hussey et al. 2011). However, δ15N values of both S. lewini and R. 

djiddensis were significantly lower off south-western Madagascar (Table 2), compared to those 

measured in India for the same species (Borrell et al. 2011). This regional variation highlights the 

need for region-specific isotopic data to evaluate the trophic inter actions, including for wide-

ranging consumers such as large elasmobranchs. 

Differences in trophic interactions among these 4 highly exploited elasmobranchs suggest these 

species are not trophically redundant. This is consistent with previous studies from other 

geographic locations, where elasmobranchs were segregated based on their relative trophic position 

or mean δ15N values (Cortés 1999, Borrell et al. 2011, Heithaus et al. 2013, Hussey et al. 2014). 

Such isotopic segregation within a community has been documented in a number of coastal, 

oceanic and reef-associated elasmobranch species (e.g. Kinney et al. 2011, Speed et al. 2011, 

Rabehagasoa et al. 2012), but not in assemblages where species show morphological, taxonomic 

and habitat similarities over small spatial scales (Vaudo & Heithaus 2011). The highest degree of 

overlap in δ15N values was found between individuals of R. djiddensis and L. macrorhinus, species 

that both occur in shallow waters of the continental shelf. Overlap in diet would therefore be 

expected, although fine scale niche partitioning (concealed by isotope analyses) may occur. 

Detailed stomach content data collected over a seasonal cycle would be required to determine this. 

S. lewini and L. macrorhinus also exhibited a moderately high degree of niche overlap, but the 

former had a significantly higher mean δ15N value (related to an ontogenetic diet shift with size). 

Juvenile S. lewini and L. macrorhinus of all size classes had similar δ15N values, also related to 

their occurrence in coastal waters and the potential for high niche overlap. It is important to note 

that establishing isotopic baselines and system end points for carbon and nitrogen stable isotopes 
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in this region would be required to further elucidate the trophic ecology and roles of these species. 

The isotopic niche sizes varied among species, with δ15N and δ13C values tightly clustered for L. 

macrorhinus and R. djiddensis but more dispersed for S. lewini and C. falciformis. The large 

variability in S. lewini and L. macrorhinus isotopic values may indicate either a high level of 

generalist feeding behaviour or, more likely, because of the long turnover times of muscle tissue, 

consistent differences in average trophic interactions of individuals within generalist populations. 

Such behaviour has been found in juvenile bullsharks C. leucas in a nursery area of Florida (Matich 

et al. 2011) and has been suggested for a number of other elasmobranch taxa such as batoids (Vaudo 

& Heithaus 2011). In contrast, L. macrorhinus and R. djiddensis may be more specialized at the 

population level or individuals may all have similarly generalized diets over the time period that 

muscle isotopic values are integrated. The small sample size for C. falciformis may have influenced 

the standard ellipse (SEAc) size through artificially inflating the size of the niche area (Jackson et 

al. 2011). Given the observed variability in the data, however, this bias is likely minimal. Stable 

isotope analyses of multiple tissues with different turnover rates would address questions related 

to individual foraging specialisation (Matich et al. 20s11) and elucidate more intricate seasonal 

differences (Kinney et al. 2011). 

Ontogenetic and sex differences in diets and habitat preferences are related to age- and sex-specific 

energy requirements, vulnerability to predators, and social considerations, and have been 

documented for a diversity of taxa (e.g. Beier 1987, Breed et al. 2006), including elasmobranchs 

(Lowe et al. 1996, Estrada et al. 2006, Hussey et al. 2011, Rabehagasoa et al. 2012). Such 

ontogenetic niche shifts can impact population dynamics, community structure, and ecosystem 

function (Hammerschlag-Peyer et al. 2011, Hussey et al. 2011). Relative trophic level, inferred by 

δ15N values, significantly increased with body length in S. lewini, suggesting a dietary change with 

age in this species that likely reflects moving from more coastal to pelagic habitats and foraging 
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on higher trophic level prey (Compagno 1984, Borrell et al. 2011, Hussey et al. 2011). Spatial 

segregation has been documented for a diversity of elasmobranch species (Compagno 1984), 

including through the use of stable isotopes (e.g. Hussey et al. 2011). In our study, differences in 

δ15N values between male and female L. macrorhinus indicate that males feed at a higher relative 

trophic position compared to females. Whether this reflects foraging on different prey taxa or 

sexual segregation remains to be elucidated. We did not detect sex differences in isotopic values 

of S. lewini, which contrasts with results from individuals captured off the coast of KwaZulu-Natal, 

South Africa (Hussey et al. 2011). Off South Africa, δ13C values of males and females between 

120 and 160 cm (precaudal length) supported sexual segregation, with females most likely 

spending more time in oceanic waters (Hussey et al. 2011). 

 

CONCLUSIONS 

In summary, these data suggest that complex trophic structuring occurs in this highly exploited 

elasmobranch assemblage. Differences in trophic interactions appear to be driven by a combination 

of interacting factors including habitat use, home-range size, diets, and variation in all of these 

factors across size classes, sexes and individual behaviours. Consequently, species-specific 

population declines as a result of continued unregulated exploitation have the potential to lead to 

intricate species-specific cascades within the coastal waters of south-western Madagascar. More 

detailed sampling of the food web, however, is required to examine isotopic variation in prey items 

consumed by the 4 species and to determine if benthic and pelagic and coastal/offshore ecosystems 

can be readily distinguished. Given the IUCN Red list categories for 2 of the species (‘Vulnerable’, 

R. djiddensis; ‘Endangered’, S. lewini), local management is imperative to regulate regional 

fisheries. More data is also required on the biological parameters of these populations and other 
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large predators in the system to incorporate in food web models to examine long-term effects of 

removing trophically distinct species within artisanal fisheries. 
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Table 1: Review of ecological characteristics (*minimal depth range, **major prey type) of 

elasmobranch species investigated in this study. 

     
Species Habitat Depth range (m)* Diet** References 

Rhynchobatus djiddensis Benthic 0 - 200 
Small fishes, molluscs and 
crustaceans 

Darracott (1977), Compagno (1986) 

Loxodon macrorhinus Demersal 0 - 80 
Small demersal fishes and 
cephalopods, crustaceans 

Compagno (1984) 

Carcharhinus falciformis Epipelagic, oceanic 0 - 500 
Large squids, pelagic fishes, pelagic 
crabs 

Compagno (1984), Bonfil (2008), Cabrera-Chavez et 
al. (2010) 

Sphyrna lewini Coastal and oceanic 0 - 275 
Pelagic to demersal fishes, squids 
and elasmobranchs 

Compagno (1984), Baum et al. (2007), Hussey et al. 
(2011) 
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Table 2: Number of sampled sharks, mean FL (Fork Length), size range, sex ratio, percentage of 

mature individuals in sampling of our study based on length of maturity from Compagno (1984), 

and mean (SD) stable nitrogen, carbon isotope values and C:N ratios. 

         

Species n sampled Fork Length (cm) Sex ratio  % of mature δ15N  δ13C C:N 

  Mean Range (m:f) individuals Mean ± SD Mean ± SD Mean ± SD 

Loxodon macrorhinus 84 83.7 62 - 100 1:1 85 11.66 ± 0.59 -15.4 ± 1.01 3.14 ± 0.18 

Carcharhinus falciformis 7 162.9 73 - 260 0.9:1 29 12.89 ± 1.36 -14.37 ± 1.2 3.02 ± 0.1 

Rhynchobatus djiddensis 20 86 65 - 190 0.8:1 5 11.92 ± 0.42 -14.66 ± 0.43 3.13 ± 0.1 

Sphyrna lewini 40 96.5 58 - 172 0.8:1 5 12.42 ± 1.05 -15.89 ± 1.19 3.1 ± 0.2 

 

 

 

 

 

Table 3: Percentage of niche overlap among the four species investigated in both δ15N (above the 

diagonal) and δ13C (below the diagonal) space.  

Species R. djiddensis L. macrorhinus S. lewini C. falciformis 

R. djiddensis * 12.8 1.1 5.7 

L. macrorhinus 73.2 * 22.4 16.1 

S. lewini 13.3 48.3 * 19.3 

C. falciformis 93.2 46.2 26.6 * 
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Fig. 1: Map of the study area, in south-western Madagascar. 
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Fig. 2: Fork length (FL, cm) distribution of C. falciformis, L. macrorhinus, R. djiddensis and S. 

lewini sampled off SW Madagascar from 2009 to 2010.  
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Fig. 3: Stable isotope values (in ‰, δ15N and δ13C) in lipid-treated shark muscle (means ±SD and 

SE). Bold line: SE; thin line: SD. 
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Fig. 4: Individual stable values (in ‰, δ15N and δ13C) of C. falciformis, L. macrorhinus, R. 

djiddensis and S. lewini and SIBER isotopic ellipses of L. macrorhinus (black dashed line), R. 

djiddensis (dark grey continuous line), C. falciformis (light grey continuous line) and S. lewini 

(black continuous line). 
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Fig. 5: Relationships between δ15N (left) and δ13C (right) and fork length (cm) in S. lewini and L. 

macrorhinus. 

 


